
1st Workshop on

Memory-Centric Computing:

Processing-Near-Memory

Geraldo F. Oliveira

https://geraldofojunior.github.io

ASPLOS 2025

30 March 2025

https://geraldofojunior.github.io/

Processing in Memory:

 Two Approaches

1. Processing near Memory

2. Processing using Memory

2

When to Employ PNM

Processing-

near-Memory

Mobile consumer workloads
(GoogleWL2)

Neural networks

 (GoogleWL2)

Graph processing
(Tesseract1)

Time series analysis
(NATSA6)

DNA

sequence mapping
(GenASM3; GRIM-Filter4)...

[1] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing," ISCA, 2015

[2] Boroumand+, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS, 2018

[3] Cali+, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence

Analysis,” MICRO, 2020

[4] Kim+, "GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies,” BMC Genomics, 2018

[5] Boroumand+, "Polynesia: Enabling High-Performance and Energy-Efficient Hybrid Transactional/Analytical Databases with

Hardware/Software Co-Design,” ICDE, 2022

[6] Fernandez+, “NATSA: A Near-Data Processing Accelerator for Time Series Analysis,” ICCD, 2020

Databases
(Polynesia5)

3

Processing Near-Memory (PNM)

◼ Processing Near-Memory (PNM)

❑ Move computation closer to where the data resides

CPU

MC

...

PIM

CPU

MC

...

PIM

4

Logic layer

3D stacked DRAM

Memory module

(DIMM)

Memory controller

PNM: Design Challenges

◼ Limited power & area budget with 3D-stacked memories

❑ e.g., area and power budget of the vault’s underlying logic
layer is just 4.4mm2 and 312mW (circa HMC 2.0)

◼ Strict thermal constraints

❑ It requires cooling solutions to remove heat throughout a 3D

stack (i.e., volume-wise) instead of a 2D surface

◼ Challenging manufacturing of logic+DRAM

❑ Logic process has been developed for speed performance,
DRAM process for density and memory reliability

❑ e.g., Logic gates implemented with memory process
slowdowns by ~21.5% [Kim+, Integration'99]

5

Tesseract System for Graph Processing

◼ Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and
Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for Parallel
Graph Processing"
Proceedings of the 42nd International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

Top Picks Honorable Mention by IEEE Micro.
Selected to the ISCA-50 25-Year Retrospective Issue
covering 1996-2020 in 2023 (Retrospective (pdf) Full
Issue).

6

https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://www.ece.cmu.edu/calcm/isca2015/
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Tesseract_50YearsOfISCA-Retrospective_isca23.pdf
https://sites.coecis.cornell.edu/isca50retrospective/
https://sites.coecis.cornell.edu/isca50retrospective/

Accelerating Neural Network Inference

◼ Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo
F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu,
"Google Neural Network Models for Edge Devices: Analyzing and
Mitigating Machine Learning Inference Bottlenecks"
Proceedings of the 30th International Conference on Parallel Architectures and
Compilation Techniques (PACT), Virtual, September 2021.
[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]

7

https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pdf
https://www.youtube.com/watch?v=A5gxjDbLRAs&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=178

PIM for Mobile Devices

◼ Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric
Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy
Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement
Bottlenecks"

Proceedings of the 23rd International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA,
March 2018.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]
[Lightning Talk Video (2 minutes)]

[Full Talk Video (21 minutes)]

8

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/
https://www.asplos2018.org/
https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18-poster.pdf
https://www.youtube.com/watch?v=pklgnQ3ejZ4
https://www.youtube.com/watch?v=OTB_72HYIn0

Possible PNM Designs

9

◼ Fixed-function units

❑ Hardware/software co-designed PIM for efficiency

❑ E.g. from academia: Mensa for NN Edge Inference

❑ E.g. from industry: Samsung HBM-PIM, SK hynix AiM

PIM-Accelerator
1

PIM-Accelerator
N

…

◼ Reconfigurable architectures

❑ PNM cores coupled with FPGAs, CGRA

❑ E.g. from academia: NERO for Weather Prediction

❑ E.g. from industry: Samsung AxDIMM

Reconfigurable

Accelerator

◼ General-purpose programmable cores

❑ Wimpy cores (possibility of running any workload)

❑ E.g. from academia: Tesseract PIM for Graph Processing

❑ E.g. from industry: UPMEM PIM Cache

PIM Core

Possible PNM Designs

10

◼ Fixed-function units

❑ Hardware/software co-designed PIM for efficiency

❑ E.g. from academia: Mensa for NN Edge Inference

❑ E.g. from industry: Samsung HBM-PIM, SK hynix AiM

PIM-Accelerator
1

PIM-Accelerator
N

…

◼ Reconfigurable architectures

❑ PNM cores coupled with FPGAs, CGRA

❑ E.g. from academia: NERO for Weather Prediction

❑ E.g. from industry: Samsung AxDIMM

Reconfigurable

Accelerator

◼ General-purpose programmable cores

❑ Wimpy cores (possibility of running any workload)

❑ E.g. from academia: Tesseract PIM for Graph Processing

❑ E.g. from industry: UPMEM PIM Cache

PIM Core

Accelerating In-Memory Graph Processing

11

◼ Large graphs are everywhere (circa 2015)

◼ Scalable large-scale graph processing is challenging

36 Million
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128…

32 Cores

Speedup

Key Bottlenecks in Graph Processing

12

for (v: graph.vertices) {

 for (w: v.successors) {

 w.next_rank += weight * v.rank;

 }

}

weight * v.rank

v

w

&w

1. Frequent random memory accesses

2. Little amount of computation

w.rank

w.next_rank

w.edges

…

Opportunity: 3D-Stacked Logic+Memory

13

Logic

Memory

Other “True 3D” technologies
under development

Tesseract System for Graph Processing

Crossbar Network

…

…

…
…

D
R

A
M

 C
on

tro
ller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 14

More on Tesseract

◼ Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and
Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for Parallel
Graph Processing"
Proceedings of the 42nd International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

Top Picks Honorable Mention by IEEE Micro.
Selected to the ISCA-50 25-Year Retrospective Issue
covering 1996-2020 in 2023
(Retrospective (pdf) Full Issue).

15

https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://www.ece.cmu.edu/calcm/isca2015/
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Tesseract_50YearsOfISCA-Retrospective_isca23.pdf
https://sites.coecis.cornell.edu/isca50retrospective/

Possible PNM Designs

16

◼ Fixed-function units

❑ Hardware/software co-designed PIM for efficiency

❑ E.g. from academia: Mensa for NN Edge Inference

❑ E.g. from industry: Samsung HBM-PIM, SK hynix AiM

PIM-Accelerator
1

PIM-Accelerator
N

…

◼ Reconfigurable architectures

❑ PNM cores coupled with FPGAs, CGRA

❑ E.g. from academia: NERO for Weather Prediction

❑ E.g. from industry: Samsung AxDIMM

Reconfigurable

Accelerator

◼ General-purpose programmable cores

❑ Wimpy cores (possibility of running any workload)

❑ E.g. from academia: Tesseract PIM for Graph Processing

❑ E.g. from industry: UPMEM PIM Cache

PIM Core

UPMEM Processing-in-DRAM Engine (2019)

17

◼ Processing in DRAM Engine

◼ Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

◼ Replaces standard DIMMs

❑ DDR4 R-DIMM modules

◼ 8GB+128 DPUs (16 PIM chips)

◼ Standard 2x-nm DRAM process

❑ Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem

https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

CPU
(x86, ARM, RV…)

DDR

Data bus

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

18

Accelerator Model (I)

• UPMEM DIMMs coexist with conventional DIMMs

• Integration of UPMEM DIMMs in a system follows an
accelerator model

• UPMEM DIMMs can be seen as a loosely coupled
accelerator

- Explicit data movement between the main processor (host
CPU) and the accelerator (UPMEM)

- Explicit kernel launch onto the UPMEM processors

• This resembles GPU computing

19

System Organization (I)
• FIG. 1 schematically illustrates a computing system comprising DRAM circuits

having integrated processors according to an example embodiment

Fabrice Devaux, Jean-François Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.

