
ASPLOS 2023 Tutorial: Real-world Processing-in-Memory Systems for Modern Workloads.
March 26, 2023 1/7

Programming and Understanding
a Real Processing-in-Memory Architecture

Instructors: Dr. Juan Gómez Luna, Prof. Onur Mutlu

1. Introduction
In this lab, you will work hands-on with a real processing-in-memory (PIM) architecture. You will program
the UPMEM PIM architecture [1, 2, 3, 4] for several workloads and will experiment with them. Your main
goals are (1) to become familiar with the UPMEM PIM system organization (as an example of real-world
memory-centric computing system), (2) to understand the UPMEM programming model and write your own
code, and (3) to understand the microarchitecture and instruction set architecture (ISA) of UPMEM’s PIM core
(called DRAM Processing Unit, DPU ).

As we introduced in this tutorial, the UPMEM PIM architecture is composed of multiple DPUs (up to 2,560),
each of which has access to its own DRAM bank (called Main RAM, MRAM) and its own scratchpad memory
(called Working RAM, WRAM). You can �nd a full description of the UPMEM PIM system in [3, 4].

2. Your Task 0/4: Accessing the UPMEM PIM Server
UPMEM has granted us with remote access to servers with UPMEM DIMMs in a datacenter.

Our username is: ethasplos23 and we are part of the group upmem0063 (ETH ASPLOS 2023 team). You can
download the SSH private key used to connect the machines from here: https://events.safari.ethz.ch/
asplos-pim-tutorial/lib/exe/fetch.php?media=upmemcloud ethasplos23.zip (download and un-
zip!)

Put the following base con�guration in your .ssh/con�g �le:

Host upmemcloud*
User ethasplos23
Hostname %h.cloud.upmem.com
IdentityFile ∼/.ssh/upmemcloud ethasplos23
StrictHostKeyChecking no
UserKnownHostsFile=/dev/null

You can connect to the booked machine anytime until 6am (Vancouver time) on Monday, March 27, 2023.

�e booked machine for this period is upmemcloud5 with ’20 UPMEM-P21’. You can connect to it by doing:
ssh upmemcloud5, if you have the private SSH key and the .ssh/con�g �le provided above.

�e machine is installed with the latest and greatest UPMEM SDK version (also available on https://sdk.
upmem.com). As an introduction, the public demonstration program doing a trivial checksum in parallel on
one DPU can be run by doing:
git clone https://github.com/upmem/dpu demo.git
cd /dpu demo/checksum
NR DPUS=1 make test

Please read the entire Section 2 before you access the server.

In summary, the steps are:

1. Paste the con�guration into .ssh/con�g.
2. Copy the private key upmemcloud ethasplos23 to your .ssh folder. You may need to change permis-

sions, as indicated in Section 2.1.
3. ssh upmemcloud5 from the terminal. Note that the server is already reserved for us. No booking is

needed.

https://events.safari.ethz.ch/asplos-pim-tutorial/lib/exe/fetch.php?media=upmemcloud_ethasplos23.zip
https://events.safari.ethz.ch/asplos-pim-tutorial/lib/exe/fetch.php?media=upmemcloud_ethasplos23.zip
https://sdk.upmem.com
https://sdk.upmem.com


ASPLOS 2023 Tutorial: Real-world Processing-in-Memory Systems for Modern Workloads.
March 26, 2023 2/7

2.1. Tips and Caveats
• You may need to change the permissions of the private key: chmod 600 upmemcloud ethasplos23
• Create a folder with your initials or your name and have all your codes and data there. Keep in mind

that we all use the same credentials.
• For the same reason, make sure you allocate a single DPU for your experiments. You can allocate more,

if you want to see how performance scales, but not more than 64 (an entire rank of DPUs).
• About your data: according to the European regulation, UPMEM will not share your personal data or

store project related data. Login data is kept for statistical purposes only. All servers are wiped clean at
the end of each booking. If you wish to access or delete your personal data, feel free to contact UPMEM
at dpo@upmem.com.

Alternatively, you can install the UPMEM SDK in your own machine, as explained in the appendix of this
document, and use the UPMEM functional simulator that the SDK includes. Note that when using the func-
tional simulator, you can only measure reliably a number of instructions. You should not rely on the measured
number of cycles.

3. Your Task 1/4: Transferring Data between Main Memory and PIM-
enabled Memory

Your goal is to get familiar with di�erent types of data transfers between the host main memory and the
PIM-enabled memory. You are provided with a template for this task. Find more details in Section 8.

