ASPLOS 2023 Tutorial
Real-world Processing-in-Memory Systems for Modern Workloads

Accelerating Modern Workloads
on a General-purpose PIM System

Dr. Juan Gomez Luna
Professor Onur Mutlu

m Ziirich SA F A R ’

Sunday, March 26, 2023

Potential Barriers to Adoption of PIM

1. Applications & software for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System and security support: coherence, synchronization,
virtual memory, isolation, communication interfaces, ...

4. Runtime and compilation systems for adaptive scheduling,
data mapping, access/sharing control, ...

5. Infrastructures to assess benefits and feasibility

All can be solved with change of mindset
SAFARI 2

Benchmarking and
Workload Suitability

PriM Benchmarks

e Goal

- A common set of workloads that can be used to
e evaluate the UPMEM PIM architecture,
* compare software improvements and compilers,
* compare future PIM architectures and hardware

* Two key selection criteria:
- Selected workloads from different application domains
- Memory-bound workloads on processor-centric architectures

* 14 different workloads, 16 different benchmarks*

SA FARI *There are two versions for two of the workloads (HST, SCAN). 4

PrIM Benchmarks: Application Domains

Domain Benchmark Short name
Vector Addition VA
Dense linear algebra
Matrix-Vector Multiply GEMV
Sparse linear algebra Sparse Matrix-Vector Multiply SpMV
Select SEL
Databases
Unique UNI
Binary Search BS
Data analytics
Time Series Analysis TS
Graph processing Breadth-First Search BFS
Neural networks Multilayer Perceptron MLP
Bioinformatics Needleman-Wunsch NW
Image histogram (short) HST-S
Image processing
Image histogram (large) HST-L
Reduction RED
Prefix sum (scan-scan-add) SCAN-SSA
Parallel primitives
Prefix sum (reduce-scan-scan) SCAN-RSS
Matrix transposition TRNS

SAFARI 5

Roofline Model

* Intel Advisor on an Intel Xeon E3-1225 v6 CPU

16 - -~ 7 Peak compute performance
5 84 / G- MLP /
é sl 7 Gemvy ew
=) BSﬂQ/dHST
s 27 @ UNI_ &~ NW
& 1 - V—¢g O TRNS
S © 0% GRED
£ 05 | SEL BFS
9 SCAN
W0
0.25 -&
0.125 . .
0.01 0.1 1 10

Arithmetic Intensity (OP/B)

[All workloads fall in the memory-bound area of the Roofline]

SAFARI 6

PrIM Benchmarks: Diversity

* PrIM benchmarks are diverse:
- Memory access patterns
- Operations and datatypes
- Communication/synchronization

. Memory access pattern Computation pattern

Domain Benchmark Short name Sequential T Stridedpl Random 0peraI:ions II) Datatype Intra-DPU | Inter-DPU

Dense linear algebra Vector Addition VA Yes add int32_t
Matrix-Vector Multiply GEMV Yes add, mul uint32_t

Sparse linear algebra | Sparse Matrix-Vector Multiply SpMV Yes Yes add, mul float

Databases Select SEL Yes add, compare int64_t handshake, barrier Yes
Unique UNI Yes add, compare int64_t handshake, barrier Yes

. Binary Search BS Yes Yes compare int64_t

Data analytics Time }S’,eries Analysis TS Yes add, sub,pmul, div int32_t

Graph processing Breadth-First Search BFS Yes Yes bitwise logic uint64_t barrier, mutex Yes

Neural networks Multilayer Perceptron MLP Yes add, mul, compare | int32_t

Bioinformatics Needleman-Wunsch NW Yes Yes add, sub, compare int32_t barrier Yes

Image processing Image histogram (short) HST-S Yes Yes add uint32_t barrier Yes
Image histogram (long) HST-L Yes Yes add uint32_t barrier, mutex Yes
Reduction RED Yes Yes add int64_t barrier Yes

Parallel primitives Prefix sum (scan-scan-add) SCAN-SSA Yes add int64_t § handshake, barrier Yes
Prefix sum (reduce-scan-scan) | SCAN-RSS Yes add int64_t | handshake, barrier Yes
Matrix transposition TRNS Yes Yes add, sub, mul int64_t mutex

SAFARI

PrIM Benchmarks: Inter-DPU Communication

Short name I

Memory access pattern

Computation pattern

Communication/synchronization

Domain Benchmark Sequential | Strided | Random Operations Datatype Intra-DPU Inter-DPU
Dense linear algebra Vector Addition VA Yes add int32_t
Matrix-Vector Multipl GEMV Yes add. mul uint32 t
Sparse linear algebra | Sparse Matrix-Vector Multiply SpMV Yes Yes add, mul float
Dat ‘)as f S .l'egth L SEL » I , Yes add, compare %nt64_t handshake, barr%er Yes
n t e Shigk U) COITITHTIUI] LB % add, compare int64_t [handshake, barrier Yes
Data analytics Binary Search BS Yes Yes compare int64_t
Time Spyies Apalysis. 7 .~ Ao TS Yes add, sub, mul, div int32_t
Graph processing! \ -Brekdth-Firdt Sdarel 5' I'T& e« BFS Yes Yes bitwise logic uint64_t barrier, mutex Yes
Neural networks Mu}.ﬁl‘ayfr Perceptron |~ ~ MLE .3, Yas - add, mul, compare int32_t
Bioinformatics .Nealﬁhy*uhl&l) A>1-D> ,Nm D 'L,) Yes add, sub, compare int32_t barrier Yes
Image processing Image histogr) HST-S __Yes Yes add uint32_t barrier Yes
Im T oRg) ™~ j‘tﬁ&ﬂS‘lel Ses Yes add uint32_t barrier, mutex Yes
Redyction ,, e ARED Yes . Yes . add int64_t barrier Yes
paralll primived R RS ER @ T Oy [ateresyfitsraa inted_t_ || Randshake, barrier | Yes
Prefix sum (reduce-scan-scan) | SCAN-RSS Yes add int64_t § handshake, barrier Yes
sMaR:FqspPeflitnD NI\\/ TRESA |\I_S gé ‘ A |N 1R &5 add, sub, mul int64 t mutex
Do, "L, NV, O /A

e DPU-CPU and CPU-DPU transfers

SAFARI

PriM Benchmarks

H CMU-SAFARI/ prim-benchmarks L

* 16 benchmarks and scripts
for evaluation

e https://github.com/CMU-

<> Code () Issues 19 Pull requests () Actions [Projects 17 wiki @) Security |~ Insights 1 Settings

¥ main ~ ¥ 1branch © 0 tags Go to file Add file ~

Juan Gomez Luna PrIM -- first commit 3desbs9 15 days ago O 2 commits
SAFARI/ rim_benchmarks BFS PriM -- first commit 15 days ago
- p EE— - - — BS PrIM -- first commit 15 days ago

GEMV PrIM -- first commit 15 days ago

HST-L PrIM -- first commit 15 days ago

HST-S PrIM -- first commit 15 days ago

MLP PriM -- first commit 15 days ago

Microbenchmarks PrIM -- first commit 15 days ago

NW PrIM -- first commit 15 days ago

RED PrIM -- first commit 15 days ago

SCAN-RSS PrIM -- first commit 15 days ago

SCAN-SSA PrIM -- first commit 15 days ago

SEL PrIM -- first commit 15 days ago

SpMV PrIM -- first commit 15 days ago

TRNS PrIM -- first commit 15 days ago

TS PriM -- first commit 15 days ago

UNI PrIM -- first commit 15 days ago

VA PrIM -- first commit 15 days ago

[LICENSE PrIM -- first commit 15 days ago
[README.md PrIM -- first commit 15 days ago
[run_strong_full.py PrIM -- first commit 15 days ago
[run_strong_rank.py PriM -- first commit 15 days ago
D run_weak.py PrIM -- first commit 15 days ago

SAFARI

9

https://github.com/CMU-SAFARI/prim-benchmarks

Outline

(« Introduction b
- Accelerator Model

. - UPMEM-based PIM System Overview)

(¢ UPMEM PIM Programming)
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth)

(» DRAM Processing Unit h
- Arithmetic Throughput

. - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity)

(» Evaluation B
- Strong and Weak Scaling

. - Comparison to CPU and GPU)

* Key Takeaways

SAFARI

Evaluation Methodology

* We evaluate the 16 PrIM benchmarks on two UPMEM-
based systems:
- 2,556-DPU system
- 640-DPU system

* Strong and weak scaling experiments on the 2,556-DPU
system
- 1 DPU with different numbers of tasklets
- 1rank (strong and weak)
- Up to 32 ranks

N\

[Strong scaling refers to how the execution time of a program solving a particular problem varies
with the number of processors for a fixed problem size

S
~

Weak scaling refers to how the execution time of a program solving a particular problem varies
with the number of processors for a fixed problem size per processor

\ S

SAFARI 11

Evaluation Methodology

* We evaluate the 16 PrIM benchmarks on two UPMEM-
based systems:
- 2,556-DPU system
- 640-DPU system

* Strong and weak scaling experiments on the 2,556-DPU
system
- 1 DPU with different numbers of tasklets
- 1rank (strong and weak)
- Up to 32 ranks

* Comparison of both UPMEM-based PIM systems to
state-of-the-art CPU and GPU

- Intel Xeon E3-1240 CPU
- NVIDIA TitanV GPU

SAFARI 12

2,560-DPU System

* UPMEM-based PIM

Main Memory

system with 20 .U PMEM 1,
DIMMs of 16 chips each
Host
(40 ranks) cPU 0 P 2560 DPUs*
P21 DIMMs PN 67 BN BN B o BB G
Dual x86 socket VA0

° UP M E M DI MMS PIM-enabled Memory
coexist with regular Main Memory
DDR4 DIMMs =

e > memory 4—»[
controllers/socket (3 2
channels each) crU 1 ,,

« 2 conventional DDR4 4. [ﬂﬂﬂﬂﬂﬂﬂﬂ
DIMMSs on one BEEEEEEE
channel of one ..gwg,ze.../m
controller

160 GB
SA FAR’ * There are 4 faulty DPUs in the system that we use in our experiments. Thus, the maximum number of DPUs we can use is 2,556. 1 3

640-DPU System

* UPMEM-based PIM
system with 10 UPMEM
DIMMs of 8 chips each

(1 o ran kS) Main Memory
- E19 DIMMs £
- x86 socket f—ﬁ{“)(l)ﬁﬂ()(lﬂ()
* 2 memo ry contro l I ers Chip)(chip; \cnip)(cmp)(éiﬁ,;; \Chi;ﬂﬁ&?ﬂ@;%ﬂ
(3 channels each) aoor P
* 2 conventional DDR4 o
DIMMs on one ~—<->&f:;::}Ez::}{:z::}{:::}{:z:)(::
Cha n nel Of On e Chip || Chip || Chip || Chip || Chip || Chip
controller PIM-enable

SAFARI 14

Datasets

 Strong and weak scaling experiments

Benchmark I Strong Scaling Dataset Weak Scaling Dataset N;m;ﬁvg&?
VA | 1 DPU-1 rank: 2.5M elem. (10 MB) |32 ranks: 160M elem. (640 MB) I 2.5M elem./DPU (10 MB) 1024 bytes
GEMV 1 DPU-1 rank: 8192 X 1024 elem. (32 MB) | 32 ranks: 163840 x 4096 elem. (2.56 GB) 1024 x 2048 elem./DPU (8 MB) 1024 bytes
SpMV besstk30 [253] (12 MB) besstk30 [253] 64 bytes

SEL 1 DPU-1 rank: 3.8M elem. (30 MB) | 32 ranks: 240M elem. (1.9 GB) 3.8M elem./DPU (30 MB) 1024 bytes

UNI 1 DPU-1 rank: 3.8M elem. (30 MB) | 32 ranks: 240M elem. (1.9 GB) 3.8M elem./DPU (30 MB) 1024 bytes

BS 2M elem. (16 MB). 1 DPU-1 rank: 256K queries. (2 MB) | 32 ranks: 16M queries. (128 MB) 2M elem. (16 MB). 256K queries./DPU (2 MB). 8 bytes

TS 256 elem. query. 1 DPU-1 rank: 512K elem. (2 MB) | 32 ranks: 32M elem. (128 MB) 512K elem./DPU (2 MB) 256 bytes

BFS loc-gowalla [254] (22 MB) rMat [255] (=100K vertices and 1.2M edges per DPU) [18 bytes

MLP 3 fully-connected layers. 1 DPU-1 rank: 2K neurons (32 MB) | 32 ranks: ~160K neur. (2.56 GB) 3 fully-connected layers. 1K neur./DPU (4 MB) 1024 bytes

NW 1 DPU-1 rank: 2560 bps (50 MB), large/small sub-block=2580—/2 | 32 ranks: 64K bps (32 GB), 1./s.=32/2 | 512 bps/DPU (2MB), 1/s.=512/2 8, 16, 32, 40 bytes
HST-S 1 DPU-1 rank: 1536 X 1024 input image [256] (6 MB) | 32 ranks: 64 X input image 1536 x 1024 input image [256]/DPU (6 MB) 1024 bytes
HST-L 1 DPU-1 rank: 1536 X 1024 input image [256] (6 MB) | 32 ranks: 64 X input image 1536 x 1024 input image [256]/DPU (6 MB) 1024 bytes

RED 1 DPU-1 rank: 6.3M elem. (50 MB) | 32 ranks: 400M elem. (3.1 GB) 6.3M elem./DPU (50 MB) 1024 bytes
SCAN-SSA 1 DPU-1 rank: 3.8M elem. (30 MB) | 32 ranks: 240M elem. (1.9 GB) 3.8M elem./DPU (30 MB) 1024 bytes
SCAN-RSS 1 DPU-1 rank: 3.8M elem. (30 MB) | 32 ranks: 240M elem. (1.9 GB) 3.8M elem./DPU (30 MB) 1024 bytes
TRNS 1 DPU-1 rank: 12288 X 16 X 64 x 8 (768 MB) | 32 ranks: 12288 x 16 x 2048 X 8 (24 GB) 12288 x 16 x 1 x 8/DPU (12 MB)