20

System Organization (II)

• In a UPMEM-based PIM system UPMEM DIMMs coexist
with regular DDR4 DIMMs

Host
CPU

xN

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

xM

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

21

Host
CPU

xN

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

xM

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

PIM Chip

x8

Control/Status Interface DDR4 Interface

System Organization (III)

• A UPMEM DIMM contains 8 or 16 chips
- Thus, 1 or 2 ranks of 8 chips each

• Inside each PIM chip there are:
- 8 64MB banks per chip: Main RAM (MRAM) banks

- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per
rank

24-KB
IRAM

D
M

A
 E

n
g

in
e

64-KB
WRAM

DISPATCH

FETCH1

FETCH2

FETCH3

READOP1

READOP2

READOP3

FORMAT

ALU1

ALU2

ALU3

ALU4

MERGE1

MERGE2

R
e
g
is

te
r

F
il
e

P
ip

e
li

n
e

64-MB
DRAM
Bank

(MRAM)

64 bits

22

2,560-DPU System (II)

CPU 0

CPU 1

DRAM

DRAM

PIM-enabled

memory

PIM-enabled

memory

PIM-enabled

memory

PIM-enabled

memory

Host
CPU 0

x10

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

x2

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

Host
CPU 1

x10

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

x2

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

23

DRAM Processing Unit (I)
• FIG. 4 schematically illustrates part of the computing system of FIG. 1 in more

detail according to an example embodiment

Fabrice Devaux, Jean-François Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.

24

DRAM Processing Unit (II)

Host
CPU

xN

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM Chip

24-KB
IRAM

D
M

A
 E

n
g

in
e

64-MB
DRAM
Bank

(MRAM)
64-KB
WRAM

x8

Control/Status Interface DDR4 Interface

DISPATCH

FETCH1

FETCH2

FETCH3

READOP1

READOP2

READOP3

FORMAT

ALU1

ALU2

ALU3

ALU4

MERGE1

MERGE2

R
e
g
is

te
r

F
il
e

P
ip

e
li

n
e

64 bits

xM

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

PIM Chip

24-KB
IRAM

D
M

A
 E

n
g

in
e

64-MB
DRAM
Bank

(MRAM)
64-KB
WRAM

x8

Control/Status Interface DDR4 Interface

DISPATCH

FETCH1

FETCH2

FETCH3

READOP1

READOP2

READOP3

FORMAT

ALU1

ALU2

ALU3

ALU4

MERGE1

MERGE2

R
e
g
is

te
r

F
il
e

P
ip

e
li

n
e

64 bits

25

DPU: Arithmetic Throughput vs. Operational Intensity

PIM Chip

24-KB
IRAM

D
M

A
 E

n
g

in
e

64-MB
DRAM
Bank

(MRAM)
64-KB
WRAM

x8

Control/Status Interface DDR4 Interface

DISPATCH

FETCH1

FETCH2

FETCH3

READOP1

READOP2

READOP3

FORMAT

ALU1

ALU2

ALU3

ALU4

MERGE1

MERGE2

R
e
g
is

te
r

F
il
e

P
ip

e
li

n
e

64 bits

D
M

A
 E

n
g

in
e

64-MB
DRAM
Bank

(MRAM)
64-KB
WRAM

DISPATCH

FETCH1

FETCH2

FETCH3

READOP1

READOP2

READOP3

FORMAT

ALU1

ALU2

ALU3

ALU4

MERGE1

MERGE2

R
e
g
is

te
r

F
il
e

P
ip

e
li

n
e

64 bits

26

DPU Pipeline

• In-order pipeline
- Up to 425 MHz

• Fine-grain multithreaded
- 24 hardware threads

• 14 pipeline stages
- DISPATCH: Thread selection

- FETCH: Instruction fetch

- READOP: Register file

- FORMAT: Operand formatting

- ALU: Operation and WRAM

- MERGE: Result formatting

PIM Chip

24-KB
IRAM

D
M

A
 E

n
g

in
e

64-MB
DRAM
Bank

(MRAM)
64-KB
WRAM

x8

Control/Status Interface DDR4 Interface

DISPATCH

FETCH1

FETCH2

FETCH3

READOP1

READOP2

READOP3

FORMAT

ALU1

ALU2

ALU3

ALU4

MERGE1

MERGE2

R
e
g
is

te
r

F
il
e

P
ip

e
li

n
e

64 bits
To the DMA engine

27

DPU Instruction Set Architecture

• Specific 32-bit ISA
- Aiming at scalar, in-

order, and
multithreaded
implementation

- Allowing compilation
of 64-bit C code

- LLVM/Clang compiler

https://sdk.upmem.com/2021.2.0/201_IS.html#

More on the UPMEM PIM System

https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26 28

https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

Experimental Analysis of the UPMEM PIM Engine

https://arxiv.org/pdf/2105.03814.pdf 29

https://arxiv.org/pdf/2105.03814.pdf

Recent SRC TECHCON Presentation

◼ Dr. Juan Gomez-Luna

❑ Benchmarking Memory-Centric Computing Systems: Analysis of Real
Processing-in-Memory Hardware

❑ Based on two major works

◼ https://arxiv.org/pdf/2105.03814.pdf

◼ https://arxiv.org/pdf/2207.07886.pdf

30https://www.youtube.com/watch?v=nphV36SrysA

https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/pdf/2207.07886.pdf
https://www.youtube.com/watch?v=nphV36SrysA

UPMEM PIM System Summary & Analysis

◼ Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo
F. Oliveira, and Onur Mutlu,
"Benchmarking Memory-Centric Computing Systems: Analysis of Real
Processing-in-Memory Hardware"
Invited Paper at Workshop on Computing with Unconventional
Technologies (CUT), Virtual, October 2021.
[arXiv version]
[PrIM Benchmarks Source Code]
[Slides (pptx) (pdf)]
[Talk Video (37 minutes)]
[Lightning Talk Video (3 minutes)]

31

https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21.pdf
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21.pdf
https://sites.google.com/umn.edu/cut-2021/home
https://sites.google.com/umn.edu/cut-2021/home
https://arxiv.org/abs/2110.01709
https://github.com/CMU-SAFARI/prim-benchmarks
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pdf
https://www.youtube.com/watch?v=nphV36SrysA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=65
https://www.youtube.com/watch?v=SrFD_u46EDA&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=152

32

Understanding a Modern PIM Architecture

https://arxiv.org/pdf/2105.03814.pdf

https://github.com/CMU-SAFARI/prim-benchmarks

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

33

PrIM Benchmarks: Application Domains
Domain Benchmark Short name

Dense linear algebra
Vector Addition VA

Matrix-Vector Multiply GEMV

Sparse linear algebra Sparse Matrix-Vector Multiply SpMV

Databases
Select SEL

Unique UNI

Data analytics
Binary Search BS

Time Series Analysis TS

Graph processing Breadth-First Search BFS

Neural networks Multilayer Perceptron MLP

Bioinformatics Needleman-Wunsch NW

Image processing
Image histogram (short) HST-S

Image histogram (large) HST-L

Parallel primitives

Reduction RED

Prefix sum (scan-scan-add) SCAN-SSA

Prefix sum (reduce-scan-scan) SCAN-RSS

Matrix transposition TRNS

34

PrIM Benchmarks are Open Source

• All microbenchmarks, benchmarks, and scripts

• https://github.com/CMU-SAFARI/prim-benchmarks

https://github.com/CMU-SAFARI/prim-benchmarks

Understanding a Modern PIM Architecture

35https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

More on Analysis of the UPMEM PIM Engine

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9 36

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

More on Analysis of the UPMEM PIM Engine

https://www.youtube.com/watch?v=Pp9jSU2b9oM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=159 37

https://www.youtube.com/watch?v=Pp9jSU2b9oM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=159

ML Training on Real PIM Systems
◼ Juan Gómez Luna, Yuxin Guo, Sylvan Brocard, Julien Legriel, Remy Cimadomo,

Geraldo F. Oliveira, Gagandeep Singh, and Onur Mutlu,
"Evaluating Machine Learning Workloads on Memory-Centric
Computing Systems"
Proceedings of the 2023 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), Raleigh, North Carolina, USA,
April 2023.
[arXiv version, 16 July 2022.]
[PIM-ML Source Code]
Best paper session.

