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PIM: Now commercially available

- UPMEM PIM-capable DRAM commercially available today
- DDR4-compatible DRAM with small general-purpose processors
* Integrated into standard off-the-shelf servers

« Samsung Function in Memory Architecture (FIMA) — coming up
* Processors near HBM memory
» Execute 32-instruction snippets, total of nine instructions available



UPMEM QOverview

* Looks and can be used like regular DRAM
* Drop-in replacement for DDR4 DRAM
» Each chip is equipped with small processors

« Can be used in off-the-shelf servers regular DRAM




UPMEM architecture

 One DPU per 64MB slice of DRAM
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* General-purpose processor

* Simple, in-order, 267-500MHz

* No cache, only scratchpad memory




PIM superpower: High DRAM bandwidth
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« 128GB DRAM, 500MHz DPUs: 2TB/sec bandwidth

J. Nider, C. Mustard, A. Zoltan, J. Ramsden, L. Liu, J. Grossbard, M. Dashti, R. Jodin, A. Ghiti, J. Chauzi, A. Fedorova
A Case Study of Processing-in-Memory in off-the-Shelf Systems, USENIX ATC 2021



Total cost of ownership

* You can also get high memory bandwidth
* On high-end CPUs
* HBM (high-bandwidth memory)
 GPUs

PIM can deliver high bandwidth at a lower cost
($$ and Watts)

...if you are able to use it efficiently



PIM superpower: Low TCO

Price:

« 8GB UPMEM DIMM: ~$300

* More CPUs adds memory
channels, but requires
expensive high-end CPUs

Power:

« Typical server with DRAM:
about 400W

« A server with 128GB PIM
DRAM: 700W

*Prices include just CPU and memory



PIM performance:
hyper-dimensional computing
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PIM performance: compression
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Image Processing on PIM

Motivation: pre-process images for ML training
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Moving data back-and-forth
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PIM limitations
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Deep Learning Recommendation Models in PIM

Problem 4 CPU Nodes
« DNN-trained models

* Inference done on CPUs

« Models can be very large (even terabytes’)

* |Inference is bandwidth intensive

Can this be done?

 Parts of DLRM inference were done in-
memory? and in-storage

Challenges

« Some DLRM inference phases are compute-
intensive

- Skewed workload: balanced parallelism may be
[1] Wilkening et al. RecSSD..., ASPLOS 2021 difficult to achieve
[2] Ke et al. RecNMP..., ISCA 2020



DLRM Inference in PIM

Inference Cycle Latency(ms)

DPU vs. CPU Latency Comparison
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* RMC2 model
 Latency of a single reference cycle. Larger batch size — more work.



Where does the time go?

Useful work on PIM

DPU Latency Breakdown
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Low IPC when inference done on CPU

Instruction per Cycles Comparisons
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CPU implementation hits the memory wall

RMC2 L1D, LCC Hit Rate
= L1-D Hit Rate = LCC Hit Rate

(0]
100.00% CPU cache hit - CPU cache hit -
inference on CPU inference on PIM

75.00%
50.00%

Hit Rate

25.00%
0.00%

CPU DPU

Implementation



Key-value store (in-memory cache) in PIM

Application Servers

( )

get/put API
v:ache servers

memcached

memcached

Database servers

Benefits:

e (Cache servers use general-purpose CPUs
* Get rid of expensive CPUs

* Save money and power

Can this be done?

e Get/put interface to memory

 Hashtable and a memory allocator inside
PIM

e Data already sharded across cache
servers — no communication needed!

Challenges
» Difficult to buffer get requests; executing
one at a time may be inefficient

[1] LightStore (ASPLOS’19) — a key value store in SSD



Filtering-in-memory

- Key-value store with a column-store architecture
* 30MB of data per DPU
» 20 tasklets



Relative Speedup (x)

Filtering on PIM vs on CPU
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Disaggregated memory meets PIM
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Memory management

- Each DPU can run its own memory allocator

- Keep a local page table
« Can even compress pages on the fly



Disaggregated memory meets PIM
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Disaggregated Memory Runs Applications

 Disaggregated memory consists of CPU-less
PIM blades

* PIM array runs an entire application ( )
« CPU blades access memory via a higher-level API loadygore

Higher-level
interface

Similar ideas:
« AIFM (OSDI 2020): Application-integrated far memory

« KV-Direct (SOSP 2017): key-value API to memory via a smart NIC
and RDMA

« StRoM (EuroSys 2020): Smart Remote Memory




