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Processing in Memory:

  Two Approaches

1. Processing near Memory

2. Processing using Memory
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When to Employ PNM

Processing-

near-Memory

Mobile consumer workloads
(GoogleWL2)

Neural networks

 (GoogleWL2)

Graph processing
(Tesseract1)

Time series analysis
(NATSA6)

DNA 

sequence mapping
(GenASM3; GRIM-Filter4)...

[1] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing," ISCA, 2015

[2] Boroumand+, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS, 2018

[3] Cali+, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence 

Analysis,” MICRO, 2020 

[4] Kim+, "GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies,” BMC Genomics, 2018

[5] Boroumand+, "Polynesia: Enabling High-Performance and Energy-Efficient Hybrid Transactional/Analytical Databases with 

Hardware/Software Co-Design,” ICDE, 2022

[6] Fernandez+, “NATSA: A Near-Data Processing Accelerator for Time Series Analysis,” ICCD, 2020

Databases
(Polynesia5)
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Processing Near-Memory (PNM)

◼ Processing Near-Memory (PNM)

❑ Move computation closer to where the data resides

CPU

MC

...

PIM

CPU

MC

...

PIM
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Logic layer 

3D stacked DRAM

Memory module 

(DIMM)

Memory controller



PNM: Design Challenges 

◼ Limited power & area budget with 3D-stacked memories 

❑ e.g., area and power budget of the vault’s underlying logic 
layer is just 4.4mm2 and 312mW (circa HMC 2.0)

◼ Strict thermal constraints 

❑ It requires cooling solutions to remove heat throughout a 3D 

stack (i.e., volume-wise) instead of a 2D surface 

◼ Challenging manufacturing of logic+DRAM

❑ Logic process has been developed for speed performance, 
DRAM process for density and memory reliability 

❑ e.g., Logic gates implemented with memory process 
slowdowns by ~21.5% [Kim+, Integration'99]
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Tesseract System for Graph Processing

◼ Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and 
Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for Parallel 
Graph Processing"
Proceedings of the 42nd International Symposium on Computer 
Architecture (ISCA), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

Top Picks Honorable Mention by IEEE Micro.
Selected to the ISCA-50 25-Year Retrospective Issue 
covering 1996-2020 in 2023 (Retrospective (pdf) Full 
Issue).
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https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://www.ece.cmu.edu/calcm/isca2015/
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Tesseract_50YearsOfISCA-Retrospective_isca23.pdf
https://sites.coecis.cornell.edu/isca50retrospective/
https://sites.coecis.cornell.edu/isca50retrospective/


Accelerating Neural Network Inference

◼ Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo 
F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu,
"Google Neural Network Models for Edge Devices: Analyzing and 
Mitigating Machine Learning Inference Bottlenecks"
Proceedings of the 30th International Conference on Parallel Architectures and 
Compilation Techniques (PACT), Virtual, September 2021.
[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]

7

https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pdf
https://www.youtube.com/watch?v=A5gxjDbLRAs&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=178


PIM for Mobile Devices

◼ Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric 
Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy 
Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement 
Bottlenecks"

Proceedings of the 23rd International Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, 
March 2018.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]
[Lightning Talk Video (2 minutes)]

[Full Talk Video (21 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/
https://www.asplos2018.org/
https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18-poster.pdf
https://www.youtube.com/watch?v=pklgnQ3ejZ4
https://www.youtube.com/watch?v=OTB_72HYIn0


Possible PNM Designs
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◼ Fixed-function units

❑ Hardware/software co-designed PIM for efficiency

❑ E.g. from academia: Mensa for NN Edge Inference

❑ E.g. from industry: Samsung HBM-PIM, SK hynix AiM

PIM-Accelerator  
1

PIM-Accelerator 
N

…

◼ Reconfigurable architectures

❑ PNM cores coupled with FPGAs, CGRA

❑ E.g. from academia: NERO for Weather Prediction

❑ E.g. from industry: Samsung AxDIMM

Reconfigurable 

Accelerator

◼ General-purpose programmable cores

❑ Wimpy cores (possibility of running any workload)

❑ E.g. from academia: Tesseract PIM for Graph Processing

❑ E.g. from industry: UPMEM PIM Cache

PIM Core
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Accelerating In-Memory Graph Processing
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◼ Large graphs are everywhere (circa 2015)

◼ Scalable large-scale graph processing is challenging

36 Million 
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128…

32 Cores

Speedup



Key Bottlenecks in Graph Processing
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for (v: graph.vertices) {

    for (w: v.successors) {

        w.next_rank += weight * v.rank;

    }

}

weight * v.rank

v

w

&w

1. Frequent random memory accesses

2. Little amount of computation

w.rank

w.next_rank

w.edges

…



Opportunity: 3D-Stacked Logic+Memory
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Logic

Memory

Other “True 3D” technologies
under development



Tesseract System for Graph Processing

Crossbar Network

…

…

…
…

D
R

A
M

 C
on

tro
ller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 14



More on Tesseract

◼ Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and 
Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for Parallel 
Graph Processing"
Proceedings of the 42nd International Symposium on Computer 
Architecture (ISCA), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