38https://arxiv.org/pdf/2207.07886.pdf

https://github.com/CMU-SAFARI/pim-ml

https://arxiv.org/pdf/2207.07886.pdf
https://arxiv.org/pdf/2207.07886.pdf
https://ispass.org/ispass2023/
https://ispass.org/ispass2023/
https://arxiv.org/abs/2207.07886
https://github.com/CMU-SAFARI/pim-ml
https://arxiv.org/pdf/2207.07886.pdf
https://github.com/CMU-SAFARI/pim-ml

39

ML Training on a Real PIM System

Short version: https://arxiv.org/pdf/2206.06022.pdf

Long version: https://arxiv.org/pdf/2207.07886.pdf

https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s

https://arxiv.org/pdf/2206.06022.pdf

40

ML Training on a Real PIM System

• Need to optimize data representation
(1) fixed-point

(2) quantization

(3) hybrid precision

• Use lookup tables (LUTs) to implement complex functions
(e.g., sigmoid)

• Optimize data placement & layout for streaming

• Large speedups: 2.8X/27X vs. CPU, 1.3x/3.2x vs. GPU

41

ML Training on Real PIM Talk Video

https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s

https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s

SpMV Multiplication on Real PIM Systems

◼ Appears at SIGMETRICS 2022

42

https://arxiv.org/pdf/2201.05072.pdf

https://github.com/CMU-SAFARI/SparseP

https://www.youtube.com/watch?v=5kaOsJKlGrE

https://arxiv.org/pdf/2201.05072.pdf
https://github.com/CMU-SAFARI/SparseP
https://www.youtube.com/watch?v=5kaOsJKlGrE

Transcendental Functions on Real PIM Systems

◼ Maurus Item, Juan Gómez Luna, Yuxin Guo, Geraldo F. Oliveira, Mohammad
Sadrosadati, and Onur Mutlu,
"TransPimLib: Efficient Transcendental Functions for Processing-in-
Memory Systems"
Proceedings of the 2023 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), Raleigh, North Carolina, USA,
April 2023.
[arXiv version]
[Slides (pptx) (pdf)]
[TransPimLib Source Code]
[Talk Video (17 minutes)]

43https://arxiv.org/pdf/2304.01951.pdf

https://github.com/CMU-SAFARI/transpimlib

https://people.inf.ethz.ch/omutlu/pub/TransPIMLib_ispass23.pdf
https://people.inf.ethz.ch/omutlu/pub/TransPIMLib_ispass23.pdf
https://ispass.org/ispass2023/
https://ispass.org/ispass2023/
https://arxiv.org/abs/2304.01951
https://people.inf.ethz.ch/omutlu/pub/TransPIMLib_ispass23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MLonUPMEM-PIM_ispass23-talk.pdf
https://github.com/CMU-SAFARI/transpimlib
https://www.youtube.com/watch?v=lqqf4eaaEE4
https://arxiv.org/pdf/2304.01951.pdf
https://github.com/CMU-SAFARI/transpimlib

Sequence Alignment on Real PIM Systems

◼ Safaa Diab, Amir Nassereldine, Mohammed Alser, Juan Gómez Luna, Onur
Mutlu, and Izzat El Hajj,
"A Framework for High-throughput Sequence Alignment using Real
Processing-in-Memory Systems"
Bioinformatics, [published online on] 27 March 2023.
[Online link at Bioinformatics Journal]
[arXiv preprint]
[AiM Source Code]

44https://arxiv.org/pdf/2208.01243.pdf

https://github.com/CMU-SAFARI/alignment-in-memory

https://arxiv.org/pdf/2208.01243.pdf
https://arxiv.org/pdf/2208.01243.pdf
http://bioinformatics.oxfordjournals.org/
https://doi.org/10.1093/bioinformatics/btad155
https://arxiv.org/abs/2208.01243
https://github.com/CMU-SAFARI/alignment-in-memory
https://arxiv.org/pdf/2208.01243.pdf
https://github.com/CMU-SAFARI/alignment-in-memory

Homomorphic Operations on Real PIM Systems

◼ Harshita Gupta, Mayank Kabra, Juan Gómez-Luna, Konstantinos Kanellopoulos,
and Onur Mutlu,
"Evaluating Homomorphic Operations on a Real-World Processing-In-
Memory System"
Proceedings of the 2023 IEEE International Symposium on Workload
Characterization Poster Session (IISWC), Ghent, Belgium, October 2023.
[arXiv version]
[Lightning Talk Slides (pptx) (pdf)]
[Poster (pptx) (pdf)]

45https://arxiv.org/pdf/2309.06545.pdf

https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23.pdf
https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23.pdf
https://iiswc.org/iiswc2023/
https://iiswc.org/iiswc2023/
https://arxiv.org/abs/2309.06545
https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23-poster.pdf
https://arxiv.org/pdf/2309.06545.pdf

Accelerating Reinforcement Learning
◼ Kailash Gogineni, Sai Santosh Dayapule, Juan Gomez-Luna, Karthikeya Gogineni, Peng

Wei, Tian Lan, Mohammad Sadrosadati, Onur Mutlu, Guru Venkataramani,
"SwiftRL: Towards Efficient Reinforcement Learning on Real Processing-In-

Memory Systems"

Proceedings of the 2024 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), Indianapolis, Indiana, May 2024.

[Slides (pptx) (pdf)]
[arXiv version]

46
https://arxiv.org/pdf/2405.03967

https://arxiv.org/pdf/2405.03967
https://arxiv.org/pdf/2405.03967
https://ispass.org/ispass2024/
https://ispass.org/ispass2024/
https://safari.ethz.ch/wp-content/uploads/UPMEM_Kailash_2024.pptx
https://safari.ethz.ch/wp-content/uploads/UPMEM_Kailash_2024.pdf
https://arxiv.org/abs/2405.03967
https://arxiv.org/pdf/2405.03967

Accelerating ML Training on Real PIM Systems

47https://arxiv.org/pdf/2404.07164

◼ Steve Rhyner, Haocong Luo, Juan Gómez-Luna, Mohammad Sadrosadati, Jiawei
Jiang, Ataberk Olgun, Harshita Gupta, Ce Zhang, and Onur Mutlu,
"PIM-Opt: Demystifying Distributed Optimization Algorithms on a
Real-World Processing-In-Memory System"
Proceedings of the 33rd International Conference on Parallel Architectures and
Compilation Techniques (PACT), Long Beach, CA, USA, October 2024.
[Preliminary arXiv version]

https://arxiv.org/pdf/2404.07164
https://arxiv.org/pdf/2404.07164
https://arxiv.org/pdf/2404.07164
http://pactconf.org/
http://pactconf.org/
https://arxiv.org/abs/2404.07164

