Processing-in-Memory in the Wild

Sasha Fedorova University of British Columbia MongoDB

Acknowledgments

Students

- Andrada Zoltan
- Craig Mustard
- Jacob Grossbard
- Joel Nider
- John Ramsden
- Larry Liu
- Mohammad Dashti
- Niloo Zarif

Systopia

Collaborators (UPMEM)

- Alexandre Ghiti
- Jordi Chauzi
- Rémy Cimadomo
- Fabrice Devaux
- Romaric Jodin
- Julien Legriel
- Vincent Palatin

PIM: Now commercially available

- UPMEM PIM-capable DRAM <u>commercially available today</u>
 - DDR4-compatible DRAM with small general-purpose processors
 - Integrated into standard off-the-shelf servers
- Samsung Function in Memory Architecture (FIMA) coming up
 - Processors near HBM memory
 - Execute 32-instruction snippets, total of nine instructions available

UPMEM Overview

- Looks and can be used like regular DRAM
- Drop-in replacement for DDR4 DRAM
- Each chip is equipped with small processors
- Can be used in off-the-shelf servers

UPMEM DRAM

UPMEM architecture

- One DPU per 64MB slice of DRAM
- 8GB DIMM: 128 DPUs
- Each DPU has its own DMA engine

Many DPUs can achieve very high DRAM bandwidth together

UPMEM DRAM

is a consecret a consecret a thread

- General-purpose processor
- Simple, in-order, 267-500MHz
- No cache, only scratchpad memory

PIM superpower: High DRAM bandwidth

- DPUs running at 267 MHz
- Only 32GB PIM DRAM
- Sequentially read every byte of memory

• 128GB DRAM, 500MHz DPUs: **2TB/sec bandwidth**

J. Nider, C. Mustard, A. Zoltan, J. Ramsden, L. Liu, J. Grossbard, M. Dashti, R. Jodin, A. Ghiti, J. Chauzi, A. Fedorova **A Case Study of Processing-in-Memory in off-the-Shelf Systems**, USENIX ATC 2021

Total cost of ownership

- You can also get high memory bandwidth
 - On high-end CPUs
 - HBM (high-bandwidth memory)
 - GPUs

PIM can deliver high bandwidth at a lower cost (\$\$ and Watts)

... if you are able to use it efficiently

PIM superpower: Low TCO

Price:

- 8GB UPMEM DIMM: ~\$300
- More CPUs adds memory channels, but requires expensive high-end CPUs

Power:

- Typical server with DRAM: about 400W
- A server with 128GB PIM DRAM: 700W

*Prices include just CPU and memory

PIM performance: hyper-dimensional computing

J. Nider, C. Mustard, A. Zoltan, J. Ramsden, L. Liu, J. Grossbard, M. Dashti, R. Jodin, A. Ghiti, J. Chauzi, A. Fedorova **A Case Study of Processing-in-Memory in off-the-Shelf Systems**, to appear in USENIX ATC 2021

PIM performance: compression

- Snappy compression
- Speedup over a single CPU
- **End-to-end measurements**

More data \rightarrow more DPUs \rightarrow more throughput

J. Nider, C. Mustard, A. Zoltan, J. Ramsden, L. Liu, J. Grossbard, M. Dashti, R. Jodin, A. Ghiti, J. Chauzi, A. Fedorova A Case Study of Processing-in-Memory in off-the-Shelf Systems, to appear in USENIX ATC 2021

Image Processing on PIM

Motivation: pre-process images for ML training

of images

Moving data back-and-forth

PIM limitations

DPUs store data in different format than the CPU expects:

- Has to do with interleaving
- CPU has to de-interleave the data used by DPU

CPU splits a cache line across slices for better performance

DPUs can't talk to each other

• Each DPU sees data only in its slice

Deep Learning Recommendation Models in PIM

Problem

- DNN-trained models
- Inference done on CPUs
- Models can be very large (even terabytes¹)
- Inference is bandwidth intensive

Can this be done?

 Parts of DLRM inference were done inmemory² and in-storage¹

[1] Wilkening et al. RecSSD..., ASPLOS 2021[2] Ke et al. RecNMP..., ISCA 2020

Challenges

- Some DLRM inference phases are computeintensive
- Skewed workload: balanced parallelism may be difficult to achieve

DLRM Inference in PIM

DPU vs. CPU Latency Comparison

- RMC2 model
- Latency of a single reference cycle. Larger batch size more work.

Where does the time go?

Low IPC when inference done on CPU

Instruction per Cycles Comparisons

DPU IPC for DPU Lookups CPU IPC for DPU Lookups CPU IPC for CPU Lookups

Batch Size

CPU implementation hits the memory wall

RMC2 L1D, LCC Hit Rate

Implementation

Key-value store (in-memory cache) in PIM

Benefits:

- Cache servers use general-purpose CPUs
- Get rid of expensive CPUs
- Save money and power

Can this be done?

- Get/put interface to memory
- Hashtable and a memory allocator inside PIM
- Data already sharded across cache servers – no communication needed!

Challenges

 Difficult to buffer get requests; executing one at a time may be inefficient

[1] LightStore (ASPLOS'19) – a key value store in SSD

Filtering-in-memory

- Key-value store with a column-store architecture
- 30MB of data per DPU
- 20 tasklets

Filtering on PIM vs on CPU

Selectivity (%)

Disaggregated memory meets PIM

Memory management

- Each DPU can run its own memory allocator
- Keep a local page table
- Can even compress pages on the fly

Disaggregated memory meets PIM

Disaggregated Memory Runs Applications

- Disaggregated memory consists of CPU-less PIM blades
- PIM array runs an entire application
- CPU blades access memory via a higher-level API

Similar ideas:

- AIFM (OSDI 2020): Application-integrated far memory
- KV-Direct (SOSP 2017): key-value API to memory via a smart NIC and RDMA
- StRoM (EuroSys 2020): Smart Remote Memory

Higher-level interface

