Processing-in-Memory in
the Wild

Sasha Fedorova

University of British Columbia
MongoDB

Acknowledgments

Students &"’

 Andrada Zoltan
* Craig Mustard

« Jacob Grossbard

. : UBC
Joel Nider Systovia

 John Ramsden

 Larry Liu

* Mohammad Dashti
* Niloo Zarif

Collaborators (UPMEM)
* Alexandre Ghiti
« Jordi Chauzi

Rémy Cimadomo
—abrice Devaux

Romaric Jodin

* Julien Legriel
* Vincent Palatin

PIM: Now commercially available

- UPMEM PIM-capable DRAM commercially available today
- DDR4-compatible DRAM with small general-purpose processors
* Integrated into standard off-the-shelf servers

« Samsung Function in Memory Architecture (FIMA) — coming up
* Processors near HBM memory
» Execute 32-instruction snippets, total of nine instructions available

UPMEM QOverview

* Looks and can be used like regular DRAM
* Drop-in replacement for DDR4 DRAM
» Each chip is equipped with small processors

« Can be used in off-the-shelf servers regular DRAM

UPMEM architecture

 One DPU per 64MB slice of DRAM

Control Interface -— DDR4 Interface e S3GB DIMM: 128 DPUs
Instruction |
Memory :
> ORAM S Many DPUs can achieve very
ice
PRk AT eamB i high DRAM bandwidth together
o |

|
DRAM Processing UNIT

* General-purpose processor

* Simple, in-order, 267-500MHz

* No cache, only scratchpad memory

PIM superpower: High DRAM bandwidth

256 T—
e ~== DDR4 Memory Channel x1 * DPUs running at 267 MHz
~ s DDR4 Memory Channel x4 |+ i~ * Only 32GB PIM DRAM
O —— DPU Aggregate * Sequentially read every byte of
= ; ‘ ‘ memory
ol 128.. __
L
S
o5 T P S DR Pl SRR RIS AR PN, ESIRHEES T
=
19 -ﬂ——q‘——— ——
O 1 1 I |)]] | I
0 4 8 12 16 20 24 28 32
Memory (GB)

« 128GB DRAM, 500MHz DPUs: 2TB/sec bandwidth

J. Nider, C. Mustard, A. Zoltan, J. Ramsden, L. Liu, J. Grossbard, M. Dashti, R. Jodin, A. Ghiti, J. Chauzi, A. Fedorova
A Case Study of Processing-in-Memory in off-the-Shelf Systems, USENIX ATC 2021

Total cost of ownership

* You can also get high memory bandwidth
* On high-end CPUs
* HBM (high-bandwidth memory)
 GPUs

PIM can deliver high bandwidth at a lower cost
($$ and Watts)

...if you are able to use it efficiently

PIM superpower: Low TCO

Price:

« 8GB UPMEM DIMM: ~$300

* More CPUs adds memory
channels, but requires
expensive high-end CPUs

Power:

« Typical server with DRAM:
about 400W

« A server with 128GB PIM
DRAM: 700W

*Prices include just CPU and memory

PIM performance:
hyper-dimensional computing

Number of DPUs
16 256 512
-&— DPU
125+ - == Host
o 10.0 -
3 More data = more DPUs =
F
S more throughput
o
v 5.04
7 3 2 e Speedup over a single host CPU
 End-to-end measurements
00 T T '
0.05 0.49 3.67
File Size (MB)

J. Nider, C. Mustard, A. Zoltan, J. Ramsden, L. Liu, J. Grossbard, M. Dashti, R. Jodin, A. Ghiti, J. Chauzi, A. Fedorova
A Case Study of Processing-in-Memory in off-the-Shelf Systems, to appear in USENIX ATC 2021

PIM performance: compression

Number of DPUs
64 128 192 256 512

(o)}
S

512

576

Different input files

8 16 32 64 128 256
File Size (MB)

Throughput Relative to Single Host CPU

912

1024

trrede

Host * Snappy compression
dickens e Speedup over a single CPU
nmc‘i’z'"a * End-to-end measurements
Sao

spamfile

xml

More data & more DPUs =
more throughput

J. Nider, C. Mustard, A. Zoltan, J. Ramsden, L. Liu, J. Grossbard, M. Dashti, R. Jodin, A. Ghiti, J. Chauzi, A. Fedorova
A Case Study of Processing-in-Memory in off-the-Shelf Systems, to appear in USENIX ATC 2021

Image Processing on PIM

Motivation: pre-process images for ML training

DPU W GPU CPU-1 CPU-3 [CPU-6

PIM

Cenbi

w

Time (s)

N

-

1024

of images

lower is better

Moving data back-and-forth

6000

4000

Time (ms)