Accelerating GNNs on Real PIM Systems

◼ https://arxiv.org/pdf/2402.16731

48

https://arxiv.org/pdf/2402.16731

SpMV Multiplication on Real PIM Systems

◼ Appears in SIGMETRICS 2022

49

https://arxiv.org/pdf/2201.05072.pdf

https://github.com/CMU-SAFARI/SparseP

https://www.youtube.com/watch?v=5kaOsJKlGrE

https://arxiv.org/pdf/2201.05072.pdf
https://github.com/CMU-SAFARI/SparseP
https://www.youtube.com/watch?v=5kaOsJKlGrE

Sequence Alignment on Real PIM Systems

◼ Safaa Diab, Amir Nassereldine, Mohammed Alser, Juan Gómez Luna, Onur
Mutlu, and Izzat El Hajj,
"A Framework for High-throughput Sequence Alignment using Real
Processing-in-Memory Systems"
Bioinformatics, [published online on] 27 March 2023.
[Online link at Bioinformatics Journal]
[arXiv preprint]
[AiM Source Code]

50https://arxiv.org/pdf/2208.01243.pdf

https://github.com/CMU-SAFARI/alignment-in-memory

https://arxiv.org/pdf/2208.01243.pdf
https://arxiv.org/pdf/2208.01243.pdf
http://bioinformatics.oxfordjournals.org/
https://doi.org/10.1093/bioinformatics/btad155
https://arxiv.org/abs/2208.01243
https://github.com/CMU-SAFARI/alignment-in-memory
https://arxiv.org/pdf/2208.01243.pdf
https://github.com/CMU-SAFARI/alignment-in-memory

ⓒ All rights reserved. American University o f Bei rut 2023.

◼ Sequence alignment on traditional systems is limited by the memory bandwidth bottleneck

◼ Processing-in-memory (PIM) overcomes this bottleneck by placing cores near the memory

◼ Our framework, Alignment-in-Memory (AIM), is a PIM framework that supports multiple

alignment algorithms (NW, SWG, GenASM, WFA)

❑ Implemented on UPMEM, the first real PIM system

◼ Results show substantial speedups over both CPUs (1.8X-28X) and GPUs (1.2X-2.7X)

◼ AIM is available at:

❑ https://github.com/CMU-SAFARI/alignment-in-memory

Summary

51

https://github.com/CMU-SAFARI/alignment-in-memory

Possible PNM Designs

52

◼ Fixed-function units

❑ Hardware/software co-designed PIM for efficiency

❑ E.g. from academia: Mensa for NN Edge Inference

❑ E.g. from industry: Samsung HBM-PIM, SK hynix AiM

PIM-Accelerator
1

PIM-Accelerator
N

…

◼ Reconfigurable architectures

❑ PNM cores coupled with FPGAs, CGRA

❑ E.g. from academia: NERO for Weather Prediction

❑ E.g. from industry: Samsung AxDIMM

Reconfigurable

Accelerator

◼ General-purpose programmable cores

❑ Wimpy cores (possibility of running any workload)

❑ E.g. from academia: Tesseract PIM for Graph Processing

❑ E.g. from industry: UPMEM PIM Cache

PIM Core

Drawbacks and Limitations of PIM

PIM designs are restricted by low area and power budgets,

manufacturing challenges, and limited clock frequencies

To avoid subpar performance, an efficient PIM architecture needs

to take into consideration PIM constraints

Co-designing hardware and software to take advantage of PIM properties while

mitigating its shortcomings can lead to a better system design

0.0

0.2

0.4

0.6

0.8

1.0

Texture
Tiling

Color
Blitting

Comp-
ression

Decomp-
ression

Sub-Pixel
Interpolation

Deblocking
Filter

Motion
Estimation

TensorFlow

Chrome Browser Video Playback and Capture TensorFlow
Mobile

GMean

N
o

rm
a
li
z
e

d
 R

u
n

ti
m

e

CPU-Only PIM-Core PIM-Acc

+17%

[2]

53

HW/SW Co-Design for PIM
We follow a two-step approach to co-design software

and hardware to efficiently take advantage of PIM paradigm

Step 1:

Application Profiling

performance

bottleneck

HW/SW

requirements

energy

bottleneck

high-performance

and energy-efficient

PIM architecture

Step 2:

Co-design SW and HW

Target Application

We showcase our two-step approach for several applications:

1 Machine learning inference models for edge devices

5454

2 Genome sequence alignment & filtering

HW/SW Co-Design for PIM
We follow a two-step approach to co-design software

and hardware to efficiently take advantage of PIM paradigm

Step 1:

Application Profiling

performance

bottleneck

HW/SW

requirements

energy

bottleneck

high-performance

and energy-efficient

PIM architecture

Step 2:

Co-design SW and HW

Target Application

We showcase our two-step approach for several applications:

1 Machine learning inference models for edge devices

5555

2 Genome sequence alignment & filtering

Google Edge Neural Network Models

We analyze inference execution using 24 edge NN models

Face Detection

Speech Recognition
Language Translation

Image Captioning

Google Edge TPU

56

Diversity Across the Models

Insight 1: there is significant variation in terms of

layer characteristics across the models

1

10

100

1000

10000

100000

0.001 0.01 0.1 1 10 100

F
L

O
P

/B
y
te

Parameter Footprint (MB)

CNN3

CNN4

CNN11

CNN9

CNN13

LSTM1

Layers from

LSTMs and Transducers

Layers from

CNNs and RCNNs

57

Diversity Within the Models

For example, our analysis of edge CNN models shows:

1

2

Insight 2: even within each model, layers exhibit

significant variation in terms of layer characteristics

0

50

100

150

200

1 11 21 31 41 51

M
A

C
s

(M
)

Layers

CNN5

0

2000

4000

6000

1 11 21 31 41 51 61 71
F

L
O

P
/B

y
te

Layers

CNN13

Variation in FLOP/Byte: up to 244x across layers

Variation in MAC intensity: up to 200x across layers

58

Mensa High-Level Overview
Edge TPU Accelerator Mensa

Monolithic Accelerator

B
u
ff

e
r

N
o
C

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

Model A Model B Model C Model A Model B Model C

Acc. 1 Acc. 2

Family 2 Family 3

Runtime

Family 1

Acc. 3

CPU 3D-Stacked DRAM

Buffer
Buffer Buffer

NoC
NoCNoC

Heterogeneous Accelerators 59

Identifying Layer Families

1

10

100

1000

10000

100000

0.001 0.01 0.1 1 10 100

F
L

O
P

/B
y
te

Parameter Footprint

1

10

100

1000

10000

100000

0.01 1 100
F

L
O

P
/B

y
te

MAC (Millions)

