
Processing-in-Memory in 
the Wild
Sasha Fedorova

University of British Columbia
MongoDB



Acknowledgments
Students
• Andrada Zoltan
• Craig Mustard
• Jacob Grossbard
• Joel Nider
• John Ramsden
• Larry Liu
• Mohammad Dashti
• Niloo Zarif

Collaborators (UPMEM)
• Alexandre Ghiti
• Jordi Chauzi
• Rémy Cimadomo
• Fabrice Devaux
• Romaric Jodin
• Julien Legriel
• Vincent Palatin

UBC
Systopia



PIM: Now commercially available
• UPMEM PIM-capable DRAM commercially available today
• DDR4-compatible DRAM with small general-purpose processors
• Integrated into standard off-the-shelf servers

• Samsung Function in Memory Architecture (FIMA) – coming up
• Processors near HBM memory
• Execute 32-instruction snippets, total of nine instructions available



UPMEM Overview
• Looks and can be used like regular DRAM
• Drop-in replacement for DDR4 DRAM
• Each chip is equipped with small processors
• Can be used in off-the-shelf servers regular DRAM

UPMEM DRAM



UPMEM architecture

UPMEM DRAM

DRAM Slice
64MB

DRAM Processing UNIT
• General-purpose processor
• Simple, in-order, 267-500MHz
• No cache, only scratchpad memory

• One DPU per 64MB slice of DRAM
• 8GB DIMM: 128 DPUs
• Each DPU has its own DMA engine

Many DPUs can achieve very 
high DRAM bandwidth together 



PIM superpower: High DRAM bandwidth

• DPUs running at 267 MHz
• Only 32GB PIM DRAM
• Sequentially read every byte of 

memory

• 128GB DRAM, 500MHz DPUs: 2TB/sec bandwidth

J. Nider, C. Mustard, A. Zoltan, J. Ramsden, L. Liu, J. Grossbard, M. Dashti, R. Jodin, A. Ghiti, J. Chauzi, A. Fedorova
A Case Study of Processing-in-Memory in off-the-Shelf Systems, USENIX ATC 2021 



Total cost of ownership
• You can also get high memory bandwidth
• On high-end CPUs
• HBM (high-bandwidth memory)
• GPUs

PIM can deliver high bandwidth at a lower cost 
($$ and Watts)

…if you are able to use it efficiently



PIM superpower: Low TCO
Price:
• 8GB UPMEM DIMM: ~$300
• More CPUs adds memory 

channels, but requires 
expensive high-end CPUs

Processor
(Intel Xeon) DRAM PIM

Max. memory 
bandwidth 

(PIM or 
DRAM)

Cost

Low-bandwidth system
4110 48GB 115GB/s $860
4110 48GB 24GB 134GB/s $1,760

Medium-bandwidth system
4110 48GB 144GB 806GB/s $6,260

5318H 192GB 511GB/s $6,532
High-bandwidth system

4110 64GB 256GB 1434GB/s $10,580
8380 448GB 1434GB/s $83,580+

*Prices include just CPU and memory

Power:
• Typical server with DRAM: 

about 400W
• A server with 128GB PIM 

DRAM: 700W



PIM performance: 
hyper-dimensional computing

• Speedup over a single host CPU
• End-to-end measurements

J. Nider, C. Mustard, A. Zoltan, J. Ramsden, L. Liu, J. Grossbard, M. Dashti, R. Jodin, A. Ghiti, J. Chauzi, A. Fedorova
A Case Study of Processing-in-Memory in off-the-Shelf Systems, to appear in USENIX ATC 2021 

Number of DPUs

More data à more DPUs à
more throughput 



PIM performance: compression

J. Nider, C. Mustard, A. Zoltan, J. Ramsden, L. Liu, J. Grossbard, M. Dashti, R. Jodin, A. Ghiti, J. Chauzi, A. Fedorova
A Case Study of Processing-in-Memory in off-the-Shelf Systems, to appear in USENIX ATC 2021 

• Snappy compression
• Speedup over a single CPU
• End-to-end measurements

Number of DPUs

More data à more DPUs à
more throughput 

Different input files



Image Processing on PIM

lo
w

er
 is

 b
et

te
r

Motivation: pre-process images for ML training

PIM



Moving data back-and-forth
copy overhead



PIM limitations

UPMEM DRAM

DRAM Slice
64MB

DPUs can’t talk to each other 
• Each DPU sees data only in 

its slice

DPUs store data in different format than the 
CPU expects:
• Has to do with interleaving
• CPU has to de-interleave the data used by 

DPU

0 1 2 3 4 5 6 7
First 8-bytes of cache line

CPU splits a cache line across slices 
for better performance



Deep Learning Recommendation Models in PIM
Problem
• DNN-trained models
• Inference done on CPUs
• Models can be very large (even terabytes1)
• Inference is bandwidth intensive

Can this be done? 
• Parts of DLRM inference were done in-

memory2 and in-storage1

CPU Nodes

[1] Wilkening et al. RecSSD…, ASPLOS 2021
[2] Ke et al. RecNMP…, ISCA 2020          

In-memory DLRM inference

Challenges
• Some DLRM inference phases are compute-

intensive
• Skewed workload: balanced parallelism may be 

difficult to achieve



DLRM Inference in PIM

• RMC2 model
• Latency of a single reference cycle. Larger batch size – more work.

lo
w

er
 is

 b
et

te
r



Where does the time go?
Useful work on PIM



Low IPC when inference done on CPU

Inference 
done on 

CPU



CPU implementation hits the memory wall 

CPU cache hit –
inference on CPU

CPU cache hit –
inference on PIM



Key-value store (in-memory cache) in PIM

DBDB DB DB

memcached memcached memcached memcached

Application Servers

Cache servers

Database servers

Benefits:
• Cache servers use general-purpose CPUs
• Get rid of expensive CPUs
• Save money and power

Can this be done? 
• Get/put interface to memory
• Hashtable and a memory allocator inside 

PIM
• Data already sharded across cache 

servers – no communication needed!

Challenges
• Difficult to buffer get requests; executing 

one at a time may be inefficient

get/put API

[1] LightStore (ASPLOS’19) – a key value store in SSD



Filtering-in-memory
• Key-value store with a column-store architecture
• 30MB of data per DPU
• 20 tasklets



Filtering on PIM vs on CPU
As selectivity 

increases, we need 
to copy more data to 

back to the CPU



Disaggregation

Blending

Disaggregation Meets Near-Data Processing



Disaggregated memory meets PIM

PIM-enabled memory blades



Memory management
• Each DPU can run its own memory allocator
• Keep a local page table
• Can even compress pages on the fly



Disaggregated memory meets PIM

100s ns

~10s of µs 

Let memory run applications!

CPUs use load/store interface to access 
memory



Disaggregated Memory Runs Applications
• Disaggregated memory consists of CPU-less

PIM blades
• PIM array runs an entire application
• CPU blades access memory via a higher-level API

Similar ideas: 
• AIFM (OSDI 2020): Application-integrated far memory
• KV-Direct (SOSP 2017): key-value API to memory via a smart NIC

and RDMA
• StRoM (EuroSys 2020): Smart Remote Memory

load/store

Higher-level 
interface