The PrIM benchmarks repository includes

all datasets and scripts used in our evaluation

SAFARI 15

https://github.com/CMU-SAFARI/prim-benchmarks

Strong Scaling: 1 DPU (1)

* Strong scaling
experiments on 1 DPU

- We set the number
of tasklets to 1, 2, 4,
8,and 16

- We show the
breakdown of
execution time:

* DPU: Execution
time on the DPU

* |nter-DPU: Time for
inter-DPU
communication via
the host CPU

* CPU-DPU: Time for
CPU to DPU
transfer of input
data

e DPU-CPU: Time for

DPU to CPU
transfer of final
results

- Speedup over 1
tasklet

Execution Time (ms

800
600
400
200

0
VA

EZADPU-CPU

== CPU-DPU
(I | nter-DPU

[DPU

N

a=Q=Speedup

oz
"

L
S

— N < o0 O
i

#tasklets per DPU

14

12

Speedup

SAFARI

16

Strong Scaling: 1 DPU (lI)

3DPU-CPU ZZ3DPU-CPU

ESNCPU-DPU [- [10000 - [[E=3CPU-DPU

1200

8
1000 D I nter-DPU | _ - " :ggg - _ I nter-DPU 7 (VA, GEMV, SpMV’ SEL, UNI, TS’ \
S wo < 5 e :o| | MLP, NW, HST-S, RED, SCAN-SSA
= = I~ = °
5 5 5 o 5 oo . (Scan kernel), SCAN-RSS (both
g o I A | : g 0 g o . kernels), and TRNS (Step 2 kernel),
- S =IE i o . the best performing number of
0 0 0 0
#tasklets per DPU IG i UaSklets IS 16)

#tasklets per DPU #tasklets per DPU #tasklets per DPU

8 140000
 omo Tg}fﬁr'opu L7 120000
77 ===V 2 oo) Speedups 1.5-2.0x as we double the
£ 3 1 a0 2 number of tasklets from 1to 8.
2w 2o - .5 Speedups 1.2-1.5x from 8 to 16,
@ 200 L % 20000 2 since the pipeline throughput
UNI o e e g A e saturates at 11 tasklets
#tasklets per DPU #tasklets per DPU k J
12 s 1600 ggﬂj;gg
1400 I | nter-DPU
B * e 2 1o KEY OBSERVATION 10
g o g g 1000
= 800 A I= 800
RUE A number of tasklets
g 400 g g 400 =
S o : 1% 5 20 greater than 11 is a good

- N < 0 ©
—

MLP = & ¥ © g

=
=3

choice for most real-

#tasklets per DPU #taskletsBer DPU
g = e e s] world workloads we
DPU (Add) «lemSpeedup (Scan) (== «lemSpeedup (Step 3)
= 2000 Speedup (Add) 7 e 5p 02 15
£ 2000 | o 1E om0 tested (16 kernels out of 19
IE 1500 > 5 o L g
= £ 1500 Sl E 1500 g
£ % | 5| | kernels from 16
5 S 1000 S8 S 1000 <4
- 3 27413 4 b h k it full
2 e . enchmarks), as it fully
0 0 0 0 o a1) . .
ReD <~ e kawsa v e e g Lo - utilizes the DPU'’s pipeline.
ttasklets per DPU #tasklets per DPU #tasklets per DPU ttasklets per DPU

SAFARI

Strong Scaling: 1 DPU (llI)

S do not use intra-DPU
([synchronization primitives

" VA, GEMV, SpMV, BS, TS, MLP, HST- |

J

kernel), SCAN-RSS (both kernels),
_synchronization is lightweight

[In SEL, UNI, NW, RED, SCAN-SSA (Scan |

iy b — ——— e ——)
(BFS, HST-L, TRNS (Step 3) use 0
mutexes, which cause contention
when accessing shared data
_Structures y
SAFARI 18

Strong Scaling: 1 DPU (IV)

HST-L = & ¥ ® 3
#tasklets per DPU

Z=1DPU-CPU
1800 - E=9CPU-DPU 6
1600 - [mm | nter-DPU
> I DPU - 5
£ 1400 4B w@=speedup
o 1200 4
g 1000
s |_
S 600
(&)
L 400
L
200
0

" VA, GEMV, SpMV, BS, TS, MLP, HST- |
S do not use intra-DPU
(_synchronization primitives y

[In SEL, UNI, NW, RED, SCAN-SSA (Scan R
kernel), SCAN-RSS (both kernels),
_synchronization is lightweight

J
(BFS, HST-L, TRNS (Step 3) use B
mutexes, which cause contention
when accessing shared data
_Structures y

KEY OBSERVATION 11

Intensive use of intra-DPU
synchronization across
tasklets (e.g., mutexes,
barriers, handshakes)

may limit scalability,
sometimes causing the best
performing number of

tasklets to be lower than
11.

SAFARI

Strong Scaling: 1 DPU (V)

(SCAN-SSA (Add kernel) is not)
compute-intensive. Thus,
performance saturates with

=|

oy | |ess that 11 tasklets (recall
4 DPU-CPU ™% CPU-DPU
(I Inter -DPU mmm DPU (Scan) STREAM ADD).
o g peedup (Sean) 7 GS shows similar behavior)
£ 2000 {77 [©
2 ‘ s
s e B Bl N KEY OBSERVATION 12
S 1000 - g -3 38
= ; |,V Most real-world
9 500 - qra workloads are in the
L
0 4 Lo compute-bound region of

SCAN-SSA = & S o © the DPU (all kernels except
#tasklets per DPU SCAN-SSA (Add kernel) and
BS), i.e., the pipeline
latency dominates the
MRAM access latency.

SAFARI 20

Strong Scaling: 1 DPU (VI)

(The amount of time spent on CPU- A
DPU and DPU-CPU transfers is low
compared to the time spent on DPU
_execution)
==1DPU-CPU E==% CPU-DPU (Step 1) [) \
(I Inter-DPU I DPU (Step 3) TRNS performs step 1 of the matrix
oo gy Seecdw(Biens) | transposition via the CPU-DPU
— 14000 1 10 transfer.
£ 15000 - Using small trapsfers (8 elements)
g 10000 ~_ 8 a Soe(sj nc.)(;ctixplmt full CPU-DPU
= 8000 - y 68 \ [Danaw!)
.S 6000 - . &
S
g 4000 - , KEY OBSERVATION 13
& 2000 - I
0 - L0 Transferring large data
TRNS = © ¥ = 3 chunks from/to the host

#tasklets per DPU

CPU is preferred for input
data and output results due
to higher sustained CPU-

DPU/DPU-CPU bandwidths.

SAFARI 21

Strong Scaling: 1 Rank (I)

* Strong scaling
experiments on 1 rank

- We set the number of
tasklets to the best
performing one

- The number of DPUs
is1, 4,16, 64

- We show the
breakdown of
execution time:

* DPU: Execution time
on the DPU

* Inter-DPU: Time for
inter-DPU
communication via
the host CPU

* (CPU-DPU: Time for
CPU to DPU transfer
of input data

* DPU-CPU: Time for
DPU to CPU transfer
of final results

- Speedup over 1 DPU

2500

“» 2000

1500

1000

500

Execution Time (ms

NW

FEZADPU-CPU
E=1CPU-DPU
[T | nter-DPU
[DPU
a=Q=Speedup

w,
N\

< o}
—

#DPUs

20
18
16

=
N

o
Speedup

o N B O

SAFARI

22

Strong Scaling: 1 Rank (II)

E=NCPU-DPU
(I | nter-DPU

Execution Time (ms)

DP!

E=3CPU-DPU

=LIDPU-CPU LZJDPU-CPU
_ |==acPu-opu [==3IcPu-oPU [y

I inter-DPU | (%) I | nter-DPU

=T " m— 0 60 1200
|-°-Seedu ' | [=©=Speedup L 5o 1000

/"VA, GEMV, SpMV, SEL, UNI, BS, TS,
MLP, HST-S, HSTS-L, RED, SCAN-
SSA (both kernel), SCAN-RSS (both
kernels), and TRNS (both kernels)
scale linearly with the number of

kDPUS

~

J

Scaling is sublinear for BFS and NW

-
BFS suffers load imbalance due to

irregular graph topology
\

.

NW computes a diagonal of a 2D
matrix in each iteration.
More DPUs does not mean more

-9
L8
= m = -
£ 300 E £
o)) 6
250 a
£ 40 € L a £ L s 3
Z 200 ' ' b
S s 5 L4 g
S 150 =] = &
3 L 3 3 M3
50 /1 r 1
o 10 L L O O 0
UNI - ¥ 8 3 BS - ¥ 8 3 s - ¥ &8 3 BFS - Y 5 3
140
= T 2000 16 =
é é 14 E 120 50
[[[()
£ £ 2 offf £ 10 sl € w08
= = 0ol = 80 30 R0 E 250 3
5 § 1000 il 5 | B 30 8
E E 4 | ERS L2008 5 v
o o o o 150 20
2 =)]] 40 o 100
% mmuum X 500 X 10 X "
B 50
= L Lo
Inter-DPU -DPtJr(Scan) I inter-0PU - DPU’lScan) I nter DPU -DPUV(Step 3)
DPU (Add) el Speedup (Scan) E=mDPU (Reduce) === Speedup (Scan) EEmOPU (Step 2) wle=Speedup (Step 3)
Speedup (Add) 70 | @u=Speedup (Red.) 70 e@==Speedup (Step 2 70
z 700 4? 60 2 6.E+02 60 z 7.E+05 3 14 60
= 60 ARECN | o} N |] IRk
£ 500 / 20 S £ 4E402 // 10 2 £ 5.E+05 0 =
= 400 § T l SHIT acv0s N / 3
30 @ 7]
§ 300 218 302 0 SHNS 3 eios / 0g
§ 200 20 § 2.E+02 20 g 26405 20
~ 3 100 10 S 1E+02 10 & 1.6+05 10
@ 0 0 0.E+00 0 0.E+00 0
RED =~ ~ g g CAN-SSA ™ Y 98 CAN-RSS ~ Y 9§ RNS = Y & 3
#DPUs #DPUs #DPUs #DPUs

\parallelization in shorter diagonals.

J

23

Strong Scaling: 1 Rank (l1I)

VA, GEMV, SpMV, BS, TS, TRNS do
not need inter-DPU synchronization

SEL, UNI, HST-S, HST-L, RED, SCAN-
SSA, SCAN-RSS need inter-DPU
synchronization but 64 DPUs still
obtain the best performance

BFS, MLP, NW require heavy inter-
DPU synchronization, involving
DPU-CPU and CPU-DPU transfers

SAFARI 24

Strong Scaling: 1 Rank (1V)

/"VA, GEMV, TS, MLP, HST-S, HST-L,)
RED, SCAN-SSA, SCAN-RSS, TRNS

use parallel transfers.

CPU-DPU and DPU-CPU transfer
times decrease as we increase the
Qumber of DPUs Y,

(BS, NW use parallel transfers but)
do not reduce transfer times:
- BStransfers a complete array

to all DPUs.
- NW does not use all DPUs in all

\ iterations)
~

-
SpMV, SEL, UNI, BFS cannot use
parallel transfers, as the transfer

_size per DPU is not fixed

PROGRAMMING
RECOMMENDATION 5

Parallel CPU-DPU/DPU-CPU
transfers inside a rank of DPUs
are recommended for real-

world workloads when all
transferred buffers are of the same
size.

SAFARI

Strong Scaling: 32 Ranks (1)

* Strong scaling
experiments on 32
rank

- We set the number

of tasklets to the
best performing one

- The number of DPUs
is 256, 512, 1024,
2048

- We show the
breakdown of
execution time:

* DPU: Execution
time on the DPU

* |nter-DPU: Time for
inter-DPU
communication via
the host CPU

* We do not show
CPU-DPU/DPU-CPU
transfer times

- Speedup over 256
DPUs

SAFARI

1200

1000

800

600 I DPU
=Q=Speedup

Execution Time (ms)

MLP

#DPUs

@
400 ¥
200 |||||||||||H

256
1

1024

2048

O L N W b U1 O N ©

Speedup

26

Strong Scaling: 32 Ranks (II)

/"VA, GEMV, SEL, UNI, BS, TS, MLP,)
HST-S, HSTS-L, RED, SCAN-SSA
(both kernel), SCAN-RSS (both
kernels), and TRNS (both kernels)
scale linearly with the number of
_DPUs)
p

~

SpMV, BFS, NW do not scale linearly

due to load imbalance
g)

KEY OBSERVATION 14

Load balancing across
DPUs ensures linear
reduction of the
execution time spent on

the DPUs for a given
problem size, when all
available DPUs are used (as
observed in strong scaling
experiments).

SAFARI 27

Strong Scaling: 32 Ranks (llI)

SEL, UNI, HST-S, HST-L, RED only
need to merge final results

KEY OBSERVATION 15

The overhead of merging

partial results from DPUs in
the host CPU is tolerable across
all PrIM benchmarks that need it.

BFS, MLP, NW, SCAN-SSA, SCAN-RSS
have more complex communication

KEY OBSERVATION 16

Complex synchronization
- - _ across DPUs (i.e., inter-DPU
synchronization involving two-

way communication with the
host CPU) imposes significant
overhead, which limits
scalability to more DPUs.