CNN3 CNN4 CNN11 CNN9 CNN13

Key observation: the majority of layers group into

a small number of layer families

Family 1

Family 2

Family 3

Family 4

Family 5

Family 1

Family 2

Family 3 Family 4

Family 5

Families 1 & 2: low parameter footprint, high data reuse and MAC intensity

→ compute-centric layers

Families 3, 4 & 5: high parameter footprint, low data reuse and MAC intensity

→ data-centric layers
60

Mensa Runtime Scheduler

Accelerator

characteristics

Layer

characteristics

Scheduler

NN model

Layer

Mapping

The goal of Mensa’s software runtime scheduler is to identify

which accelerator each layer in an NN model should run on

Generated once

 during initial setup

of a system

Layers tend to group

together into a small

number of families

Each of the accelerators

caters to

a specific family of layers

61

0

0.25

0.5

0.75

1
B

as
e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

LSTM1 Transd.1Transd.2 CNN5 CNN9 CNN10 CNN12 RCNN1 RCNN3 Average

N
o
rm

a
li
z
e
d

 E
n

e
rg

y

Total Static PE Param Buffer+NoC
Act Buffer+NoC Off-chip Interconnect DRAM

Mensa: Energy Reduction

Mensa-G reduces energy consumption by 3.0X

compared to the baseline Edge TPU

62

Mensa: Throughput Improvement

0

2

4

6

8

LSTM1 Trans.1 Trans.2 CNN5 CNN9 CNN10 CNN12 RCNN1 RCNN3 Average

N
o

rm
a
li

z
e

d
 T

h
ro

u
g

h
p

u
t

Base Base+HB Mensa

Mensa-G improves inference throughput by 3.1X

compared to the baseline Edge TPU

63

Mensa: Highly-Efficient ML Inference

◼ Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo
F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu,
"Google Neural Network Models for Edge Devices: Analyzing and
Mitigating Machine Learning Inference Bottlenecks"
Proceedings of the 30th International Conference on Parallel Architectures and
Compilation Techniques (PACT), Virtual, September 2021.
[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]

64

https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pdf
https://www.youtube.com/watch?v=A5gxjDbLRAs&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=178

HW/SW Co-Design for PIM
We follow a two-step approach to co-design software

and hardware to efficiently take advantage of PIM paradigm

Step 1:

Application Profiling

performance

bottleneck

HW/SW

requirements

energy

bottleneck

high-performance

and energy-efficient

PIM architecture

Step 2:

Co-design SW and HW

Target Application

We showcase our two-step approach for several applications:

1 Machine learning inference models for edge devices

6565

2 Genome sequence alignment & filtering

Possible PNM Designs

66

◼ Fixed-function units

❑ Hardware/software co-designed PIM for efficiency

❑ E.g. from academia: Mensa for NN Edge Inference

❑ E.g. from industry: Samsung HBM-PIM, SK hynix AiM

PIM-Accelerator
1

PIM-Accelerator
N

…

◼ Reconfigurable architectures

❑ PNM cores coupled with FPGAs, CGRA

❑ E.g. from academia: NERO for Weather Prediction

❑ E.g. from industry: Samsung AxDIMM

Reconfigurable

Accelerator

◼ General-purpose programmable cores

❑ Wimpy cores (possibility of running any workload)

❑ E.g. from academia: Tesseract PIM for Graph Processing

❑ E.g. from industry: UPMEM PIM Cache

PIM Core

Samsung Function-in-Memory DRAM (2021)

67https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power

https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power

Samsung Function-in-Memory DRAM (2021)

68

Samsung Function-in-Memory DRAM (2021)

69

Samsung Function-in-Memory DRAM (2021)

70

Samsung Function-in-Memory DRAM (2021)

71

Samsung PNM Solutions for Generative AI (2023)

◼ Main target: transformer decoders used in ChatGPT, GPT-3

❑ Compute-bound step: Summarization

❑ Memory-bound step: Generation

◼ Most of the execution time is spent on the memory copy from the
host CPU memory to the CPU memory

◼ GEMV portion can be 60%-80% of total generation latency,
which is the target of PIM/PNM

72[J. H. Kim+ HC, 2023]

Solution I: Samsung’s HBM-PIM (2023)

◼ AMD MI100 GPUs fabricated with HBM-PIM

◼ Experimental setup: GPT-J (6B, 32 input tokes), single AMD
MI100-PIM GPU

◼ GPT can be accelerated by more than 2x over baseline

73[J. H. Kim+ HC, 2023]

Solution II: Samsung’s LPDDR-PIM (2023)

◼ PIM for on-device generative AI

❑ Datacenter costs and power consumption are increasing due to the
growing demand for cloud AI

◼ LPDDR-PIM improves battery life by preventing memory over-
provisioning just for bandwidth

◼ 4.47x performance gains and 70.6% energy reduction in GPT-2
74[J. H. Kim+ HC, 2023]

Solution III: Samsung’s CXL-PNM (2023)

◼ A CXL-based processing-near-memory solution

❑ Improves capacity, bandwidth, and power

❑ Large-scale large-language models are often capacity-bound

◼ Multiple CXL-PNM can offer 4.4x higher energy efficiency and

53% higher throughput than multiple GPUs

75[J. H. Kim+ HC, 2023]

◼ 4 Gb AiM die with 16 processing units (PUs)

76
Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep-Learning
Applications, ISSCC 2022Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various

Activation Functions for Deep-Learning Applications, ISSCC 2022

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE
International Solid-State Circuits Conference 37 of 42

Chip Implementation

An 4Gb aim die photograph with 16 processing units

PU

BK 4

PU

BK 7

PU

BK 5

PU

BK 6

PU

BK 12

PU

BK 15

PU

BK 13

PU

BK 14

PU

BK 0

PU

BK 3

PU

BK 1

PU

BK 2

PU

BK 8

PU

BK 11

PU

BK 9

PU

BK 10

AiM Die Photograph

Total 0.19mm2

MAC 0.11mm2

Activation Function (AF) 0.02mm2

Reservoir Cap. 0.05mm2

Etc. 0.01mm2

1 Process Unit (PU) Area

MAC
58%

AF
11%

Reservoir
Cap.
26%

Etc.
5%

SK hynix AiM: Chip Implementation (2022)

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

SK hynix AiM: System Organization (2022)

◼ GDDR6-based AiM architecture

77

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE
International Solid-State Circuits Conference 8 of 42

AiM Architecture

AiM Architecture with 16 processing units (PUs) for deep-learning operations

near DRAM cells and a 2KB global buffer (GB) for temporary data storage

 P U

BK 1

Cell

BK I/O

P U

BK 0

BK I/O

P U

DATA PERI

(Byte1)

DATA PERI

(Byte0)
GB GB

Cell

BK 2

Cell

BK I/O

P U

BK 3

BK I/O

P U

Cell

BK 5

Cell

BK I/O

P U

BK 4

BK I/O

P U

Cell

BK 6

Cell

BK I/O

P U

BK 7

BK I/O

P U

Cell

BK 9

Cell

BK I/O

P U

BK 8

BK I/O

P U

Cell

BK 10

Cell

BK I/O

P U

BK 11

BK I/O

P U

Cell

BK 13

Cell

BK I/O

P U

BK 12

BK I/O

P U

Cell

BK 14

Cell

BK I/O

P U

BK 15

BK I/O

P U

Cell

PERI

Global IO BUS

Local IO BUS

BK I/O

256 bits

x x x

16b

16b

+ +

x

+

+

ꭍ

16b 16b

Multiplier x 16

Adder Tree

AF

16b

16b 16b 16b

Accumulator
& AF

RDMAC

RDAF

Supplementary SRAM buffer
G B

2KB

256 b

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE
International Solid-State Circuits Conference 8 of 42

AiM Architecture

AiM Architecture with 16 processing units (PUs) for deep-learning operations

near DRAM cells and a 2KB global buffer (GB) for temporary data storage

 P U

BK 1

Cell

BK I/O

P U

BK 0

BK I/O

P U

DATA PERI

(Byte1)

DATA PERI

(Byte0)
GB GB

Cell

BK 2

Cell

BK I/O

P U

BK 3

BK I/O

P U

Cell

BK 5

Cell

BK I/O

P U

BK 4

BK I/O

P U

Cell

BK 6

Cell

BK I/O

P U

BK 7

BK I/O

P U

Cell

BK 9

Cell

BK I/O

P U

BK 8

BK I/O

P U

Cell

BK 10

Cell

BK I/O

P U

BK 11

BK I/O

P U

Cell

BK 13

Cell

BK I/O

P U

BK 12

BK I/O

P U

Cell

BK 14

Cell

BK I/O

P U

BK 15

BK I/O

P U

Cell

PERI

Global IO BUS

Local IO BUS

BK I/O

256 bits

x x x

16b

16b

+ +

x

+

+

ꭍ

16b 16b

Multiplier x 16

Adder Tree

AF

16b

16b 16b 16b

Accumulator
& AF

RDMAC

RDAF

Supplementary SRAM buffer
G B

2KB

256 b

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE
International Solid-State Circuits Conference 8 of 42