Your tasks are as follows:

1. Write a host program that exercises all types of data transfers between the host main memory and one
or multiple MRAM banks. Concretely, there are three types of data transfers [2]: (1) serial, (2) parallel,
and (3) broadcast. Serial and parallel transfers move data from main memory to the MRAM banks or
vice versa. Broadcast transfers can only happen from the main memory to the MRAM banks.

2. Evaluate all di�erent types of data transfers for data transfers of size (1) 1MB, (2) 24MB, (3) 48MB per
DPU. Use di�erent numbers of DPUs between 1 and 64.

Based on your analysis, answer the following questions.

1. Create plots for the measured data transfer bandwidth for all combinations of data transfer size, type,
direction, and number of DPUs.

2. What is the maximum bandwidth for one DPU? What is the maximum bandwidth for 64 DPUs? Do
these numbers ful�ll your expectations? Explain.

4. Your Task 2/4: AXPY
Your goal is to get familiar with the DPU kernel launch and execution, and the performance scaling for dif-
ferent numbers of PIM threads (called tasklets in the UPMEM architecture). You are provided with a template
for this task. Find more details in Section 8.

Your tasks are as follows:

1. Write a DPU kernel that executes the AXPY operation (y = y + alpha × x) [5] on every element of
a vector. You have to (1) transfer two input vectors, Y and X, to the MRAM bank/s, (2) perform the
AXPY operation with a variable number of tasklets, (3) write the results to the output vector, Y, and (4)
transfer the output vector back to the host main memory.

2. Allocate as much WRAM as needed, and use mram read and mram write to move data between MRAM
and WRAM.



ASPLOS 2023 Tutorial: Real-world Processing-in-Memory Systems for Modern Workloads.
March 26, 2023 3/7

3. Your code should produce correct results for any data type (e.g., char, short, int, long long int,
float, double) and vector size. Hint: Make sure all data transfers are 8-byte aligned [2].

4. Evaluate the performance of your kernel for all numbers of tasklets between 1 and 24. Use input vectors
of, at least, 8 MB (per DPU).

5. Run your kernel for all numbers of tasklets between 1 and 24, and make sure that the kernel produces
correct results in all cases (i.e., for any number of tasklets and DPUs). Use input vectors of, at least, 8
MB (per DPU).

Based on your analysis, answer the following questions.

1. Compare the performance of your kernel for di�erent MRAM-WRAM and WRAM-MRAM transfer
sizes (e.g., 8, 32, 128, 512, 1024, 2048 bytes). Do it for numbers of tasklets equal to 1, 4, 8, and 16. Report
your observations.

2. Create a plot for the execution time with di�erent numbers of tasklets. Use vectors of 32-bit integers
(int).

3. Report your observations about the previous plot. For what number of tasklets does the performance
saturate?

4. Use the performance counters to count the number of execution cycles and the number of executed
instructions (see Section 8). Compare these numbers and enumerate your observations.

5. Your Task 3/4: Operations and Data Types
Your goal is to analyze how the DPU performs for di�erent types of data and operations.

Your tasks are as follows:

1. Modify your AXPY DPU kernel to make it a vector addition (y = y+x) and to support other operations
besides addition (i.e., subtraction, multiplication, division).

2. Evaluate the performance of your new kernel for di�erent operations (addition, subtraction, multipli-
cation, division) and data types (char, short, int, long long int, float, double).

Based on your analysis, answer the following questions.

1. Using the performance counters (see Section 8), measure the number of instructions and execution
cycles for each data type and operation. For each operation and data type, you can calculate the average
of both number of instructions and number of execution cycles.

2. Enumerate your observations about your evaluation.
3. We recommend you use the LLVM object �le dumper (see Section 8) to read the assembly code of your

program, and use this information to explain your observations.

6. Your Task 4/4: Vector Reduction
Your goal is to get familiar with the synchronization primitives for intra-DPU communication (i.e., across
tasklets). To do so, you will write a DPU kernel that performs the parallel reduction of an input vector.

Your tasks are as follows:

1. Your vector reduction DPU kernel should have four di�erent versions: (1) �nal reduction with a single
tasklet, (2) �nal tree-based reduction with barriers, (3) �nal tree-based reduction with handshakes, (4)
�nal reduction with mutexes.

2. Evaluate the performance of the di�erent versions of your kernel for di�erent numbers of tasklets. Use
vector sizes of 16 KB, 1 MB, 16 MB.



ASPLOS 2023 Tutorial: Real-world Processing-in-Memory Systems for Modern Workloads.
March 26, 2023 4/7

3. Run the di�erent versions of your kernel for di�erent numbers of tasklets. Make sure all versions of
your code produce correct results for any number of tasklets and DPUs. Count the number of executed
instructions. Use vector sizes of 16 KB, 1 MB, 16 MB.