SAFARI 28

Weak Scaling: 1 Rank

KEY OBSERVATION 17
0 5Py (Equally-sized problems
600 4 = CPU-DPU y/ assigned to different DPUs
é o0 J MInter-DPU / and little/no inter-DPU
w mDPU . .
2 oo . V A s.ynchromzatlon_lead to
= / w linear weak scaling of the
S 300 - - VA § \ execution time spent on the
g 200 - /J{ \ \ DPUs (i.e., constant execution
S 100 N time when we increase the
. number of DPUs and the
VA o < © < dataset size accordingly).
— (Vo)

KEY OBSERVATION 18

Sustained bandwidth of
parallel CPU-DPU/DPU-CPU

transfers inside a rank of
DPUs increases sublinearly
with the number of DPUs.

SAFARI 29

CPU/GPU: Evaluation Methodology

* Comparison of both UPMEM-based PIM systems to
state-of-the-art CPU and GPU

- Intel Xeon E3-1240 CPU
- NVIDIA TitanV GPU

* We use state-of-the-art CPU and GPU counterparts of
PriM benchmarks

- https://github.com/CMU-SAFARI/prim-benchmarks

* We use the largest dataset that we can fit in the GPU
memory

* We show overall execution time, including DPU kernel
time and inter DPU communication

SAFARI 30

https://github.com/CMU-SAFARI/prim-benchmarks

CPU/GPU: Performance Comparison (1)

< 1024.000
'® 256.000
wn

> 64.000
S 16.000
S 4.000
S 1.000
5 0.250
3 0.063
2 0.016
@ 0.004
g 0.001
(Vp)]

O CPU 1 GPU 640 DPUs 2556 DPUs
- 1 1
_ I S p— — !
N R l ~ !
n 1 1
N : : N a 1 1
N \ y =]] \ r N I I 1
Py Iy A & I M fy : :
| M h N N M A I N . i
\ & \ P N M y M 1 1
. N N \ d M k y I 1 iy 1
N N N N M K N N 1 - y 1
N Iy b 1 N 1 h
4 S VIS NN N ! i \ ! N
\ My \) "Q Iy & A : Iy Iy : :
_ Iy o N) I M N A | Iy b | N
o o \ A M X \ o 1 1 N i N
| M W y Y & M N A 1 I iy 1 N
M 1 iy i . 4 1 k] 1 il I 1
A N M \ M h & N 1 A Py 1]
T N N N Y [N N N ! M iy ! N
N N N Iy N N N ! o N iy ! N
<lzlzlgl2lz]als|aly zlzlelel2]z AR
v | D Sl hle|lon|lc| & a|ls|z — | = | <
\] = L o 2 2 | W
T|T z |2 © | S| 3| s
Al & S| 2
ol 0
More PIM-suitable workloads (1) Less PIM-suitable workloads (2)

The 2,556-DPU and the 640-DPU systems outperform the CPU for

all benchmarks except SpMV, BFS, and NW

The 2,556-DPU and the 640-DPU are, respectively, 93.0x and 27.9x

faster than the CPU for 13 of the PrIM benchmarks

SAFARI

31

CPU/GPU: Performance Comparison (Il)

More PIM-suitable workloads (1)

Less PIM-suitable workloads (2)

The 2,556-DPU outperforms the GPU
for 10 PriIM benchmarks with an average of 2.54x

The performance of the 640-DPU is within 65%

[CPU 1 GPU 640 DPUs 2556 DPUs
< 1024.000 - 7 -
Q - - o 1
© 256.000 - AN N A | - |
z 64.000—‘5 A) - I) A -
S 16.000 { | | -l R IR :
> a0 A0 IR E) SR o
(a1 _
& 1.000 - - .
= 0250 /|| N1 N R N IHN IR : \ \ ! N
g ~ 1Y IS A . \ 1IN
Iy I
g ooor TR IR AN AN A ¥R N A :: Y D
v 0.001 L A A \ ! §
o
(%) < - >) v - o) < wn %) > > (%) wn [a¥ =l <| =z
182\8|2)7\8(3(8 8] 313|782/ |2|8|3
T T I e = W a z|z|u
<
2|3 AR

the performance of the GPU for the same 10 PriIM benchmarks

SAFARI

32

CPU/GPU: Performance Comparison (lI)

o CPU 1GPU 640 DPUs 2556 DPUs
1024.000 .
256.000 - ¥
64.000 | []
16.000 -
4.000 -
1.000
0.250 -
0.063 -
0.016 -
0.004 -
0.001

A A)

il A I A

L

g g g g g g i A
A A

i i A
G i

A oy

g i

g L 3 4

A g g g g g g g

Speedup over CPU (log scale)

KEY OBSERVATION 19

The UPMEM-based PIM system can outperform a state-of-the-art GPU
on workloads with three key characteristics:
1. Streaming memory accesses

GMEAN

2. No or little inter-DPU synchronization

3. No or little use of integer multiplication, integer division, or floating
point operations

These three key characteristics make a workload potentially suitable to

the UPMEM PIM architecture.

SAFARI 33

CPU/GPU: Energy Comparison (I)

256.00

o CPU 1 GPU 640 DPUs

128.00 -
64.00 -
32.00 -
16.00 -
8.00 -
4.00 -
2.00 -

1.00

0.50 -
0.25 -
0.13 -
0.06 -
0.03

]

Energy savings over CPU (log scale)
VA

SEL

UNI
BS
HST-S
HST-L
RED

SCAN-SSA
SCAN-RSS

TRNS

More PIM-suitable workloads (1)

GEMV
SpMV
TS
BFS
MLP
NW

Less PIM-suitable workloads (2)

GMEAN (1)

GMEAN (2)

The 640-DPU system consumes on average 1.64x less energy than
the CPU for all 16 PrIM benchmarks

For 12 benchmarks, the 640-DPU system provides energy savings

GMEAN

of 5.23x over the CPU

SAFARI

34

CPU/GPU: Energy Comparison (II)

256,00 OCPU EIGPU 640 DPUs | |
@ 128.00 - — L |
T 64.00 - :] :
“ 3200 4 ! : B
o 16.00 TR : A : g
S 2o | 7R 7 N N/ N
S 2.00 - i |
= 1.00 : ;
> 0.50 - : :
° 0.5 A : :
o 0.13 - ! !
% 86 7] I 1 1
8 KEY OBSERVATION 20 E
]
S The UPMEM-based PIM system provides large energy savings over a Z
state-of-the-art CPU due to higher performance (thus, lower static energy)
and less data movement between memory and processors.
The UPMEM-based PIM system provides energy savings over a state-of-
the-art CPU/GPU on workloads where it outperforms the CPU/GPU.
This is because the source of both performance improvement and energy
savings is the same: the significant reduction in data movement between
the memory and the processor cores, which the UPMEM-based PIM
system can provide for PIM-suitable workloads.
SAFARI 35

Outline

(« Introduction b
- Accelerator Model

. - UPMEM-based PIM System Overview)

(¢ UPMEM PIM Programming)
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth)

(» DRAM Processing Unit h
- Arithmetic Throughput

. - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity)

(+ Evaluation b
- Strong and Weak Scaling

- Comparison to CPU and GPU Y

* Key Takeaways

SAFARI

Key Takeaway 1

64.00

0.03

Arithmetic Throughput (MOPS, log scale)

32.00 A
16.00 -
8.00 -
4.00 -
2.00 +
1.00 ~
0.50 -
0.25 ~
0.13 ~
0.06 -

(a) INT32, ADD (1 DPU)

Memory-bound
region

Compute-bound

region

@ > A o D o ©
VN <5 Vo v)) v
Q" O ¢ N/ > N

Operational Intensity (OP/B)

KEY TAKEAWAY 1

NV X D

The throughput
saturation point is as low
as ¥a OP/B,

i.e., 1integer addition per
every 32-bit element
fetched

The UPMEM PIM architecture is fundamentally compute bound.

As aresult, the most suitable workloads are memory-bound.

SAFARI

37

Key Takeaway 2

1024.000

o CPU GPU

640 DPUs

2556 DPUs

256.000 -
64.000 -
16.000 -
4.000 -
1.000

0.250 -
0.063 -
0.016 -
0.004 -
0.001

Speedup over CPU (log scale)

VA

SEL

UNI

BS

HST-S
HST-L

RED
SCAN-SSA
SCAN-RSS

TRNS

More PIM-suitable workloads (1)

KEY TAKEAWAY 2
The most well-suited workloads for the UPMEM PIM architecture

use no arithmetic operations or use only simple operations (e.g.,
bitwise operations and integer addition/subtraction).

SAFARI

GEMV
SpMV
TS
BFS
MLP
NW

Less PIM-suitable workloads (2)

GMEAN (1)

GMEAN (2)

GMEAN

38

Key Takeaway 3

_ NV3IND
[A
: (z) NVIWD
o Fg g F gy Frrd
_ (T) NVIWD
........................ —
o
(7,)
FFFFFFF e]
_ MN m
| . FEEEEEFEFEFE m
_ d1N o
S
] Q
_ S4d o
©
L A x
: Sl 3
1
(i A N
_ AWdS a
a
(2] | i
Q
2 AW3ID =
i Y R A UL SN P S S P B
(o}
LN
LN
(V]
| & EE Ly FEFEFFEFErF
¥ _ SNY1
| A i A \1'—'
_ SSY-NVIS =
(7] (7]
w | A A A w
o | VSS-NVIS | 8
o -z
< FFFFFFEFFFrFrFyFryFyrFyr) S
e} _ a3y m
" i h
_ 7-1SH o]
©
=
[A A A A u
= : S-1SH]
O >
D " . A —
_ Sd o
g
[i o
I E INN S
@ FFFFFFFFFgFFFFFFFrFr)
o _ 13S
" i
_ VA
O OO 0O 00O Mm W
OO0 OO0 00O WMNMmMuLVU-HOOoO
©Co0oooonNOOoOoOo
T O <FT O T H OO O OO
N 1N O
(@ Mo\
—

(1e3s 80]) NdD 49n0 dnpaads

KEY TAKEAWAY 3

=
J—y
A
=
=
=
o
=
<)
=
wd
o
=
2
.=
9
S
k
o
=)
=
=
<]
=
=
?
O
=
wd
2]
=
=
<)
=
=

7))
—
A
an]

7]

7]

(@)

S

()

«

e

o
u
b

«

()
u

S

=

=]

(S

o

e

B

(@)

Q
o
)
b
“

Q
=

=]

op

[<B)

9

L

|

-
)

()

Q
b
u
=

1)

)

4+

_—
=
(@)
ﬁ
°)
=
=
=]
£
£
(@)
()
=
(=
2
B
Q
)
=
&

39

SAFARI

Key Takeaway 4

KEY TAKEAWAY 4

e UPMEM-based PIM systems outperform state-of-the-art CPUs in
terms of performance (by 23.2x on 2,556 DPUs for 16 PrIM
benchmarks) and energy efficiency on most of PrIM benchmarks.

e UPMEM-based PIM systems outperform state-of-the-art GPUs on

a majority of PrIM benchmarks (by 2.54x on 2,556 DPUs for 10
PrIM benchmarks), and the outlook is even more positive for future
PIM systems.

e UPMEM-based PIM systems are more energy-efficient than state-
of-the-art CPUs and GPUs on workloads that they provide
performance improvements over the CPUs and the GPUs.

SAFARI

Understanding a Modern PIM Architecture

Benchmarking a New Paradigm:
Experimental Analysis and
Characterization of a Real
Processing-in-Memory System

JUAN GOMEZ-LUNA', I1ZZAT EL HAJJ?, IVAN FERNANDEZ'-3, CHRISTINA GIANNOULA' 4,
GERALDO F. OLIVEIRA', AND ONUR MUTLU

'ETH Ziirich

% American University of Beirut
3Univc.arsity of Malaga

“National Technical University of Athens

Corresponding author: Juan Gémez-Luna (e-mail: juang @ethz.ch).

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

SAFARI 41

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

Short arXiv Version

Benchmarking Memory-Centric Computing Systems:
Analysis of Real Processing-in-Memory Hardware

Juan Gomez-Luna Izzat El Hajj Ivan Fernandez Christina Giannoula Geraldo E. Oliveira Onur Mutlu
ETH Ziirich American University University National Technical ETH Ziirich ETH Ziirich
of Beirut of Malaga University of Athens

https://arxiv.org/pdf/2110.01709.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

SAFARI 42

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

Long arXiv Version

Benchmarking a New Paradigm: An Experimental Analysis

of a Real Processing-in-Memory Architecture

Juan Gémez-Luna! Izzat Fl Hajj? Ivan Fernandez!* Christina Giannoula®*
]]

Geraldo F. Oliveira! Onur Mutlu!
IETH Ziirich 2American University of Beirut *University of Malaga *National Technical University of Athens

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

SAFARI 43

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

PrIM Repository

* All microbenchmarks, benchmarks, and scripts
* https://github.com/CMU-SAFARI/prim-benchmarks

H CMU-SAFARI/ prim-benchmarks ® Unwatch ~ 2 {7 star 2 % Fork 1

<>

I_Y

A

Code () Issues 1 Pull requests (*) Actions [Projects [wiki () Security [~ Insights 2 Settings

main v prim-benchmarks / README.md Go to file

Juan Gomez Luna PrIM -- first commit Latest commit 3desb49 9 days ago O History

1 contributor

168 lines (132 sloc) 5.79 KB Raw Blame GJ 2]

PrIM (Processing-In-Memory Benchmarks)

PrIM is the first benchmark suite for a real-world processing-in-memory (PIM) architecture. PrIM is developed to evaluate,
analyze, and characterize the first publicly-available real-world processing-in-memory (PIM) architecture, the UPMEM PIM
architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called
DRAM Processing Units (DPUs), integrated in the same chip.