2000

64

128 256

DPUs / # of images

copy overhead

512

1024

CPU to DPU copy
Internal copy to mrams
Internal copy to iram
internal copy to wram
DPU to CPU copy

Decode image on
DPUs

DPU setup

PIM limitations

Control Interface

DDR4 Interface

DPU

Instruction
Memory
<> SRAM |[_
Scratchpad

DMA «—>

DRAM Slice
64MB

Vil

DPUs can’t talk to each other

Each DPU sees data only in
its slice

DPUs store data in different format than the

CPU expects:

* Has to do with interleaving

* CPU has to de-interleave the data used by
DPU

CPU splits a cache line across slices
for better performance

AR
Firdt 8-b\tes of fache fne

UPMEM DRAM

mem B L T

"o

e 2

R 4 E1) ”

384500) Alaldelagads

Deep Learning Recommendation Models in PIM

Problem 4 CPU Nodes
« DNN-trained models

* Inference done on CPUs

« Models can be very large (even terabytes’)

* |Inference is bandwidth intensive

Can this be done?

 Parts of DLRM inference were done in-
memory? and in-storage

Challenges

« Some DLRM inference phases are compute-
intensive

- Skewed workload: balanced parallelism may be
[1] Wilkening et al. RecSSD..., ASPLOS 2021 difficult to achieve
[2] Ke et al. RecNMP..., ISCA 2020

DLRM Inference in PIM

Inference Cycle Latency(ms)

DPU vs. CPU Latency Comparison
= CPUs = DPUs

30
25
20
15
10

lower is better

32 100

Batch Size

* RMC2 model
 Latency of a single reference cycle. Larger batch size — more work.

Where does the time go?

Useful work on PIM

DPU Latency Breakdown

16

32

Batch Size

64
100

Latency (ms)

B copy query to DPUs [copy from MRAM to WRAM | DPU Launch) [copy result from DPU to host [l Callback prep [query post-processing

10

Low IPC when inference done on CPU

Instruction per Cycles Comparisons

®m DPU IPC for DPU Lookups m CPU IPC for DPU Lookups CPU IPC for CPU Lookups
1.2
1.0
0.8
0.6
0.4
0.2
0.0

Inference
done on
CPU

IPC

Batch Size

CPU implementation hits the memory wall

RMC2 L1D, LCC Hit Rate
= L1-D Hit Rate = LCC Hit Rate

(0]
100.00% CPU cache hit - CPU cache hit -
inference on CPU inference on PIM

75.00%
50.00%

Hit Rate

25.00%
0.00%

CPU DPU

Implementation

Key-value store (in-memory cache) in PIM

Application Servers

()

get/put API
v:ache servers

memcached

memcached

Database servers

Benefits:

e (Cache servers use general-purpose CPUs
* Get rid of expensive CPUs

* Save money and power

Can this be done?

e Get/put interface to memory

 Hashtable and a memory allocator inside
PIM

e Data already sharded across cache
servers — no communication needed!

Challenges
» Difficult to buffer get requests; executing
one at a time may be inefficient

[1] LightStore (ASPLOS’19) — a key value store in SSD

Filtering-in-memory

- Key-value store with a column-store architecture
* 30MB of data per DPU
» 20 tasklets

Relative Speedup (x)

Filtering on PIM vs on CPU

g0

80

70

60

50

40

30

20

10

0

1 CPU (8 cores)

2CPUs (16
cores)

47
/ \
——
20 40 60 80

Selectivity (%)

100

64 DPUs
640 DPUs
2560 DPUs

As selectivity
increases, we need
to copy more data to
back to the CPU

DisaggregatioBnggtegﬂaemﬁData Processing
- o =

Disaggregated memory meets PIM

4C 4C 4F : 48 45 4C 20 57 4F 20 57 5 4C 4C 4F
4C 44 20 4F 5Z 4C 54 48 20 54 48 4C 44 20
Z0 49 53 49 53 20 20 4D 53 20 4D 3 20 49 53
43 4F 4D 59 20 43 50 55 5 B 4D 50 55 0 43 4F 4D
52 54 45 52 5 52

Memory management

- Each DPU can run its own memory allocator

- Keep a local page table
« Can even compress pages on the fly

Disaggregated memory meets PIM

IlOOsns

(!7] (!7} (!7} [\\)

® CPUSuse load/store integface to access
®

. mem
Let memor§iirun applications!

~10s of ps

Disaggregated Memory Runs Applications

 Disaggregated memory consists of CPU-less
PIM blades

* PIM array runs an entire application ()
« CPU blades access memory via a higher-level API loadygore

Higher-level
interface

Similar ideas:
« AIFM (OSDI 2020): Application-integrated far memory

« KV-Direct (SOSP 2017): key-value API to memory via a smart NIC
and RDMA

« StRoM (EuroSys 2020): Smart Remote Memory