AiM Architecture

AiM Architecture with 16 processing units (PUs) for deep-learning operations

near DRAM cells and a 2KB global buffer (GB) for temporary data storage

 P U

BK 1

Cell

BK I/O

P U

BK 0

BK I/O

P U

DATA PERI

(Byte1)

DATA PERI

(Byte0)
GB GB

Cell

BK 2

Cell

BK I/O

P U

BK 3

BK I/O

P U

Cell

BK 5

Cell

BK I/O

P U

BK 4

BK I/O

P U

Cell

BK 6

Cell

BK I/O

P U

BK 7

BK I/O

P U

Cell

BK 9

Cell

BK I/O

P U

BK 8

BK I/O

P U

Cell

BK 10

Cell

BK I/O

P U

BK 11

BK I/O

P U

Cell

BK 13

Cell

BK I/O

P U

BK 12

BK I/O

P U

Cell

BK 14

Cell

BK I/O

P U

BK 15

BK I/O

P U

Cell

PERI

Global IO BUS

Local IO BUS

BK I/O

256 bits

x x x

16b

16b

+ +

x

+

+

ꭍ

16b 16b

Multiplier x 16

Adder Tree

AF

16b

16b 16b 16b

Accumulator
& AF

RDMAC

RDAF

Supplementary SRAM buffer
G B

2KB

256 b

Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep-Learning
Applications, ISSCC 2022Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various

Activation Functions for Deep-Learning Applications, ISSCC 2022

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Possible PNM Designs

78

◼ Fixed-function units

❑ Hardware/software co-designed PIM for efficiency

❑ E.g. from academia: Mensa for NN Edge Inference

❑ E.g. from industry: Samsung HBM-PIM, SK hynix AiM

PIM-Accelerator
1

PIM-Accelerator
N

…

◼ Reconfigurable architectures

❑ PNM cores coupled with FPGAs, CGRA

❑ E.g. from academia: NERO for Weather Prediction

❑ E.g. from industry: Samsung AxDIMM

Reconfigurable

Accelerator

◼ General-purpose programmable cores

❑ Wimpy cores (possibility of running any workload)

❑ E.g. from academia: Tesseract PIM for Graph Processing

❑ E.g. from industry: UPMEM PIM Cache

PIM Core

FPGA-based Processing Near Memory

◼ Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-
Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for
Weather Prediction Modeling"
Proceedings of the 30th International Conference on Field-Programmable Logic
and Applications (FPL), Gothenburg, Sweden, September 2020.

79

https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://www.fpl2020.org/

Heterogeneous System: CPU+FPGA

POWER9 AC922 DDR4-based AD9V3

board

CAPI2

Source: AlphaData
Source: IBM

 2. DDR4-based board
AD9V3
 Xilinx Virtex Ultrascale+ XCVU3P-
2

We evaluate two POWER9+FPGA systems:

1. HBM-based board AD9H7
Xilinx Virtex Ultrascale+ XCVU37P-2

80

NERO Design Flow

81

Horizontal DiffusionVertical Advection

NERO Performance Analysis

NERO is 4.2x and 8.3x faster than
a complete POWER9 socket

82

Possible PNM Designs

83

◼ Fixed-function units

❑ Hardware/software co-designed PIM for efficiency

❑ E.g. from academia: Mensa for NN Edge Inference

❑ E.g. from industry: Samsung HBM-PIM, SK hynix AiM

PIM-Accelerator
1

PIM-Accelerator
N

…

◼ Reconfigurable architectures

❑ PNM cores coupled with FPGAs, CGRA

❑ E.g. from academia: NERO for Weather Prediction

❑ E.g. from industry: Samsung AxDIMM

Reconfigurable

Accelerator

◼ General-purpose programmable cores

❑ Wimpy cores (possibility of running any workload)

❑ E.g. from academia: Tesseract PIM for Graph Processing

❑ E.g. from industry: UPMEM PIM Cache

PIM Core

Samsung AxDIMM (2021)

84https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications

https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications

Samsung AxDIMM (2021)

◼ DIMM-based PIM

❑ DLRM recommendation system

85

Baseline System

AxDIMM System

[Ke+, IEEE Micro’2021]

AxDIMM Design: Hardware Architecture

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

 S
la

v
e

 P
H

Y

H
o
s
t

Rank-0.NMP

In
p
u

t
I/

F

O
u
tp

u
t
I/

FNon-Acceleration Mode

CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
a

n
k
-1

R
a

n
k
-0

M
IG

 (
P

H
Y

)

Acceleration Mode

N
M

P
-I

n
s
t

S
u

m
W

R
 /

 R
D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architectur e of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that servesasa
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on theAxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to thehost through thestandard memory interface.

To support the interaction with thehost, oneDDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interfacewith thetwo internal ranks,
one AxDIMM can theoretically provide 2⇥memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in thesame
way asanormal DDR4 DRAM DIMM. All accesses from the
host bypassthe logic of theRank-NMP modules. In theaccel-
eration mode, NMP-instructions are issued by thehost to per-
form the embedding lookup and pooling operation inside the
Rank-NMPmodulesand all theregular DRAM accesses from
the host areblocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
a

n
k
-0

D
D

R
4
 S

la
v
e
 P

H
Y

In
p

u
t
I/
F

O
u
tp

u
t
I/
F

M
IG

 (
P

H
Y

)
M

IG

Rank-0.NMP

Rank-1.NMP

WR

Emb Table
Mode

Change

WR

Inst

SLS

Execute

RD

Status Reg

RD

Psum
Host

Rank-

NMP

1
Emb Table

Data

CONF REG

INST BUF

Acc Mode

Enable

Write Inst

2

Set SLS

ExeReg

DEC

Decode Inst

CMDGEN

RD Emb

RD Psumt

Accumulate Psumt+1

DRAM CMD

ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM

Rank-0

AxDIMM

Rank-1

Embedding

Table

INST BUF

CONF REG

PSUM BUF

Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read

StatusReg

DDR WR
DDR WR
DDR RD

R
a

n
k
-0

R
a
n
k
-1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following themecha-
nism of memory-mapped I/O (MMIO). Thememory-mapped
configuration registers (CONF REG) are set by the host to
choosebetween thetwo execution modeof aRank-NMPmod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load theembedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by thehost in

4

FPGA board with standard DIMM interface:

It serves as a real-system
near-memory processing implementation

86[Ke+, IEEE Micro’2021]

AxDIMM Design: Hardware Architecture

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

 S
la

v
e

 P
H

Y

H
o
s
t

Rank-0.NMP

In
p
u

t
I/

F

O
u
tp

u
t
I/

FNon-Acceleration Mode

CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
a

n
k
-1

R
a

n
k
-0

M
IG

 (
P

H
Y

)

Acceleration Mode

N
M

P
-I

n
s
t

S
u

m
W

R
 /

 R
D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architectur e of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that servesasa
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on theAxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to thehost through thestandard memory interface.