PrIM provides a common set of workloads to evaluate the UPMEM PIM architecture with and can be useful for programming,
architecture and system researchers all alike to improve multiple aspects of future PIM hardware and software. The workloads
have different characteristics, exhibiting heterogeneity in their memory access patterns, operations and data types, and
communication patterns. This repository also contains baseline CPU and GPU implementations of PrIM benchmarks for
comparison purposes.

Prim also includes a set of microbenchmarks can be used to assess various architecture limits such as compute throughput and
memory bandwidth.

SAFARI

44

https://github.com/CMU-SAFARI/prim-benchmarks

Sparse Matrix Vector
Multiplication

o~ A
SparseP

Towards Efficient Sparse Matrix Vector Multiplication
on Real Processing-In-Memory Architectures

Christina Giannoula, lvan Fernandez, Juan Gomez-Luna,
Nectarios Koziris, Georgios Goumas, Onur Mutlu

OO QO Q National Technical University of Athens

SAFARI ETH:zirich i€SLab

Our Work

Efficient Algorithmic Designs

The first open-source Sparse Matrix Vector Multiplication
(SpMV) software package, SparseP, for real Processing-In-
Memory (PIM) systems

SparseP is Open-Source
SparseP: https://github.com/CMU-SAFARI/SparseP

Extensive Characterization

The first comprehensive analysis of SpMV on the first real
commercial PIM architecture

Recommendations for Architects and Programmers
Full Paper: https://arxiv.org/pdf/2201.05072.pdf

https://arxiv.org/pdf/2201.05072.pdf
https://github.com/CMU-SAFARI/SparseP

Sparse Matrix Vector Multiplication

Sparse Matrix Vector Multiplication (SpMV):

= Widely-used kernel in graph processing,
machine learning, scientific computing ...

= A highly memory-bound kernel
Roofline Model

Peak Compute Performance

Performance

Operational Intensity 48

Real Processing-In-Memory Systems

Real Near-Bank Processing-In-Memory (PIM) Systems:
* High levels of parallelism

* Low memory access latency
* Large aggregate memory bandwidth

Vs

Host
CPU

~

Bus

Bus

DRAM DRAM DRAM
Bank Bank Bank Bank

Main Memory

PIM Core

DRAM
Bank

>

PIM-Enabled Memo
PIM Core § PIM Core

PIM Core

DRAM
Bank

DRAM
Bank

J

J

49

Real Processing-In-Memory Systems

Real Near-Bank Processing-In-Memory (PIM) Systems:
* High levels of parallelism

* Low memory access latency
* Large aggregate memory bandwidth

Lee+, [ISSCC 2022]

Kwon+, [ISSCC 2021]

GDDR6-AIM

50

SparseP: SpMV Library for Real PIMs

Our Contributions:

1. Design efficient SpMV kernels for current and future PIM
systems

= 25 SpMV kernels

= 4 compressed matrix formats (CSR, COO, BCSR, BCOO)

6 data types

4 data partitioning techniques

Various load balancing schemes among PIM cores/threads
3 synchronization approaches

2. Provide a comprehensive analysis of SpMV on the first
commercially-available real PIM system up
= 16 sparse matrices i
= Comparisons to state-of-the-art CPU and GPU systems

= Recommendations for software, system and hardware
designers

51

QOutline

SpMV Kernels for Real PIM Systems

{Key Takeaways from Our Study J

4)

Conclusion

- J

52

SpMV Execution on a PIM System

-

_

‘Main Memory\

@ " PIM-Enabled Memory\

© | o o
Load the Execute the Retrieve the Merge the
input vector) kernel partial results partial results

" Host CPU

53

Data Partitioning Techniques

SparseP supports two types of data partitioning techniques:

1D Partitioning 2D Partitioning

Core 1 Core 2

Core 3 Core 4

4x input vector

1x output vector
2x input vector
*

2x output vector

L

perform the complete trade-off
SpMV computation computation vs
only on PIM cores data transfer costs

1D Partitioning Technique

Load-Balancing Approaches:

* CSR, COO:

* Balance Rows
* Balance NNZs *

* BCSR, BCOO:
* Balance Blocks *

* Balance NNZs *

* row-granularity for CSR
* block-row-granularity for BCSR

55

1D Partitioning Technique

Load-Balancing of #NNZs:
* CSR (row-granularity), COO

CSR COO

row- nnz-

granularity Core 1 granularity Core 1
[_'aaifi_r—] o () Core 2
u Core 3 u Core 3

row-order nnz-order

| rowptr NEIEERAVARIEE] | | rowind [IENEIPAEIEIEWA |
colind AR colind AR
values PARBEN I - IO 2 1 8 B69 3 4 7

56

1D Partitioning Technique

Load-Balancing of #NNZs:
* CSR (row-granularity), COO

* BCSR (block-row-granularity), BCOO
BCSR BCOO

block-row- block-

granularity Core 1 granularity Core 1
[_'aaifi_r—] o () Core 2
u Core 3 u Core 3

block-row-order block-order

| rowptr MEIEEFAVARN] | | rowind [IENENFIFIEIENEWA
colind colind
values values

57

2D Partitioning Technique

Equally-Sized Tiles ' Equally-Wide Tiles 1 Variable-Sized Tiles

input vector input vector

| I(>\l<

input vector

J LT

% Ax

TILD|x

4x 4

Core1 Core3

I 4 I
Core 2 Core 4
output! output! output
1 vector! 1 vector, 1 vector
High NNZ imbalance | High NNZ balance High NNZ balance
across PIM cores across PIM cores of the across all PIM cores

same vertical partition 58

Load-Balance across Threads

Multithreaded PIM Cores:

1D Partitioning 2D Partitioning

Core 1
[Multithreaded] Core 1 Core 2
Core 2 PIM Core
Core 3 DRAM Core 3 Core 4
[Core 4 Bank
| \ I \
\ 11 1
i \ , Balance |
I Balance | I #Rows
: #Rows \ *
Thread 1 Thread 1
Thread 2 Thread 2

* Various load-balance schemes across threads

59

Load-Balance across Threads

Multithreaded PIM Cores:

1D Partitioning 2D Partitioning

Core 1
[Multithreaded] Core 1 Core 2
Core 2 PIM Core
Core 3 DRAM Core 3 Core 4
| Core 4
[\ / \
' “ ‘Balance
I \ , Balance |,
| Balance (if’r}%ggo /| #NNZs
1 #NNZs \ $ -
Thread 1 Thread 1
Thread 2 Thread 2

* Various load-balance schemes across threads

60

Load-Balance across Threads

Multithreaded PIM Cores:

1D Partitioning 2D Partitioning

Core 1
[Multithreaded} Core 1 Core 2
Core 2 PIM Core
Core 3 DRAM Core 3 Core 4
| Core 4
[\ / \
' “ ‘Balance
I 1 , Balance
! Balance |\ (eff’ljljnggo /| #NNZs
I #NNZs) .- -

\[hread 1

hread 2

\[hread 1
hread 2

 Various load-balance schemes across threads
 Various synchronization approaches among threads

61

Synchronization Approaches [eaded

Multithreaded PIM Core: DRAM Bank
Coarse-Grained (lb-cg) Fine-Grained (lb-fg)
Thread 1 w ﬁn ~ Thread 1 w Gn
g 5
Thread 2 - 3 Thread 2 -
2 o
Thread 3 = m 3 Thread 3 m G =

output vector

Lock-Free (lf)

partial results

Thread1ﬂzm-_l_-= .
- + - = g
Thread 2 Thread 1 Z
-]
a
Thread 3 m o : .

SparseP Software Package

25 SpMV kernels for PIM Systems -
https://github.com/CMU-SAFARI/SparseP

Partitioning Matrix Format | Load-Balancing
CSR rows, nnzs *
?; CO0 - rows, nnzs *, nnzs
Kernels BCSR blocks *, nnzs
BCOO & blocks, nnzs
CSR
4x CO0
2D BCSR
Equally-Sized Tiles
BCOO a
CSR nnzs *
bx CO0 - nnzs
o BCSR blocks * A
Equally-Wide Tiles OCKs “, nnzs
BCOO & blocks, nnzs
CSR nnzs *
bx CO0 - nnzs
P BCSR blocks * A
Variable-Sized Tiles OCKs , nNnzs
BCOO blocks, nnz

Load-balance

across PIM cores/threads:

* row-granularity (CSR)

* block-row-granularity (BCSR)

Synchronization
among threads of a PIM core:
a |b-cg, lb-fb, If (COO, BCOO)

~

(Data Types:

8-bit integer
* 16-bit integer
» 32-bit integer
* 64-bit integer
» 32-bit float

e 64-bit float
\ J

63

https://github.com/CMU-SAFARI/SparseP

QOutline

{SpMV Kernels for Real PIM Systems}

Key Takeaways from Our Study

4)

Conclusion

- J

64

UPMEM-based PIM System

e 20 UPMEM PIM DIMMs with 2560 PIM cores in total
* Each multithreaded PIM core supports 24 threads

~

128 GB Main Memory

p
Bus DRAM DRAM DRAM DRAM
Bank Bank Bank Bank
)
Host CPU o
(2-socket, A 160 GB PIM-Enabled Memor
Intel Xeon) PIM Core | PIM Core | PIM Core | PIM Core
ﬁ
Bus
& J
f;/
oo | DISPATCH le»
24x 8= { FETCH }
Yo ALU f
threads S8 meRaE
"

Sparse Matrix Data Set

26 sparse matrices®:

* Diverse sparsity patterns
* Variability on irregular patterns
* Variability on block patterns

Regular Matrix

.

._H
"

H

Scale-Free Matrix

* Suite Sparse Matrix Collection: https://sparse.tamu.edu/

66

https://sparse.tamu.edu/

Kernel Execution on One PIM Core

(- @)

3 4

Load the Execute the| Retrieve the Merge the

input vector . kernel) partial results partial results

‘Main Memory\

" PIM-Enabled Memory\

@ " Host CPU

67

Lock-Based Synchronization
16 threads, COO, 32-bit integer UPMEM DRAM bank

1.2 Olb-cg| mlb-fg | { J v[.
1 Multithreaded

20.8 PIM Core
0.6
)
& 0.4 g

0.2 Fine-grained locking (lb-fg)

0 does not improve performance
& S X ® -orai i :
Q g e NS ever coarse-grained locking (lb cg))

Fine-Grained Locking: memory accesses to the local DRAM bank
are serialized in the DMA engine of the UPMEM PIM hardware.

Lock Based Synchromzatlon

Ke Takeaway 1
Fine-grained locking approaches cannot improve performance over
coarse-grained locking, when the PIM hardware does not support

L concurrent accesses to the local DRAM bank.)

Recommendation 1

Provide low-cost synchronization support and hardware support to
enable concurrent memory accesses to the local DRAM bank, and
integrate multiple DRAM banks per PIM core to increase execution
L parallelism.

69

Load-Balance within a PIM Core

16 threads, 32-bit integer Load-balancing #NNZs
performs best in most matrices

CSR CQo
@row| Onnz 1.4

Bmrow 0Onnz-lb-cg| Mnnz-If

Load-balancing #NNZ typically provides high computation
balance across threads of a compute-limited PIM core

Load-Balance within a PIM Core

16 threads, 32-bit integer Load-balancing #NNZs
causes high row imbalance

CSR CQo
@row |0Onnz 1.4

Bmrow | Onnz-lb-cg Mnnz-Ilf

Load-balancing #NNZs: one single thread performs a much higher
#memory accesses and #synchronization operations than the rest

Load-Balance within a PIM Core

16 threads, 32-bit integer
Key Takeaway 2

High operation imbalance in computation, synchronization, or
memory instructions executed by multiple threads of a PIM core
| can cause high performance overhead.

Recommendation 2

Design algorithms that provide high load balance across threads of
PIM core in terms of computations, synchronization points and

Mmemory accesses.
\. J

72

Scalability within a PIM Core

32-bit integer

.30
2 25
2 20
£ 15
~ 10
5
0

Execution T

S 50

Executio

delaunay_n13

CSR.nnz
CO0.nnz-lb-cg

=0=C0O0.nnz-lf
\&
00.nnz
.

L

°-

16

#threads

-0

24

Execution Time
o

wing_nodal

CSR.nnz
CO0.nnz-lb-cg

-=C0O00.nnz-lf
=e=BCSR.nnz

CO0O.nnz

[Scalability increases up to 16 threads]

raefsky4

CSR.nnz

o=C00.nnz-lb-cg
==C0O0.nnz-f

=e=BCSR.nnz
-=BC0O0.nnz

4 8

—
——

16

#threads

®
~

24

__ 700
v 600
£ 500
© 400
£ 300
200
S 100
0

1

Execut

— -9 o
8 16 24
#threads
pkustk08
CSR.nnz
o=C00.nnz-lb-cg
-=CO0.nnz-lf
=e=BCSR.Nnz
=9=BC0O0.nnz
—)
~
8 16 24
#threads 73

Kernel Execution on Multiple PIM Cores

(- @)

3 4

Load the Execute the| Retrieve the Merge the

input vector . kernel) partial results partial results

‘Main Memory\

" PIM-Enabled Memory\

@ " Host CPU

74

Comparison of Compressed Formats
2048 PIM Cores, 32-bit integer

8 1D
v 6.86x Scale-free: COO, BCOO >
, OCSR mCcoo 4 13.e0x 10.26x CSR, BCSR
55 @BCSR mBCOO CSR COO
0 4 (row-granularity)
&3 Core 1
) Core 1
F-E_:I
1 Core 2 Core 2
= . mm ore 1
regular matrices scale-free
matrices

In scale-free matrices, COO + BCOO provide higher non-zero

element balance across PIM cores than CSR + BCSR, respectively.