Based on your analysis, answer the following questions.

1. Enumerate your observations about your evaluation. What is the best performing version for di�erent
vector sizes?

7. Bonus Task: Implement RGB to Grayscale Conversion
In this task, your goal is to implement the RGB to grayscale conversion of an image [6] on a variable number
of DPUs. �e image should have 8-bit red, green, and blue channels. For each image pixel, you perform a
conversion to obtain a grayscale value from the R, G, and B values. Compare the following three methods:

1. Lightness method: grayscale = min(R,G,B)+max(R,G,B)
2 .

2. Average method: grayscale = R+G+B
3 .

3. Luminosity method: grayscale = 0.3 ∗R+ 0.59 ∗G+ 0.11 ∗B.

Based on your analysis, answer to the following questions.

1. How do the di�erent methods scale for di�erent numbers of tasklets?
2. What is the fastest of the methods? Explain.
3. What is the slowest of the methods? Explain.

�ink about potential optimizations of your code, implement them, and reevaluate. A general recommenda-
tion is to try to reduce the number of executed instructions.

8. Lab Resources
You can download the necessary materials for this lab from here: https://events.safari.ethz.ch/
asplos-pim-tutorial/lib/exe/fetch.php?media=template.zip

8.1. Source Code
�e source code that we provide contains templates for tasks 1 (Section 3) and 2 (Section 4). For the rest of
tasks, you can use the same template as for task 2. You can �nd the templates in the folder template. Look for
//@@ to �nd the places where you need to insert code. Do NOT modify any �les or folders unless explicitly
speci�ed in the list below.

• task1

– Makefile

– host

∗ app.c: Host CPU code (modi�able).
– dpu

∗ task.c: DPU kernel code. It is empty in this template because it is not needed for task 1.
– support

∗ common.h: Common de�nitions. Note that T is int64 t for this task.
∗ params.h: Functions to read input parameters from command line.
∗ timer.h: Timing functions.

• task2

https://events.safari.ethz.ch/asplos-pim-tutorial/lib/exe/fetch.php?media=template.zip
https://events.safari.ethz.ch/asplos-pim-tutorial/lib/exe/fetch.php?media=template.zip


ASPLOS 2023 Tutorial: Real-world Processing-in-Memory Systems for Modern Workloads.
March 26, 2023 5/7

– Makefile

– host

∗ app.c: Host CPU code (modi�able).
– dpu

∗ task.c: DPU kernel code (modi�able).
– support

∗ common.h: Common de�nitions. Note that there are de�nitions for di�erent data types and
size of transfers between MRAM and WRAM.

∗ params.h: Functions to read input parameters from command line.
∗ timer.h: Timing functions.
∗ cyclecount.h: Functions for performance counters (cycles and instructions). Check SDK

documentation for more details about the performance counters (Section ”Measuring perfor-
mances” [2]).

8.2. Compilation
Task 1. �e Makefile for task 1 contains the following input parameters and default values:

• NR DPUS ?= 1: Number of DPUs that the program will use.
• NR TASKLETS ?= 16: Number of tasklets per DPU that the program will use.
• TRANSFER ?= PARALLEL: Type of data transfer (SERIAL, PARALLEL, BROADCAST).
• PRINT ?= 0: Print log from the DPU kernel.

For task 1, you will only have to use TRANSFER and NR DPUS. To compile with the default parameters:

$ make

To compile, for example, with serial transfers and 64 DPUs:

$ NR DPUS=64 TRANSFER=SERIAL make

�e compiled binaries will be in the bin folder. You can run the program with the default input:

$ ./bin/host code

You can check the possible input arguments with -h:

$ ./bin/host code -h

For example, you can run the program to transfer 2MB of data (i.e., 262144 64-bit elements) between the host
main memory and the MRAM banks, and vice versa, and repeat the experiment 10 times a�er 2 times of
warm-up:

$ ./bin/host code -w 2 -e 10 -i 262144

Task 2 and Rest of Tasks. �e Makefile for task 2 contains the following input parameters and default
values:

• NR DPUS ?= 1: Number of DPUs that the program will use.
• NR TASKLETS ?= 16: Number of tasklets per DPU that the program will use.
• BLOCK ?= 10: Size of the blocks (chunks) of data moved between MRAM and WRAM. �e actual size

in bytes is 2BLOCK .
• TYPE ?= INT32: Datatype of the input arrays (CHAR, SHORT, INT32, INT64, FLOAT, DOUBLE).