To support the interaction with thehost, oneDDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interfacewith thetwo internal ranks,
one AxDIMM can theoretically provide 2⇥memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in thesame
way asanormal DDR4 DRAM DIMM. All accesses from the
host bypassthe logic of theRank-NMP modules. In theaccel-
eration mode, NMP-instructions are issued by thehost to per-
form the embedding lookup and pooling operation inside the
Rank-NMPmodulesand all theregular DRAM accesses from
the host areblocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
a

n
k
-0

D
D

R
4
 S

la
v
e
 P

H
Y

In
p

u
t
I/
F

O
u
tp

u
t
I/
F

M
IG

 (
P

H
Y

)
M

IG

Rank-0.NMP

Rank-1.NMP

WR

Emb Table
Mode

Change

WR

Inst

SLS

Execute

RD

Status Reg

RD

Psum
Host

Rank-

NMP

1
Emb Table

Data

CONF REG

INST BUF

Acc Mode

Enable

Write Inst

2

Set SLS

ExeReg

DEC

Decode Inst

CMDGEN

RD Emb

RD Psumt

Accumulate Psumt+1

DRAM CMD

ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM

Rank-0

AxDIMM

Rank-1

Embedding

Table

INST BUF

CONF REG

PSUM BUF

Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read

StatusReg

DDR WR
DDR WR
DDR RD

R
a

n
k
-0

R
a
n
k
-1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following themecha-
nism of memory-mapped I/O (MMIO). Thememory-mapped
configuration registers (CONF REG) are set by the host to
choosebetween thetwo execution modeof aRank-NMPmod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load theembedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by thehost in

4

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4
 S

la
v
e

 P
H

Y

H
o
s
t

Rank-0.NMP

In
p

u
t

I/
F

O
u

tp
u
t

I/
FNon-Acceleration Mode

CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
a
n
k
-1

R
a
n
k
-0

M
IG

 (
P

H
Y

)

Acceleration Mode

N
M

P
-I

n
s
t

S
u

m
W

R
 /

 R
D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architectur e of
Rank-NMP module, (c) NMP-Instruction format.

3.1 HardwareArchitecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that servesasa
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on theAxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to thehost through thestandard memory interface.

To support the interaction with thehost, oneDDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interfacewith thetwo internal ranks,
one AxDIMM can theoretically provide 2⇥memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in thesame
way asanormal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of theRank-NMPmodules. In theaccel-
eration mode, NMP-instructions are issued by thehost to per-
form the embedding lookup and pooling operation inside the
Rank-NMPmodulesand all theregular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
a
n

k
-0

D
D

R
4

 S
la

v
e
 P

H
Y

In
p
u
t
I/
F

O
u
tp

u
t
I/
F

M
IG

 (
P

H
Y

)
M

IG

Rank-0.NMP

Rank-1.NMP

WR

Emb Table
Mode

Change

WR

Inst
SLS

Execute

RD

Status Reg
RD

Psum
Host

Rank-

NMP

1
Emb Table

Data

CONF REG

INST BUF

Acc Mode

Enable

Write Inst

2

Set SLS

ExeReg

DEC

Decode Inst

CMDGEN

RD Emb

RD Psumt

Accumulate Psumt+1

DRAM CMD

ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM

Rank-0

AxDIMM

Rank-1

Embedding

Table

INST BUF

CONF REG

PSUM BUF

Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read

StatusReg

DDR WR
DDR WR
DDR RD

R
a
n
k
-0

R
a
n

k
-1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

TheRank-NMP module isoperates following themecha-
nism of memory-mapped I/O (MMIO). Thememory-mapped
configuration registers (CONF REG) are set by the host to
choosebetween thetwo execution modeof aRank-NMPmod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
theDRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load theembedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. Theadder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by thehost in

4

Two execution modes:

(1) non-acceleration mode
(2) acceleration mode (blocking)

87[Ke+, IEEE Micro’2021]

Sparse Length Sum with AxDIMM (IEEE Micro 2021)

88https://doi.org/10.1109/MM.2021.3097700

https://doi.org/10.1109/MM.2021.3097700

Sparse Length Sum with AxDIMM (AICAS 2022)

89https://doi.org/10.1109/AICAS54282.2022.9869896

https://doi.org/10.1109/AICAS54282.2022.9869896

Database Operations with AxDIMM (DaMoN 2022)

90https://doi.org/10.1145/3533737.3535093

https://doi.org/10.1145/3533737.3535093

Longer Lecture on AxDIMM

91https://youtu.be/SXdzQZAKG-Y

https://youtu.be/SXdzQZAKG-Y

Another Longer Lecture on AxDIMM

92https://youtu.be/2FMQg786GKs

https://youtu.be/2FMQg786GKs

Processing-in-Memory Landscape Today

93

[UPMEM 2019][Samsung 2021][SK Hynix 2022]

[Samsung 2021]

This does not include many experimental chips and startups

[Alibaba 2022]

Possible PNM Designs

94

◼ Fixed-function units

❑ Hardware/software co-designed PIM for efficiency

❑ E.g. from academia: Mensa for NN Edge Inference

❑ E.g. from industry: Samsung HBM-PIM, SK hynix AiM

PIM-Accelerator
1

PIM-Accelerator
N

…

◼ Reconfigurable architectures

❑ PNM cores coupled with FPGAs, CGRA

❑ E.g. from academia: NERO for Weather Prediction

❑ E.g. from industry: Samsung AxDIMM

Reconfigurable

Accelerator

◼ General-purpose programmable cores

❑ Wimpy cores (possibility of running any workload)

❑ E.g. from academia: Tesseract PIM for Graph Processing

❑ E.g. from industry: UPMEM PIM Cache

PIM Core

Research Tools PNM: DAMOV-SIM
◼ Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata Ghose, Nandita

Vijaykumar, Ivan fernandez, Mohammad Sadrosadati, and Onur Mutlu,

"DAMOV: A New Methodology and Benchmark Suite for Evaluating Data
Movement Bottlenecks"
IEEE Access, 8 September 2021.

Preprint in arXiv, 8 May 2021.
[arXiv preprint]

[IEEE Access version]
[DAMOV Suite and Simulator Source Code]
[SAFARI Live Seminar Video (2 hrs 40 mins)]

[Short Talk Video (21 minutes)]

95

https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://doi.org/10.1109/ACCESS.2021.3110993
https://arxiv.org/abs/2105.03725
https://arxiv.org/pdf/2105.03725.pdf
https://doi.org/10.1109/ACCESS.2021.3110993
https://github.com/CMU-SAFARI/DAMOV
https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=156
https://www.youtube.com/watch?v=HkMYuYMuZOg&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=161

Step 3: Memory Bottleneck Classification (2/2)

• Goal: identify the specific sources of data movement
bottlenecks

DAMOV-SIM Simulator

Cores

Scalability Analysis

Integrated ZSim and Ramulator

• Scalability Analysis:
− 1, 4, 16, 64, and 256 out-of-order/in-order host and NDP CPU cores
− 3D-stacked memory as main memory

Configuration 2: NDP System

Off-chip link

DRAM
CPU

CPU
CPU

L
2

L
1 L3

L
2

L
1

L
2

L
1 L2L1CPU

Configuration 1: Host CPU System

Off-chip link

272DAMOV-SIM: https://github.com/CMU-SAFARI/DAMOV

…

Logic Layer

CPU
CPU

CPU

L
1

L
1

L
1L1CPU

DRAMDRAMDRAMDRAM

DRAMDRAMDRAM

https://github.com/CMU-SAFARI/DAMOV

DAMOV is Open Source

• We open-source our benchmark suite and our toolchain

DAMOV-SIM

DAMOV
Benchmarks

DAMOV is Open Source

• We open-source our benchmark suite and our toolchain

DAMOV-SIM

DAMOV
Benchmarks

Get DAMOV at:

https://github.com/CMU-SAFARI/DAMOV

https://github.com/CMU-SAFARI/DAMOV

More on DAMOV Analysis Methodology & Workloads

https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=3

https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=3

More on DAMOV Methods & Benchmarks
◼ Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata Ghose, Nandita

Vijaykumar, Ivan fernandez, Mohammad Sadrosadati, and Onur Mutlu,

"DAMOV: A New Methodology and Benchmark Suite for Evaluating Data
Movement Bottlenecks"
IEEE Access, 8 September 2021.