Comparison of Compressed Formats
2048 PIM Cores, 32-bit integer 2D Equally-Sized Tiles

(N
Core 1 Core 3 Scale-free: 1.4 OCSR mCOO

1.23X
COO, BCOO - 1.2 @BCSR mBCOO
CLPANLE! | 1.39xCSR,BCSR) |

AR\ S

I v\ ~~~~~~~~ o 0.8
I R]

; L AU L0.6

Thread I=-=_=I1 Thread 1 v 0.4

Thread 2 . Thread 2 T 0.2

CSR COO 0

(row-granularity) regular matrices scale-free

matrices

In scale-free matrices, COO + BCOO provide higher non-zero

element balance across threads than CSR + BCSR, respectively.

Comparison of Compressed Formats
2048 PIM Cores, 32-bit integer [coo, BCOO - 32.38x CSR, BCSR]

2D Equally-Wide Tiles 2D Variable-Sized Tiles
50 46X 45 42x 40
g OCR mC00 40 (Pt e COR WCOO
40 35 @BCSR mBCOO
@BCSR mBCOO
S 30 g 30
5 22x 2% I %(5) 20x 21X
.20) 8 % t
) 15
10 10
5
O — [e | — — O — [s | — —
regular matrices scale-free regular matrices scale-free
matrices matrices

COO + BCOO formats provide higher non-zero element balance

across PIM cores + threads than CSR + BCSR, respectively.

Comparison of Compressed Formats
2048 PIM Cores, 32-bit integer

Key Takeaway 3

The compressed matrix format used to store the input matrix
determines the data partitioning across DRAM banks of PIM-enabled
memory. As a result, it affects the load-balance across PIM cores (and
Kthreads of a PIM core) with corresponding performance implications.

Design compressed data structures that can be effectively
partitioned across DRAM banks, with the goal of providing high
computation balance across PIM cores (and threads of a PIM core).

\

J

End-to-End Performance
" @ (2] © o

Load the Execute the Retrieve the Merge the

Q’nput vector kernel partial results partial resultj

4 N
(1 2 Host CPU
‘Main Memory @ PIM-Enabled Memory @

79

Scala b'l l]ty [The scalability is limited]

o by the load time
COO format, 32-bit integer

1D 2D 2D 2D
Equally-Sized Equally-Wide Variable-Sized

2.5 Olodd jmkernel Oretrieve W@merge !
5 _ ! ! ;
c ! : :
3 1.5 ! l |
3 ’ ' '
3 | : : i
Y1 0.5 : : :
0

o X D
> %06\',@"‘ AP %06”@“ ‘AP %06”(@"‘ AP %06”,@"‘
#PIM Cores #PIM Cores #PIM Cores #PIM Cores

1D: #bytes to load the input vector grows linearly to #PIM cores

Scalability

COO format, 32-bit integer

Key Takeaway 4

The 1D-partitioned kernels are severely bottlenecked by the high
data transfer costs to broadcast the whole input vector into DRAM
| banks of all PIM cores, through the narrow off-chip memory bus.

J

Recommendation 4

Optimize the broadcast collective collective in data transfers to
PIM-enabled memory to efficiently copy the input data into DRAM
banks in the PIM system.

\ S

31

Scala b'l l]ty [The scalability is limited]

o by the kernel time
COO format, 32-bit integer

1D 2D 2D 2D

| Equally-Sized | Equally-Wide Variable-Sized
2.5 l:lload |lkerne ||:|retr1eve @ merge |
2 M | |
S | | |
3 1.5 =] | | |
O 1 1 I

3 1 ' —
© | | |
£0.5 ﬂ | | |
0 i i i

o X D
> %06\',@"‘ AP %06”%0"‘ ‘AP %06”(@"‘ AP %06”,@"‘
#PIM Cores #PIM Cores #PIM Cores #PIM Cores

2D Equally-Sized: kernel time is limited by only
a few PIM cores assigned to the 2D tiles with the largest #NNZs

Scala b'l l]ty [The scalability is limited)

o by the retrieve time
COO format, 32-bit integer

J

1D 2D 2D 2D
Equally-Sized | Equally-Wide |Variable-Sized
2.5 Olodd mkernel [Oretrieve| @mmerge
_ 2 = : B
% s = i i > 88% of data! is zeros
O 1 1 I
3 1 ' —
9 : : :
2 0.5 ﬂ | H | |
0 i i i

o X D
> %06\',@"‘ AP %06”@“ ‘AP %06”(@"‘ AP %06”,@"‘
#PIM Cores #PIM Cores #PIM Cores #PIM Cores

2D Equally-Wide + 2D Variable-Sized:
high amount of zero padding to gather the output vector >

parallel transfers supported at rank granularity = 64 PIM cores

Scalability

COO format, 32-bit integer

Key Takeaway 5

The 2D equally-wide and variable-sized kernels need fine-grained
parallel data transfers at DRAM bank granularity (zero padding) to

X be supported by the PIM system to achieve high performance.
J

Recommendation 5

Optimize the gather collective operation at DRAM bank granularity
in data transfers from PIM-enabled memory to efficiently retrieve
the output results to the host CPU.

\

34

Comparison of Sparse Matrices

5 1D Oretrieve B merge
c 4 hugetric-00202 ldoor
2
O 3
S —
22
21
)
. =] | H \
64 | 128 256 512 1024 2048 64 | 128 | 256 512 1024 2048

#PIM Cores #PIM Cores

[Best-performing = 64 PIM cores] [Best-performing =128 PIM cores]

1D: #PIM cores that provides the best performance
depends on the sparsity pattern of the input matrix

Comparison of Sparse Matrices

2048 PIM cores, COO format, 32-bit integer
. 0O load B kernel
2D Equally-Sized

1.2 Oretrieve @merge
1 [r— . [] .
§ 0.8 hugetric-00202 memchip
(@)
_g 0.6 e =
9 0.4
n
ﬁﬁmﬂ ﬁ ;
0
1 2 4 8 16 | 32 1 2 4 16 32
#Vertical Partitions #Vertical Partitions

[Best-performing = 16 vertical part.] [Best-performing = 8 vertical part.]

2D: #vertical partitions that provides the best performance

depends on the sparsity pattern of the input matrix

Comparison of PIM Systems

COO format, 32-bit integer
2D Equally-Sized

Oload Okernel

1.2 Bretrieve @Bmerge
1 e — P —
§ 0.8 PIM System A PIM System B
3 0'6 hugetric-00202 hugetric-00202
; .]
2 0.4 [—
wn (o
O = =
16 32

1 2 4 8 1 2 4 8 16
S

#Vertical Partitions #Vertical Partitions

32

[Best-performing = 8 vertical part.] [Best-performing = 16 vertical part.]

PIM Cores PIM Band. Host CPU

PIMA 2048 @350 MHz 1.43 TB/s Intel Xeon Silver 4110 ®@2.1 GHz 23.1 GB/s

PIMB 2048 @425 MHz 1.78 TB/s Intel Xeon Silver 4215 ®@2.5 GHz 21.8 GB/s
S/

Comparison of PIM Systems

COO format, 32-bit integer

1.2
1 p—
§ 0.8 PIM System A
o hugetric-00202
'g 0.6 —

904

A, p— !
0
16 32

1 2 4 8
S

#Vertical Partitions

2D Equally-Sized

Oload Okernel

Bretrieve Bmerge

PIM System B
hugetric-00202

[e

1

2 4 8 16 | 32

#Vertical Partitions

[Best-performing = 8 vertical part.] [Best-performing = 16 vertical part.]

2D: #vertical partitions that provides the best performance

depends on the underlying hardware characteristics

Various Matrices and PIM Systems

COO format, 32-bit integer Oload B kernel

Key Takeaway 6

There is no one-size-fits-all parallelization approach for SpMV, since
the performance of each scheme depends on the characteristics of

L the input matrix and the underlying PIM hardware.)

Recommendation 6

Design adaptive algorithm that tune their configuration to the
particular patterns of each input given and the characteristics of
the PIM hardware.

\

(o4

1D vs 2D

Up to 2528 PIM Cores, 32-bit float

1.8 O1D ®m2D (equally-sized) A
Y >1100 Idle Cores | 2200 Idle Cores |1.31x
g1.2 1.45x
D 1
8_0'8
&0.6
0.4
0.2
O X N on x
Y N cC 2 c 3 e “ o vulwvw © v A - — ~
PREETREIFEEFRAEETLEE RS S
O

regular scale-free

Best-performing SpMV execution:
trades off computation with lower data transfer costs

1D vs 2D

Expensive data transfers to/from PIM-enabled memory performed
via the narrow memory bus impose significant performance
overhead to end-to-end SpMV execution. Thus, it is hard to fully
9 exploit all available PIM cores of the system.

Recommendation 7

Design high-speed communication channels and optimized libraries
in data transfers to/from PIM-enabled memory, provide hardware
support to effectively overlap computation with data transfers in
the PIM system, and/or integrate PIM-enabled memory as the main
memory of the system.)

.

91

SpMV Execution on Various Systems

GPU System
CPU System @) Execute the kernel

O Execu(te Fhe kernel\ @ Load the [[GPUCores | @ Retrieve
Main Memory input vector bus tIZIIZI the final vector

(s " GPU Global
papenen] | Chemoy’ [| oo
BP"k B“‘“lk DRﬁM DRAM g CPU
o | % BIVell 5% | 9% B

Host |/
CPU buls

Real PIM Load the Execute Retrieve the Merge the
System input vector the kernel p\artial results partial results

‘Main Memory\

DRAM | DRAM
B BN Ryedk

(N J

il [Host CPU

bus a+a

7 92

CPU/GPU Comparisons

Peak Performance | Bandwidth -

Intel Xeon
CPU 660 GFlops 23.1 GB/s 2x85 W
Silver 4110 P Processor-
NVIDIA > Centric
GPU 14.13 TFlops 897 GB/s 300 W
Tesla V100 Y,
PIM UPMEM 4.66 GFlops ‘ 1.77 TB/s | 379 w Memory-
1st Gen. Centric

93

CPU/GPU Comparisons

" Kernel-Only (COO, 32-bit float):
 CPU = 0.51% of Peak Perf.
* GPU = 0.21% of Peak Perf.
* PIM (1D) =50.7% of Peak Perf.

Peak Performance | Bandwidth -

CPU Intel Xeon 660 GFlops ~ 23.1 GB/s
Silver 4110
GPU NVIDIA 14.13 TFlops 897 GB/s
Tesla V100
PIM UPMEM 4.66 GFlops ~ 1.77 TB/s
1st Gen.

2x85 W Processor-

> Centric
300 W

J

379 w Memory-
Centric

94

CPU/GPU Comparisons

* Kernel-Only (COQ, 32-bit float):

* CPU = 0.51% of Peak Perf.
* GPU = 0.21% of Peak Perf.
* PIM (1D) =50.7% of Peak Perf.

* CPU = 4.08 GFlop/s
* GPU = 1.92 GFlop/s
* PIM (1D) = 0.11 GFlop/s

'» End-to-End (COO, 32-bit float):|

J

Peak Performance | Bandwidth -

CPU Intel Xeon 660 GFlops
Silver 4110
GPU NVIDIA 14.13 TFlops
Tesla V100
PIM UPMEM 4.66 GFlops
1st Gen.

23.1 GB/s

897 GB/s

1.77 TB/s

2x85 W Processor-

> Centric
300 W

J

379 w Memory-
Centric

95

CPU/GPU Comparisons

* Kernel-Energy (COO, 32-bit float):
* CPU =0.247 J
* GPU = 0.051 J
e PIM (1D) 40.179 J

[PIM: 1.38x higher energy efficiency over CPU]

Peak Performance | Bandwidth -

Intel Xeon
CPU 660 GFlops 23.1 GB/s 2x85 W
Silver 4110 P > Processor-
NVIDIA Centric
GPU 14.13 TFlops 897 GB/s 300 W
Tesla V100 Y,
PIM UPMEM 4.66 GFlops ~ 1.77 TB/s 379 w Memory-
1st Gen. Centric

96

CPU/GPU Comparisons

* Kernel-Energy (COO, 32-bit float):
* CPU =0.247 J
* GPU =0.051J
e PIM (1D) =0.179 J

Peak Performance | Bandwidth

Many more results in the full paper:
https://arxiv.org/pdf/2201.05072.pdf

https://arxiv.org/pdf/2201.05072.pdf

QOutline

{SpMV Kernels for Real PIM Systems}

{Key Takeaways from Our Study J

Conclusion

98

Conclusion

* SpMV is a fundamental linear algebra kernel for important
applications (HPC, machine learning, graph analytics...)