ASPLOS 2023 Tutorial: Real-world Processing-in-Memory Systems for Modern Workloads.
March 26, 2023 6/7

• TRANSFER ?= PARALLEL: Type of data transfer (SERIAL, PARALLEL).
• PRINT ?= 0: Print log from the DPU kernel.
• PERF ?= NO: Use of performance counters for cycle or instruction count (CYCLES, INSTRUCTIONS)

To compile with the default parameters:

$ make

To compile, for example, with parallel transfers, 64 DPUs, 12 tasklets per DPU, 32-bit �oating point datatype,
512-byte MRAM-WRAM and WRAM-MRAM data transfers, and counting instructions executed by the
tasklets:

$ NR DPUS=64 NR TASKLETS=12 BLOCK=9 TYPE=FLOAT TRANSFER=PARALLEL PERF=INSTRUCTIONS make

As in task 1, the compiled binaries will be in the bin folder. For example, you can run the AXPY program to
operate on 4MB arrays (e.g., 1048576 32-bit �oating-point elements), with a value of alpha equal to 20, and
repeat the experiment 10 times a�er 2 times of warm-up:

$ ./bin/host code -w 2 -e 10 -i 1048576 -a 20

8.3. LLVM Object File Dumper
You can use this tool to print the contents of object �les [7]. �e -S option displays the source code interleaved
with the disassemble code:

$ llvm-objdump -S ./bin/dpu code

Another useful tool with a similar purpose is Compiler Explorer [8].

9. Tips
• Please do not distribute the provided program �les. �ese are for exclusive individual use
of each participant of this tutorial. Distribution and sharing violates the copyright of the
so�ware provided to you.

• Read this handout in detail.
• Read the UPMEM programming guide [2].
• If needed, please ask questions to the instructor/s.
• When you encounter a technical problem (e.g., a compilation error), please �rst read the error messages.



ASPLOS 2023 Tutorial: Real-world Processing-in-Memory Systems for Modern Workloads.
March 26, 2023 7/7

References
[1] UPMEM. UPMEM So�ware Development Kit (SDK). https://sdk.upmem.com, 2023.

[2] UPMEM. UPMEM User Manual. https://sdk.upmem.com/2023.1.0/, 2023.

[3] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernández, Christina Giannoula, Geraldo F. Oliveira, and Onur
Mutlu. Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory
Architecture. arXiv:2105.03814 [cs.AR], 2021.

[4] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F. Oliveira, and Onur
Mutlu. Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-
in-Memory System. IEEE Access, 2022.

[5] Wikipedia. Basic Linear Algebra Subprograms. Level 1. https://en.wikipedia.org/wiki/Basic
Linear Algebra Subprograms#Level 1, 2023.

[6] Wikipedia. Grayscale. https://en.wikipedia.org/wiki/Grayscale, 2023.

[7] LLVM. llvm-objdump - LLVM’s Object File Dumper. https://llvm.org/docs/CommandGuide/
llvm-objdump.html, 2023.

[8] Compiler Explorer. Compiler Explorer for DPU. https://dpu.dev, 2023.

[9] Docker Inc. Docker. https://www.docker.com, 2023.

Appendix: Installing the UPMEM SDK
You can set up the UPMEM SDK on your machine to compile and run the code of this lab. If you have access
to a system with a supported Linux version, you can install the UPMEM SDK natively from the UPMEM
website [1, 2]. If you encounter issues with the installation or do not have access to a system with a sup-
ported Linux version, you can use the Docker�le we provide, along with the associated shell scripts for either
Windows or Unix-based host systems.
Using the Docker�le
Using the Docker�le requires Docker [9] to be installed on your system. With Docker installed, you can
execute the docker/start docker.sh shell script (docker\start docker.bat on Windows).

$ docker/start docker.sh

�e script will automatically build the Docker image (which will take a few minutes the �rst time) and then
start an interactive shell within it. �e working directory of the host machine where the docker was started
will be mounted to the Docker (try running ls inside the docker). �e code for this lab can then be compiled
and executed using this interactive shell.

https://sdk.upmem.com
https://sdk.upmem.com/2023.1.0/
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_1
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_1
https://en.wikipedia.org/wiki/Grayscale
https://llvm.org/docs/CommandGuide/llvm-objdump.html
https://llvm.org/docs/CommandGuide/llvm-objdump.html
https://dpu.dev
https://www.docker.com

	Introduction
	Your Task 0/4: Accessing the UPMEM PIM Server
	Tips and Caveats

	Your Task 1/4: Transferring Data between Main Memory and PIM-enabled Memory
	Your Task 2/4: AXPY
	Your Task 3/4: Operations and Data Types
	Your Task 4/4: Vector Reduction
	Bonus Task: Implement RGB to Grayscale Conversion
	Lab Resources
	Source Code
	Compilation
	LLVM Object File Dumper

	Tips