Preprint in arXiv, 8 May 2021.
[arXiv preprint]

[IEEE Access version]
[DAMOV Suite and Simulator Source Code]
[SAFARI Live Seminar Video (2 hrs 40 mins)]

[Short Talk Video (21 minutes)]

100

https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://doi.org/10.1109/ACCESS.2021.3110993
https://arxiv.org/abs/2105.03725
https://arxiv.org/pdf/2105.03725.pdf
https://doi.org/10.1109/ACCESS.2021.3110993
https://github.com/CMU-SAFARI/DAMOV
https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=156
https://www.youtube.com/watch?v=HkMYuYMuZOg&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=161

Research Tools PNM: Samsung HBM-PIM

101

https://github.com/SAITPublic/PIMSimulator

https://github.com/SAITPublic/PIMSimulator

Research Tools PNM: UPMEM PIM (I)

102

https://github.com/VIA-Research/uPIMulator

https://github.com/VIA-Research/uPIMulator

Research Tools PNM: UPMEM PIM (II)

103

https://ieeexplore.ieee.org/document/10476411/

https://ieeexplore.ieee.org/document/10476411/

1st Workshop on

Memory-Centric Computing:

Processing-Near-Memory

Geraldo F. Oliveira

https://geraldofojunior.github.io

ASPLOS 2025

30 March 2025

https://geraldofojunior.github.io/

	Slide 1: 1st Workshop on Memory-Centric Computing: Processing-Near-Memory
	Slide 2: Processing in Memory: Two Approaches
	Slide 3: When to Employ PNM
	Slide 4: Processing Near-Memory (PNM)
	Slide 5: PNM: Design Challenges
	Slide 6: Tesseract System for Graph Processing
	Slide 7: Accelerating Neural Network Inference
	Slide 8: PIM for Mobile Devices
	Slide 9: Possible PNM Designs
	Slide 10: Possible PNM Designs
	Slide 11: Accelerating In-Memory Graph Processing
	Slide 12: Key Bottlenecks in Graph Processing
	Slide 13: Opportunity: 3D-Stacked Logic+Memory
	Slide 14: Tesseract System for Graph Processing
	Slide 15: More on Tesseract
	Slide 16: Possible PNM Designs
	Slide 17: UPMEM Processing-in-DRAM Engine (2019)
	Slide 18: Accelerator Model (I)
	Slide 19: System Organization (I)
	Slide 20: System Organization (II)
	Slide 21: System Organization (III)
	Slide 22: 2,560-DPU System (II)
	Slide 23: DRAM Processing Unit (I)
	Slide 24: DRAM Processing Unit (II)
	Slide 25: DPU: Arithmetic Throughput vs. Operational Intensity
	Slide 26: DPU Pipeline
	Slide 27: DPU Instruction Set Architecture
	Slide 28: More on the UPMEM PIM System
	Slide 29: Experimental Analysis of the UPMEM PIM Engine
	Slide 30: Recent SRC TECHCON Presentation
	Slide 31: UPMEM PIM System Summary & Analysis
	Slide 32: Understanding a Modern PIM Architecture
	Slide 33: PrIM Benchmarks: Application Domains
	Slide 34: PrIM Benchmarks are Open Source
	Slide 35: Understanding a Modern PIM Architecture
	Slide 36: More on Analysis of the UPMEM PIM Engine
	Slide 37: More on Analysis of the UPMEM PIM Engine
	Slide 38: ML Training on Real PIM Systems
	Slide 39: ML Training on a Real PIM System
	Slide 40: ML Training on a Real PIM System
	Slide 41: ML Training on Real PIM Talk Video
	Slide 42: SpMV Multiplication on Real PIM Systems
	Slide 43: Transcendental Functions on Real PIM Systems
	Slide 44: Sequence Alignment on Real PIM Systems
	Slide 45: Homomorphic Operations on Real PIM Systems
	Slide 46: Accelerating Reinforcement Learning
	Slide 47: Accelerating ML Training on Real PIM Systems
	Slide 48: Accelerating GNNs on Real PIM Systems
	Slide 49: SpMV Multiplication on Real PIM Systems
	Slide 50: Sequence Alignment on Real PIM Systems
	Slide 51
	Slide 52: Possible PNM Designs
	Slide 53: Drawbacks and Limitations of PIM
	Slide 54: HW/SW Co-Design for PIM
	Slide 55: HW/SW Co-Design for PIM
	Slide 56: Google Edge Neural Network Models
	Slide 57: Diversity Across the Models
	Slide 58: Diversity Within the Models
	Slide 59: Mensa High-Level Overview
	Slide 60: Identifying Layer Families
	Slide 61: Mensa Runtime Scheduler
	Slide 62: Mensa: Energy Reduction
	Slide 63: Mensa: Throughput Improvement
	Slide 64: Mensa: Highly-Efficient ML Inference
	Slide 65: HW/SW Co-Design for PIM
	Slide 66: Possible PNM Designs
	Slide 67: Samsung Function-in-Memory DRAM (2021)
	Slide 68: Samsung Function-in-Memory DRAM (2021)
	Slide 69: Samsung Function-in-Memory DRAM (2021)
	Slide 70: Samsung Function-in-Memory DRAM (2021)
	Slide 71: Samsung Function-in-Memory DRAM (2021)
	Slide 72: Samsung PNM Solutions for Generative AI (2023)
	Slide 73: Solution I: Samsung’s HBM-PIM (2023)
	Slide 74: Solution II: Samsung’s LPDDR-PIM (2023)
	Slide 75: Solution III: Samsung’s CXL-PNM (2023)
	Slide 76: SK hynix AiM: Chip Implementation (2022)
	Slide 77: SK hynix AiM: System Organization (2022)
	Slide 78: Possible PNM Designs
	Slide 79: FPGA-based Processing Near Memory
	Slide 80: Heterogeneous System: CPU+FPGA
	Slide 81: NERO Design Flow
	Slide 82: NERO Performance Analysis
	Slide 83: Possible PNM Designs
	Slide 84: Samsung AxDIMM (2021)
	Slide 85: Samsung AxDIMM (2021)
	Slide 86: AxDIMM Design: Hardware Architecture
	Slide 87: AxDIMM Design: Hardware Architecture
	Slide 88: Sparse Length Sum with AxDIMM (IEEE Micro 2021)
	Slide 89: Sparse Length Sum with AxDIMM (AICAS 2022)
	Slide 90: Database Operations with AxDIMM (DaMoN 2022)
	Slide 91: Longer Lecture on AxDIMM
	Slide 92: Another Longer Lecture on AxDIMM
	Slide 93: Processing-in-Memory Landscape Today
	Slide 94: Possible PNM Designs
	Slide 95: Research Tools PNM: DAMOV-SIM
	Slide 96: Step 3: Memory Bottleneck Classification (2/2)
	Slide 97: DAMOV is Open Source
	Slide 98: DAMOV is Open Source
	Slide 99: More on DAMOV Analysis Methodology & Workloads
	Slide 100: More on DAMOV Methods & Benchmarks
	Slide 101: Research Tools PNM: Samsung HBM-PIM
	Slide 102: Research Tools PNM: UPMEM PIM (I)
	Slide 103: Research Tools PNM: UPMEM PIM (II)
	Slide 104: 1st Workshop on Memory-Centric Computing: Processing-Near-Memory