* SpMV is a highly memory-bound kernel in processor-centric
systems (e.g., CPU and GPU systems)

* Real near-bank PIM systems can tackle the data movement
pottleneck (high parallelism, large aggregate memory bandwidth)

* Key Contributions:

* SparseP . first open-source SpMV library for real PIM systems

* Comprehensive characterization and analysis of SPMV on the first
real PIM system

* Recommendations to improve multiple aspects of future PIM
hardware and software

SparseP: https://github.com/CMU-SAFARI/SparseP
Full Paper: https://arxiv.org/pdf/2201.05072.pdf 99

https://github.com/CMU-SAFARI/SparseP
https://arxiv.org/pdf/2201.05072.pdf

SparseP Paper and Repo

* Appears at SIGMETRICS 2022

SparseP: Towards Efficient Sparse Matrix Vector
Multiplication on Real Processing-In-Memory Systems

CHRISTINA GIANNOULA, ETH Ziirich, Switzerland and National Technical University of Athens,
Greece

IVAN FERNANDEZ, ETH Ziirich, Switzerland and University of Malaga, Spain
JUAN G OMEZ-LUN A, ETH Ziirich, Switzerland
NECTARIOS KOZIRIS, National Technical University of Athens, Greece

GEORGIOS GOUMAS, National Technical University of Athens, Greece
ONUR MUTLU, ETH Ziirich, Switzerland

https://arxiv.orqg/pdf/2201.05072.pdf
https://github.com/CMU-SAFARI/SparseP

https://www.youtube.com/watch?v=5kaOsJKIGrE

100

https://arxiv.org/pdf/2201.05072.pdf
https://github.com/CMU-SAFARI/SparseP
https://www.youtube.com/watch?v=5kaOsJKlGrE

o~ A
SparseP

Towards Efficient Sparse Matrix Vector Multiplication
on Real Processing-In-Memory Architectures

Christina Giannoula, lvan Fernandez, Juan Gomez-Luna,
Nectarios Koziris, Georgios Goumas, Onur Mutlu

OO QO Q National Technical University of Athens

SAFARI ETH:zirich i€SLab

101

Machine Learning Training

Machine Learning Training
on a Memory-Centric Computing System

Juan Gomez Luna, Yuxin Guo, Sylvan Brocard,
Julien Legriel, Remy Cimadomo, Geraldo F. Oliveira,
Gagandeep Singh, Onur Mutlu

https://arxiv.org/pdf/2206.06022.pdf
juang@ethz.ch

up
mzwich SAFAR’ [0

https://arxiv.org/pdf/2206.06022.pdf
mailto:juang@ethz.ch

Executive Summary

* Training machine learning (ML) algorithms is a computationally expensive process,
frequently memory-bound due torepeatedly accessing large training datasets

* Memory-centric computing systems, i.e., with Processing-in-Memory (PIM) capabilities,
can alleviate this data movement bottleneck

* Real-world PIM systems have only recently been manufactured and commercialized
- UPMEM has designed and fabricated the first publicly-available real-world PIM architecture

* Our %oal is to understand the potential of modern general-purpose PIM architectures to
accelerate machine learning training

e QOur main contributions:

- PIM implementation of several classic machine learning algorithms: linear regression, logistic
regression, decision tree, K-means clustering

- Workload characterization in terms of accuracy, performance, and scaling
- Comparison to their counterpart implementations on processor-centric systems (CPU and GPU)

* Experimental evaluation on a real-world PIM system with 2,524 PIM cores (@ 425 MHz
and 158 GB of DRAM memory

* New observations and insights:

- ML training in PIM systems benefits from (1) fixed-point representation, (2) quantization, and (3)
hybrid precision implementations

- Complex activation functions (e.g., sigmoid) can take advantage of LUTs in PIM systems without
native support for those activation functions

- Data canbe [EIaced and laid out for PIM cores to access nearby memory banks in streaming, thus
maximizing PIM memory bandwidth

- ML training benefits from scaling the size of PIM-enabled memory with PIM cores attached to
memory banks

SAFARI 104

Outline

()

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

r
\.

Evaluation

r
\.

\
J

Key observations and insights

. J

SAFARI 105

Machine Learning Workloads

Machine learning
Unsupervised
learning

* Machine learning training
with large amounts of data
is a computationally
expensive process, which
requires many iterations to
update an ML model’s e
parameters e,

Supervised Reinforcement
learning learning

* Frequent data movement between memory and processing
elements to access training data

* The amount of computation is not enough to amortize the
cost of moving training data to the processing elements

- Low arithmetic intensity
- Low temporal locality
- Irregular memory accesses

SAFARI 106

Machine Learning Workloads: Our Goal

* Our goal is to study and analyze
how real-world general-purpose
PIM can accelerate ML training

* Four representative ML

algorithms: linear regression,
logistic regression, decision tree,
K-means 30 etk compute perormance
* Roofline modelto g 1
quantify the memory g oo
boundedness of CPU &
versions of the four & | :
workloads *301 0.1 ; 10

Arithmetic Intensity (OP/B)

[All workloads fall in the memory-bound area of the Roofline]

SAFARI 107

Outline

()

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

r
\.

Evaluation

r
\.

\
J

Key observations and insights

. J

SAFARI 108

Processing-in-Memory (PIM)

* PIM is a computing paradigm that advocates for memory-
centric computing systems, where processing elements are
placed near or inside the memory arrays

* Real-world PIM architectures are becoming a reality

- UPMEM PIM, Samsung HBM-PIM, Samsung AXDIMM, SK Hynix AiM,
Alibaba HB-PNM

* These PIM systems have some common characteristics:

1. Thereis a host processor (CPU or GPU) with access to (1) standard
main memory, and (2) PIM-enabled memory

2. PIM-enabled memory contains multiple PIM processing elements
(PEs) with high bandwidth and low latency memory access

3. PIM PEs run only at a few hundred MHz and have a small number
of registers and small (or no) cache/scratchpad

4. PEs may need to communicate via the host processor

SAFARI 109

A State-of-the-Art PIM System

Standard Main Memory

o A
(Host CPU /7
/7 Memory Array
gl g 4 (Rank or Bank)
AL
°f 3 = . P
[} .
(4] Instruction |Scratchpad/
-5 .t:u\\': —— Memory][Memory Memory
(] - Array Array
) il e D
| PIM PE PIM PE
[\lPIM Processing Elements

M_-

PIM-enabled Memory

* In our work, we use the UPMEM PIM architecture

- General-purpose processing cores called DRAM Processing
Units (DPUs)
* Up to 24 PIM threads, called tasklets

* 32-bit integer arithmetic, but multiplication/division are
emulated¥®, as well as floating-point operations

- 64-MB DRAM bank (MRAM), 64-KB scratchpad (WRAM)

SAFARI * 8-bit integer multiplication is natively supported 110

Outline

r

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

r

\.

Evaluation

r

\.

\

Key observations and insights

.

J

SAFARI 111

ML Training Workloads

* Four widely-used machine learning
workloads:

Machine learning
Unsupervised
learning

Supervised Reinforcement
learning learning

Linear reg i Logistic reg i K-means

Linear regression (LIN)

Logistic regression (LOG)

Decision tree (DTR)
K-means clustering (KME)

* Diversity of our ML training workloads:
- Memory access patterns
- Operations and datatypes
- Communication/synchronization

Learning Avplication | Alsorithm Short name Memory access pattern Computation pattern Communication/synchronization
approach PP & Sequential | Strided | Random Operations | Datatype Intra PIM Core | Inter PIM Core
Regression Linear Regression LIN Yes No No mul, add float, int32_t barrier Yes
Supervised Classification Logistic Regression LOG Yes No No mul, add, exp, div | float, int32_t barrier Yes
Decision Tree DTR Yes No No compare, add float barrier, mutex Yes
Unsupervised | Clustering K-Means KME Yes No No ul, compare, add | int16_t, int64_t| barrier, mutex Yes

SAFARI 112

Linear Regression

* Linear regression (LIN)is a supervised learning algorithm where
the predicted output variable has a linear relation with the input
variable

- We use gradient descent as the optimization algorithm to find the
minimum of the loss function

Our PIM implementation divides the training dataset (X) equally
among PIM cores

PIM threads compute dot products of row vectors and weights

- Each dot product is compared to the observed value y to compute a partial
gradient value

- Partial gradient values are reduced and sent to the host

Four versions of LIN:
- LIN-FP32: training datasets of 32-bit real values
- LIN-INT32: 32-bit fixed-point representation
- LIN-HYB: hybrid precision (8-bit, 16-bit, 32-bit)
- LIN-BUI: custom multiplication based on 8-bit built-in multiplication

SAFARI

Logistic Regression

* Logistic regression (LOG) is a supervised learning algorithm
used for classification, which outputs probability values for
each input observation variable or vector

- Sigmoid function to map predicted values to probabilities

* Our PIM implementation follows the same workload
distribution pattern as our linear regression implementation

e Six versions of LOG:

- LOG-FP32: training datasets of 32-bit real values, sigmoid
approximated with Taylor series

LOG-INT32: 32-bit fixed-point representation, Taylor series
LOG-INT32-LUT: Sigmoid calculation with a lookup table (LUT)

e LOG-INT32-LUT(MRAM): LUTin MRAM

* LOG-INT32-LUT(WRAM): LUTin WRAM
LOG-HYB-LUT: hybrid precision (8-bit, 16-bit, 32-bit), LUT in WRAM
LOG-BUI-LUT: custom multiplication based on 8-bit built-in
multiplication, LUT in WRAM

SAFARI

Decision Tree

* Decision trees (DTR) are tree-based methods used for classification and
regression, which partition the feature space into boxes, with a simple

prediction model in each box

* Our PIM implementation partitions the training set among PIM cores,
\r/]vhich compute partial Gini scores to evaluate split decisions done by the
ost

* The host sends commands to the PIM cores:
- Split commit to split a tree leaf

- Split evaluate to evaluate a split
- Min-max to query the minimum and maximum values of a feature in a tree

leaf
¢ PIM threads Work On different SD?)toai:T:,:Zfeatures: PO =(0, 11); p1=(8,4);p2=(7,9);p3 = (2,6);p4=(5,2)
batches of feature values, Memory layout Decision tree
compare them to a threshold, Feature 0 Feature 1 -
and update the partial Giniscore L2 7171 1 g
Leaf O Leaf O
L Data Iayout in Split Commit to @ Split commit: feature 0, threshold 5

Feature O Feature 1

maximize memory bandwidth
with streaming accesses

0 2 5 8 7 111] 6 2 4 9

L1
[P0, p3, p4l

Leaf 1 Leaf 2 Leaf 1 Leaf 2

SAFARI

K-Means Clustering

* K-means (KME) is an iterative clustering method used to find
groups in a dataset which have not been explicitly labeled

* Our PIM implementation distributes the dataset evenly over
the PIM cores

 PIM threads evaluate which centroid is the closest one to
each point of the training set

- Counter and accumulator per coordinate (per centroid)
* Then, the host recalculates the centroids

* Convergence to a local optimum when the updated
centroid’s coordinates are within a threshold (Frobenius

norm)

SAFARI

Outline

()

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

r
\.

Evaluation

r
\.

\
J

Key observations and insights

. J

SAFARI 117

Evaluation Methodology

* Synthetic and real datasets

Synthetic Datasets

ML Workload Strong Scaling (1 PIM core | 256-2048 PIM cores) | Weak Scaling (per PIM core) Real Dataset

Linear regression 2,048 samples, 16 attr. (0.125 MB) | 6,291,456 samples, 16 attr. (384 MB) 2,048 samples, 16 attr. (0.125 MB) | SUSY [223, 224]
Logistic regression || 2,048 samples, 16 attr. (0.125 MB) | 6,291,456 samples, 16 attr. (384 MB) 2,048 samples, 16 attr. (0.125 MB) | Skin segmentation [225]
Decision tree 60,000 samples, 16 attr. (3.84 MB) | 153,600,000 samples, 16 attr. (9830 MB) | 600,000 samples, 16 attr. (38.4 MB) | Higgs boson [223, 226]
K-Means 10,000 samples, 16 attr. (0.64 MB) | 25,600,000 samples, 16 attr. (1640 MB) 100,000 samples, 16 attr. (6.4 MB) | Higgs boson [223, 226]

* Evaluated systems

- UPMEM PIM system with 2,524 PIM cores (@ 425 MHz and 158 GB of
DRAM

- Intel Xeon Silver 4215 CPU (16 hardware threads)
- NVIDIA A100 GPU

* We evaluate:
- Metrics
- Performance of PIM kernels
- Performance scaling
- Comparison to CPU and GPU

SAFARI 118

2,560-DPU System (1)

« UPMEM-based PIM Main Hemory

)
(N\
system with 20 UPMEM o o (0
@—p-| (i) Chip){ chip | chip |\ chip |\ chip |\ chip)| chip
[]
DRAM|[DRAM||DRAM|[DRAM|[DRAM||DRAM|[DRAM||DRAM
chip || chip || chip || chip || chip || chip || chip || chip

(40 ranks) cPy 0 —— 2560 DPUs™

P21 DIMMs PERIEN R ENER 6D EA B
Dual x86 socket By
X
° UP M E M DI M MS PIM-enabled Memory

coexist with regular Main Memory
DDR4 DIMMs s
e > memory 4—»[
controllers/socket (3 - 2
os

channels each) CPU 1)

.
* 2 conventional DDR4 - EEEEEEEE
‘ Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip
DIMMS On One PIM PIM PIM PIM PIM PIM PIM PIM
Chp Chp Chp Chp Chp Chp Chp Chip /10

channel of one

” PIM-enable
controller
160 GB

r
|

SA FA R’ * There are some faulty DPUs in the system that we use in our experiments. Thus, the maximum number of DPUs we can use is 2,524 1 1 9

2,560-DPU System (lI)

Main Memory
)
——— N ——\

Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip
oA A e o e o o o)
\cmp chip || chip || chip || chip || chip || chip cmpj AZ

Host
CPUO

A A
y y

PIM-enabled Memory

Main Memory
)
(T —— =)

- Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip
T o e e e e o e o)
\cmp chip || chip || chip || chip || chip || chip cmpj A2
N

y

Host
CPU 1

PIM-enabled Memory

SAFARI 120

Evaluation: Metrics

* Linear regression

- Training error rate of LIN-FP32 is the same as the CPU
version

- For integer versions, it remains low and close to that of LIN-
FP32

* Logistic regression
- LUT-based versions obtain lower training error rates that
LOG-INT32, since they use exact values, not approximations

* Decision tree
- Training accuracy only slightly lower than that of the CPU
version
* K-means

- Same Calinski-Harabasz score and adjusted Rand index of PIM
and CPU versions

SAFARI

Evaluation: Analysis of PIM Kernels (1)

60000 |

* Linear regression

"2 50000 o (a) LIN-FP32
B, 40000 - —O— LIN-FP32
£ 30000 -
] o +—1r—v—v+—v—"T"—r""T"""T"""""" "
fA” versions saturate\ % 123456 7 8 9101112131415161718192021222324
PI M Number of PIM Threads (per PIM Core)
at 11 or more
5000 800
L threads y % s (b) LIN INT Versions | eoo - 457
% ~O—LIN-INT32 400 1 324
ig 3000 - LIN-HYB 200 -
Fixed point Z 5000 e 3 I —
accelerates the & /' 1 3 5 7 9111315171921 23
S 1000 -
= [TFssssssssssssnay
kernel by an order 0 J—.—
. 1234567 8 9101112131415161718192021222324
\ Of magnltUde j Number of PIM Threads (per PIM Core)
(°
LIN-HYB is 41% faster than LIN-BUI provides an
L LIN-INT32 additional 25% speedup

SAFARI 122

Evaluation: Analysis of PIM Kernels (II)

500000 |

* Logistic regression z . J- (2 106 32-bit versions —
/ . \ _ ;88888 40316 LOG-INT32
Very high kernel _ \ - 260

100000 1 o Sppn oo N/ T
time of LOG-FP32 0 e O 0000000 0-0-0-0-0
and LOG-INT32

PIM Kernel Time

123456 7 8 9101112131415161718192021222324
Number of PIM Threads (per PIM Core)

due to sigmoid 5000 —1™
]) . ¢ (b) LOG LUT Versions | go0
__approximation / E 4000 4 1 1 e s || 400
4 N £\ e b || 20
LOG-INT32- 2 2000 \
LUT (MRAM) is 53x 5 1000 - =83
0

faster than LOG-
1234567 8 9101112131415161718192021222324
INT 3 2 Number of PIM Threads (per PIM Core)

_ J
-
LOG-HYB-LUT is 28% faster } [LOG-BUI-LUT provides an }

than LOG-INT32-LUT additional 43% speedup

\.

SAFARI 123

Evaluation: Analysis of PIM Kernels (111)

e Decision tree & K-means
4)

Both workloads 40000 o
2 a
saturate at 11 or = 30000 4
£ 20000 H —o—DTR
more PIM threads = 10000 -
GLJ 0 T
\\‘ "/ E 1 23 456 7 8 9101112131415161718192021222324

Number of PIM Threads (per PIM Core)

/l\/\aximum number\ 30000

(b) KME
of PIM threads in 20000 - e
10000 -~

DTR is 16 due to
the usage Of |OC3| 12345678 9I1o|11|12I13I14I15I16|17I18I19|20|21I22I23I24
SCI‘atChpad Number of PIM Threads (per PIM Core)

\ memory /

SAFARI 124

o

PIM Kernel Time (ms)

Evaluation: Performance Scaling

* Strong scaling: 256 to 2,048 PIM cores

300000 MR 9 30000 8 2500000 SRy o 8 - = P I M k e rn e I ti e
250000 | B cemonmxemet 2| 25000 P D e L 7 800000 - z 6 | I l
B zZ=Za I 4 p EZZAPIM K
z :_:'p":e';i;‘e' L7 g 6 z 2000000 -O—Speedi’:e | ¢ 700000 Z .
= 200000 6 20000 4 [= 7 600000 { s *
o / 5 4 o / -5 / a I I t
£ 150000 > 15000 z d 4% 'EEOOOOO Z d La 2000 é = P '3 Sca es lnear y WI
s 4 é - & S 1000000 é 7 |, 400000 4 Z ? 38
2 100000 3 10000 é é 3 2 ? é 3 300000 Z 7 , f
X < X | + ..’ r
* so000 2 So00 4 é é 7 j * 500000 % % 7 j 200000 4 % Z % N the nU”lber O PIM
r C) £ 4 B %
256 | 512 | 1024 | 2048 256 | 512 | 1024 | 2048 256 | 512 |1024 | 2048 256 | 512 | 1024 | 2048 r
LIN-FP32 LIN-INT32 LOG-FP32 LOG-INT32 K CO eS /
20000 8 16000 7 30000 s 30000 3
18000 - b7 14000 { . P
— 16000 4 7 P ? 6 25000 { P 7 25000 . Pr7
£ 14000 { [/ (e 1200017 5 z é e 6
Fl 10 L s 10000 |] o 20000 { /] | . 20000
g 12000 1 1 7 d a5 ¢ é 5 5a
= 10000 1 Z d [4 8000 - Z S E1so00 | [d L 4 15000 43
-5—38000- Z L3 6000- Z &8 ? 7z 3 3§ 1
2 19 7 Y A 310000 1 4 [° 10000 L ttl h d f l I l
g Zggg_ Z g - L2 4000 | é 2 - 2 g z G L,) I e Over ea ro
17 U mli 20]8 ﬁ D omia s000 | 7 7 7 1, swo
2000 { P v 9 7 b U 9 ¢ 9 U B P 1 1
Ll ae il <l dan o inter PIM
256 | 512 | 1024 | 2048 256 | 512 | 1004 | 2008 In e r Core
LIN-HYB LIN-BUI LOG-INT32-LUT (MRAM) LOG-INT32-LUT (WRAM) . .
30000 FIM.CPU 7 10000 9 25000 8 14000 7 t d
e <= —— | communication an
25000 { ez Keml 8000 1 Z ; 20000 - é
é, ; ~O—Speedup | 5 2000 4 g g ? F6 10000 4 % 5] 03
gzoooo- g L, 6000 - 7 6% 2 15000 | z M5 8000 4 z 4 5 Communlcatlon
£ 15000 - % - 5000 Z il i? = 2 g L4 2 ® /) E
S L3 A O % S 6000 - % 32
2 oo | é é 4000 4 é Z 15 S 10000 4 é 7 L5 é é &
£y 2wl "y oo | 1| B : etween host an
o g‘z ; 1 200 é é 7 : © S0 1 Z é 2 ¥ 2000 . g ? g |1
116 m 4 2 | ¥
g Y = 1000 4 ,o‘ - ,0‘/ 7B 1 9 U Y 7
A 0 dal, 14 a0 A, A8 0 ., 27 001,
256 | 512 | 1024 | 2048 256 | 512 | 1024 | 2048 256 | 512 | 1024 | 2048 256 | 512 | 1024 | 2048
cores
DTR KME LOG-HYB-LUT (WRAM) LOG-BUI-LUT (WRAM)

SAFARI 125

Comparison to CPU and GPU (1)

* Linear regression anc

60000 6000 18000
16000 1 prrrm
50000 5000 - 2 14000 1
‘g ‘g o 12000 1
€
2 40000 1 2 4000 i 10000
£ £ é 8000 EPIMCPU
]]
= 300 1 = 3000 1 it
5 S & 4000 { 5pim Kernel
2 EIPIM-CPU 2 B PIM-CPU 2000
2 20000 {minterPIMCore| 2 2000 4 mDinterPIMCord 1
g EICPU-PIM] FCPU-PIM 0
w w |
10000 CIPIM Kernel 1000 O PIM Kernel LOG-FP32
600
0 0 500 |
LIN-FP32 LIN-INT32 B 200 |
@
6000 6000 E
~ 300
8 TEPIMCPU
5000 5000 A 2 200 o minter PIM Coref
oy i o EICPU-PIM
£ £ 9 oo JEPIM Kernel
~ 4000 ~ 4000 4
[[
E E ® LoG-INT3zL0r
- 3000 - 3000 A (MRAM)
) T=PIM-CPU 2 TPIM-CPU 600
3 2000 {mointerPIMCore] 3 2000 q DinterPIMCor
] EICPU-PIM o ECPU-PIM __ 500 1
w] 2
1000 CIPIM Kernel 1000 O PIM Kernel % 200
= 4
0 4 0 s 300
LIN-HYB LIN-BUI 2 200 TemimcRy
= ugir:mcm
48 -PI
60000 1400 100 1 Spin Kernel
50000 A 1200 A e “LOG-HYB-LUT
= = (WRAM)
1S £ 1000 A 2000
o 40000 o 1800
E £ 800 A = 1600 4
¢ 3900 1 e GPU Kerne < 10
o cPU S 600 4 £ 1200
B = [CPU-GPU =
g 20000 3 £ GPU-CPU 1000
g g 40 1 § s [oo |
w w 2 600
10000 1 200 2 a0
0 0 o
CPU GPU CPU

SAFARI

18000

500 -

8

Execution Time (ms)
N ow
8
L

g

0
LOG-BUI-LUT

30

8

B PIM-CPU
- OinterPIMCorg

BCPU-PIM
o PIM Kernel

1Ll

LOG-INT32

Al

OPIM-CPU
9 OinterPIMCorg
@crPuU-PIM

ogistic regression

4)

PIM versions are heavily
burdened when they use
operations that are not
natively supported by the

O PIM Kernel

[

LOG-INT32-LUT
(WRAM)

BPIM-CPU
DinterPIMCorg
qocru-PMm
O PIM Kernel

(WRAM)

25

20 4

15 4

10 4

Execution Time (ms)

[J GPU Kernel
0 CPU-GPU
[GPU-CPU

\ hardware /

& Several optimizations A

reduce the execution time

considerably and close the
gap with GPU

performance

o J

126

Comparison to CPU and GPU (II)

e Decision tree and K-means

4000 7 80000 4000
EPIM-CPU

3500 1 minterPIM Core] 70000 A 3500 A
— EBCPU-PIM — —_
é 3000 1 @PIM Kernel é 60000 1 é 3000 1]
L 2500 A @ 50000 A @ 2500 A [JGPU Kernel
E E HCPU E F1CPU-GPU
- 2000 A - 40000 A - 2000 A [EGPU-CPU
§e] .0 .0 3
S 1500 A £ 30000 S 1500
3 3 3
> 1000 A X< 20000 A x 1000
wl w w

500 A 10000 4 500 1

0 0 0

DTR CPU GPU

(a) Decision Tree

4)

PIM version of DTR is 27x
faster than the CPU
version and 1.34x faster
than the GPU version

_ j

20000 —| 20000 T 20000
18000 Tomvcru 18000 ~ EICPU 18000 1
— 16000 o MinterPIMCorel — 16000 o 16000 1
g |aceu-pim £ | 2 .
= 14000 1 5pim Kernel < 14000 E14000
£ 12000 £ 12000 - £12000
= 10000 A = 10000 + |—10000 J
5 5 <
5 8000 - S 8000 - S 8000 -
S 6000 - 3 6000 A 3 6000 | | TGPU Kernel
2 L o [1CPU-GPU
* 4000 1 4000 4 W 4000 { | @GPU-cPU
2000 ~ 2000 - 2000 |
KME CPU GPU
(b) K-means

-

faster than the CPU
version and 3.2x faster
than the GPU version

_

PIM version of KME is 2.8x

~

J

SAFARI

127

Outline

()

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

r
\.

Evaluation

r
\.

\
J

Key observations and insights

. J

SAFARI 128

Key Observations and Insights

* ML training workloads can greatly benefit from (1) fixed-
point data representation, (2) quantization, and (3)
hybrid precision implementation in PIM systems

* ML training workloads that require complex activation
functions (e.g., sigmoid) can take advantage of lookup
tables (LUTs) in PIM systems instead of function
approximation

* Data can be placed and laid out such that memory
accesses of PIM cores are streaming

* ML training workloads with large training datasets
benefit from scaling the size of PIM-enabled memory
with PIM cores attached to memory arrays

SAFARI 129

Executive Summary

* Training machine learning (ML) algorithms is a computationally expensive process,
frequently memory-bound due torepeatedly accessing large training datasets

* Memory-centric computing systems, i.e., with Processing-in-Memory (PIM) capabilities,
can alleviate this data movement bottleneck

* Real-world PIM systems have only recently been manufactured and commercialized
- UPMEM has designed and fabricated the first publicly-available real-world PIM architecture

* Our %oal is to understand the potential of modern general-purpose PIM architectures to
accelerate machine learning training

e QOur main contributions:

- PIM implementation of several classic machine learning algorithms: linear regression, logistic
regression, decision tree, K-means clustering

- Workload characterization in terms of accuracy, performance, and scaling
- Comparison to their counterpart implementations on processor-centric systems (CPU and GPU)

* Experimental evaluation on a real-world PIM system with 2,524 PIM cores (@ 425 MHz
and 158 GB of DRAM memory

* New observations and insights:

- ML training in PIM systems benefits from (1) fixed-point representation, (2) quantization, and (3)
hybrid precision implementations

- Complex activation functions (e.g., sigmoid) can take advantage of LUTs in PIM systems without
native support for those activation functions

- Data canbe [EIaced and laid out for PIM cores to access nearby memory banks in streaming, thus
maximizing PIM memory bandwidth

- ML training benefits from scaling the size of PIM-enabled memory with PIM cores attached to
memory banks

SAFARI 130

ML Training on a Real PIM System

Machine Learning Training on
a Real Processing-in-Memory System

Juan Gémez-Luna' Yuxin Guo! Sylvan Brocard® Julien Legriel®
Remy Cimadomo? Geraldo F. Oliveira! Gagandeep Singh! Onur Mutlu!

'ETH Ziirich 2UPMEM

An Experimental Evaluation of Machine Learning Training
on a Real Processing-in-Memory System

Juan Gémez-Luna! Yuxin Guo! Sylvan Brocard? Julien Legriel?
Remy Cimadomo? Geraldo F. Oliveira! Gagandeep Singh! Onur Mutlu!

'ETH Ziirich *UPMEM

Short version: https://arxiv.org/pdf/2206.06022.pdf
Long version: https://arxiv.org/pdf/2207.07886.pdf
https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s

SAFARI 131

https://arxiv.org/pdf/2206.06022.pdf

ML Training on a Real PIM System

Evaluating Machine Learning Workloads
on Memory-Centric Computing Systems

1 1

Juan Gémez-Luna'! Yuxin Guo! Sylvan Brocard® Julien Legriel®
Remy Cimadomo? Geraldo F. Oliveira! Gagandeep Singh! Onur Mutlu!

'ETH Ziirich *UPMEM

To appear at ISPASS 2023
SAFARI 132

Machine Learning Training
on a Memory-Centric Computing System

Juan Gomez Luna, Yuxin Guo, Sylvan Brocard,
Julien Legriel, Remy Cimadomo, Geraldo F. Oliveira,
Gagandeep Singh, Onur Mutlu

https://arxiv.org/pdf/2206.06022.pdf
juang@ethz.ch

up
mzwich SAFAR’ [0

https://arxiv.org/pdf/2206.06022.pdf
mailto:juang@ethz.ch

Genomics Sequence
Alignment

High-throughput Pairwise Alignment
with the Wavefront Algorithm using
Processing-in-Memory

Safaa Diab!, Amir Nassereldine!, Mohammed Alser?, Juan Gomez LunaZ?, Onur Mutlu?, Izzat El Hajj!

!American University of Beirut, Lebanon °ETH Ziirich, Switzerland

(% AUB SAFARI

American University of Beirut m -
MRS AR Ziirich

Executive Summary

o Problem:

o Genome sequencing analysis 1s bottlenecked by the data-intensive
sequence alignment algorithms used in the read mapping phase.

o Motivation:

o Processing-in-Memory (PIM) alleviates memory bandwidth
limitations of existing systems by enabling computation inside the
memory without the need to move data.

o UPMEM developed the first general-purpose real-world PIM
architecture.

0 We show that the Wavefront Alignment (WFA) algorithm can achieve
substantially higher pairwise read alignment throughput on the PIM
system than on a server-grade multi-threaded CPU system.

136

Data Movement Bottleneck

0 Modern workloads spend a significant portion of execution time and
energy moving data between main memory and computing units through
high latency and limited bandwidth memory bus.

a PIM provides a memory-centric solution that alleviates the limitation
factor of memory-bounded (low data-reuse) workloads such as:
o Genomics
o Database index search
o 3D image reconstruction & FFT
o Compression/Decompression

o Genome analysis utilizes data-intensive sequence alignment algorithms
to align billion of read pairs simultaneously.

o Bottlenecked by the memory bandwidth limitations of existing
systems.

a PIM can accelerate sequencing alignment algorithms by reducing the
large number of data transfers required.

137

UPMEM Processing-in-DRAM Engine (2019)

o UPMEM DDR4 DIMM modules: large number of DRAM arrays + general
purpose processing cores.

o Work as a parallel coprocessor connected to the main memory of a host where
an x86 platform can have Up to 20 UPMEM DIMMs plugged

0 Each DDR4 R-DIMM module consists of 16 PIM enabled chips
0 Within each PIM chip there are 8 DRAM Processing Units (DPUs)
o Each DPU works independently and has:
- 32-bit RISC processor, 24 hardware threads
- 64MB Main RAM (MRAM) banks
- 64KB Working RAM (WRAM)
- 24KB Instruction memory (IRAM)

0 UPMEM follows the Single Program Multiple Data (SPMD) programming
model

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem

*Juan Gdmez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F. Oliveira, and Onur Mutlu. Benchmarking a new paradigm: An experimental analysis of a real processing-in-memory architecture 138

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem

WFA on a PIM System: Implementation

o Implement state-of-the-art alignment algorithm WFA on
UPMEM-PIM architecture

a Perform high-throughput read pair alignment to detect the
peak throughput in which the implementation 1s efficient

Input File
>cceee}. k
<CCGGGT|
=GTACGC
<=GTACGC CPU
=GTACAG
=<GTACA
=GCTGCA Main Memory
<GCTGC E>)3 ——
>GACGGG
Get reads i

Eaa
=GATGGTT read pair #3

A read pair #4

139

WFA on a PIM System: Implementation

o Implement state-of-the-art alignment algorithm WFA on
UPMEM-PIM architecture

a Perform high-throughput read pair alignment to detect the
peak throughput in which the implementation 1s efficient

Input File
=CCGGGT| MRAM |
=GTACGC oo
<GTACGC CPU /
=GTACAG or
<GTACA reads to DPU #1
-GeTeca b\ Main Memory
<GCTGC oein Memony e
>GACGGG ead pair #1 -
<GACGGGA Get reads cad pair £2 /
=GATGGTT ead pair#3
\ DPU #2
N> MRAM |
\ DPU 3
MRAM |
DPU #2555
MRAM |

140

WFA on a PIM System: Implementation

o Implement state-of-the-art alignment algorithm WFA on
UPMEM-PIM architecture

a Perform high-throughput read pair alignment to detect the
peak throughput in which the implementation 1s efficient

Input File
>CCGGG} 42‘5 DPU #1

<CCGGGT| MRAM | /

=GTACGC
<GTACGC
=GTACAG

‘, DPU N\
“Grach DPU #1 |' MRAM \|
=GCTGCA

ransfer
<GCTGC o 7 wRAM | u
=GACGGG et reads ead pair #1 | — @ thread #i
<GACGGGA ead pair #2
=GATGGTT ead pair#3

" . \\— P /
DPU #2555
MRAM |

141

WFA on a PIM System: Implementation

o Implement state-of-the-art alignment algorithm WFA on
UPMEM-PIM architecture

a Perform high-throughput read pair alignment to detect the
peak throughput in which the implementation 1s efficient

Input File
>CCGGG} 25 DPU #1

<CCGGGT|
=>GTACGC

<GTACGC CPU

=GTACAG
<GTACA

Transfer |

rcads towrau | DPU #1 1' MRAM

=GCTGCA Main Memory -
<GCTGC —\ _—" MRAM |
=GACGGG Get reads ead pair #1 | — —
=<GACGGGA ead pair #2 /

=GATGGTT \ ead pair #3 DPU #2

N

T ———> MRAM | A
pair #n \ thread #i I
A

DPU #3 \ @ + V|
MRAM | Each DPU thread aligns

multiple read pairs at a time

using WFA and return
) results
: N

DPU #2555
MRAM |

142

WFA on a PIM System: Implementation

o Implement state-of-the-art alignment algorithm WFA on
UPMEM-PIM architecture

a Perform high-throughput read pair alignment to detect the
peak throughput in which the implementation 1s efficient

Input File
Z \ DPU #1
=CCGGG)
<CCGGGT} T MRAM |
>GTACGC — y DPU N
<GTACGC
=GTACAG ransfer [[Y
ZGTAGA ronds to. DPU #1 | MRAM |
=GCTGCA . .
<GCTGC M) __—" MRAM | u)
=GACGGG ot reads ead pair #1 I @ thread #i
<GACGGGA ead pair #2 @
>GATGGTT ead pair #3
ead pair #4 DPU #2 WRAM
———> MRAM | 3
ead pair #n thread #i I
DPU #3 ONR ,
MRAM | Each DPU thread aligns
multiple read pairs at a time

using WFA and return

\ ° \ results /
DPU #2555
MRAM |

143

WFA on a PIM System: Implementation

o Implement state-of-the-art alignment algorithm WFA on
UPMEM-PIM architecture

a Perform high-throughput read pair alignment to detect the
peak throughput in which the implementation is efficient

Input File

.CCo6G] 25 DPU #1
<CCGGGT| MRAM | —
>GTACGC —— /-
<GTACGC CPU K
=GTACAG Transfer (
<GTACA reads to MRAM| DPU #1 ‘
>ggggA Main Memory “MRAM | ‘
= [read oo 21 0 . MRAM
>GACGGG Cet reads /’/vT S
<GACGGGA 2 7]
=GATGGTT e [A

A 7 DPU#2

N7 7> MRAM | A
pair . < ’,*”‘
y - thread #i
result1 ¥ X’ >
rosult 22| DPU #3 @ | ,
i 4 MRAM | Ea.ch DPU thre.ad align.s
multiple read pairs at a time
V. using WFA and return

| __resulién) S \
e .~ . \ results
Copy results . ~—
ack from MRAM
.\ DPU #2555
M MRAM |

144

WFA on a PIM System: Implementation

o Implement state-of-the-art alignment algorithm WFA on
UPMEM-PIM architecture

a Perform high-throughput read pair alignment to detect the
peak throughput in which the implementation is efficient

Input File
>coeee},.,.§ bPU#
<CCGGGT) R MRAM and -
>GTACGC fl / \
<GTACGC CPU
=GTACAG Transfer s 2
<GTACA reads to MRAM| DPU #1 L J
>ggggA Main Memory /’T—|
< (read oar ETN) / MRAM
~GACGGG Get reads —
<GACGGGA 3 7]
=GATGGTT : 7 ’ +
S 7 DPU#2
N7 T —> MRAM | 7y
Qutput File . N
v thread #i
result1 ¥ X’ >
Sore . s s pNCT N DPU#S Qe
resuli=so * -
’ y Each DPU thread aligns

score 0, 5M result:e - MRAM |
score 5, 4M1D2M a multiple read pairs at a time
score 5, 4M1D2M Return results 11 L o R \ using WFA and return /
score 0, 6M \ ISR) s, R \ results /
score 5, 4M112M Copy results o __ -
score 3, 4M1X2M ack from MRAM *
score 0, 5 .\ DPU #2555

Y MRAM |

145

Evaluation Model & Results

o Read Length: 100bp, Edit distance thresholds: 2% and 4%, Number of
read pairs: SMillion

0 CPU: Intel® Xeon® Gold 5120 Processor: 56 CPU threads, and 64 GB
Memory

o PIM: 2,560 UPMEM DPUs at 425MHz and a total of 150GB MRAM

10

100
1
i0E p0N
0.01
— © o o0 \© — O o % O
e T Vo — o0 wn

& o S
= =g R,
CPU (#threads) PIM CPU (#threads) PIM
Edit distance threshold = 2% Edit distance threshold =4%

Observation #1: CPU performance does not scale when the number
of CPU threads increase, which motivates the use of the PIM system.

146

Evaluation Model & Results

o Read Length: 100bp, Edit distance thresholds: 2% and 4%, Number of
read pairs: SMillion

0 CPU: Intel® Xeon® Gold 5120 Processor: 56 CPU threads, and 64 GB

Memory
o PIM: 2,560 UPMEM DPUs at 425MHz and a total of 150GB MRAM
100
10
NN |
B BN
@0.0lﬁ\omoo@!ﬁ ﬁ\o(\,oo\o!_‘
oé — e < v fg Qé — cn < e % QE’
= =g R,
CPU (#threads) PIM CPU (#threads) PIM
Edit distance threshold = 2% Edit distance threshold =4%

Observation #1: CPU performance does not scale when the number of CPU
threads increase, which motivates the use of the PIM system.

Observation #2: Our PIM implementation total time achieves 4.87x (ED=2%)
and 4.05x (ED=4%) speedup over 56-thread CPU implementation.

147

Evaluation Model & Results

o Read Length: 100bp, Edit distance thresholds: 2% and 4%, Number of
read pairs: SMillion

0 CPU: Intel® Xeon® Gold 5120 Processor: 56 CPU threads, and 64 GB
Memory

o PIM: 2,560 UPMEM DPUs at 425MHz and a total of 150GB MRAM

100
10
NN |
B RN
@ 0.01 — Ne) o\ o0 Ne) ! |:| — Ne) o\ o0 Ne ! —
O — e < v 8 Q — cn < e s QE’
£ S 5 S &
= % N2
CPU (#threads) PIM CPU (#threads) PIM
Edit distance threshold = 2% Edit distance threshold =4%

Observation #1: CPU performance does not scale when the number of CPU threads

increase, which motivates the use of the PIM system.

Observation #2: Our PIM implementation total time achieves 4.87x (ED=2%) and 4.05x

(ED=4%) speedup over 56-thread CPU implementation.

Observation #3: PIM implementation kernel time achieves
when the CPU-DPU data transfer time is not accounted.

148

Conclusion

o Problem:
o Read mapping phase of genome sequencing analysis is bottlenecked
by the data-intensive sequence alignment algorithms.

o Motivation:

o PIM alleviates memory bandwidth limitations of existing systems.
o UPMEM-PIM is the first DRAM-processing engine

0 We show that the Wavefront Alignment (WFA) algorithm can achieve
substantially higher pairwise read alignment throughput on the PIM
system than on a server-grade multi-threaded CPU system.

a Future Work:

o Run experiments on longer read lengths and higher edit distance
thresholds

o Implement other alignment algorithms on the PIM system

149

A Framework for Sequence Alignment

A Framework for High-throughput Sequence Alignment using
Real Processing-in-Memory Systems

Safaa Diab! Amir Nassereldine! Mohammed Alser? Juan Gémez Luna ?

Onur Mutlu? Izzat El Hajj !

! American University of Beirut 2ETH Ziirich

To appear at Bioinformatics

SAFARI 150

High-throughput Pairwise Alignment
with the Wavefront Algorithm using
Processing-in-Memory

Safaa Diab!, Amir Nassereldine!, Mohammed Alser?, Juan Gomez LunaZ?, Onur Mutlu?, Izzat El Hajj!

!American University of Beirut, Lebanon °ETH Ziirich, Switzerland

(#AUB Thankyou SAFARI

sity of Bei
e o e ETH:..

More to Come...

Library of Transcendental Functions for PIM

TransPimLib: Efficient Transcendental Functions
for Processing-in-Memory Systems

Maurus Item Juan Gomez-Luna Yuxin Guo
Geraldo F. Oliveira Mohammad Sadr Onur Mutlu
ETH Ziirich

To appear at ISPASS 2023
SAFARI 153

ASPLOS 2023 Tutorial
Real-world Processing-in-Memory Systems for Modern Workloads

Accelerating Modern Workloads
on a General-purpose PIM System

Dr. Juan Gomez Luna
Professor Onur Mutlu

m Ziirich SA F A R ’

Sunday, March 26, 2023