Top Picks Honorable Mention by IEEE Micro.
Selected to the ISCA-50 25-Year Retrospective Issue 
covering 1996-2020 in 2023 
(Retrospective (pdf) Full Issue).
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https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://www.ece.cmu.edu/calcm/isca2015/
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Tesseract_50YearsOfISCA-Retrospective_isca23.pdf
https://sites.coecis.cornell.edu/isca50retrospective/


Possible PNM Designs
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UPMEM Processing-in-DRAM Engine (2019)
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◼ Processing in DRAM Engine 

◼ Includes standard DIMM modules, with a large 
number of DPU processors combined with DRAM chips.

◼ Replaces standard DIMMs

❑ DDR4 R-DIMM modules

◼ 8GB+128 DPUs (16 PIM chips)

◼ Standard 2x-nm DRAM process

❑ Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem

https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

CPU
(x86, ARM, RV…)

DDR

Data bus

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/


18

Accelerator Model (I)

• UPMEM DIMMs coexist with conventional DIMMs

• Integration of UPMEM DIMMs in a system follows an 
accelerator model

• UPMEM DIMMs can be seen as a loosely coupled 
accelerator

- Explicit data movement between the main processor (host 
CPU) and the accelerator (UPMEM)

- Explicit kernel launch onto the UPMEM processors

• This resembles GPU computing
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System Organization (I)
• FIG. 1 schematically illustrates a computing system comprising DRAM circuits 

having integrated processors according to an example embodiment

Fabrice Devaux, Jean-François Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.
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System Organization (II)

• In a UPMEM-based PIM system UPMEM DIMMs coexist 
with regular DDR4 DIMMs
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System Organization (III)

• A UPMEM DIMM contains 8 or 16 chips
- Thus, 1 or 2 ranks of 8 chips each

• Inside each PIM chip there are:
- 8 64MB banks per chip: Main RAM (MRAM) banks

- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per 
rank
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2,560-DPU System (II)
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DRAM Processing Unit (I)
• FIG. 4 schematically illustrates part of the computing system of FIG. 1 in more 

detail according to an example embodiment

Fabrice Devaux, Jean-François Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.



24

DRAM Processing Unit (II)
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DPU: Arithmetic Throughput vs. Operational Intensity
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DPU Pipeline

• In-order pipeline
- Up to 425 MHz 

• Fine-grain multithreaded
- 24 hardware threads

• 14 pipeline stages
- DISPATCH: Thread selection

- FETCH: Instruction fetch

- READOP: Register file

- FORMAT: Operand formatting

- ALU: Operation and WRAM

- MERGE: Result formatting
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DPU Instruction Set Architecture

• Specific 32-bit ISA
- Aiming at scalar, in-

order, and 
multithreaded 
implementation

- Allowing compilation 
of 64-bit C code

- LLVM/Clang compiler

https://sdk.upmem.com/2021.2.0/201_IS.html#



More on the UPMEM PIM System

https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26 28

https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26


Experimental Analysis of the UPMEM PIM Engine

https://arxiv.org/pdf/2105.03814.pdf 29

https://arxiv.org/pdf/2105.03814.pdf


Recent SRC TECHCON Presentation

◼ Dr. Juan Gomez-Luna

❑ Benchmarking Memory-Centric Computing Systems: Analysis of Real 
Processing-in-Memory Hardware

❑ Based on two major works

◼ https://arxiv.org/pdf/2105.03814.pdf 

◼ https://arxiv.org/pdf/2207.07886.pdf 

30https://www.youtube.com/watch?v=nphV36SrysA 

https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/pdf/2207.07886.pdf
https://www.youtube.com/watch?v=nphV36SrysA


UPMEM PIM System Summary & Analysis

◼ Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo 
F. Oliveira, and Onur Mutlu,
"Benchmarking Memory-Centric Computing Systems: Analysis of Real 
Processing-in-Memory Hardware"
Invited Paper at Workshop on Computing with Unconventional 
Technologies (CUT), Virtual, October 2021.
[arXiv version]
[PrIM Benchmarks Source Code]
[Slides (pptx) (pdf)]
[Talk Video (37 minutes)]
[Lightning Talk Video (3 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21.pdf
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21.pdf
https://sites.google.com/umn.edu/cut-2021/home
https://sites.google.com/umn.edu/cut-2021/home
https://arxiv.org/abs/2110.01709
https://github.com/CMU-SAFARI/prim-benchmarks
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pdf
https://www.youtube.com/watch?v=nphV36SrysA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=65
https://www.youtube.com/watch?v=SrFD_u46EDA&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=152
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Understanding a Modern PIM Architecture

https://arxiv.org/pdf/2105.03814.pdf

https://github.com/CMU-SAFARI/prim-benchmarks

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
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PrIM Benchmarks: Application Domains
Domain Benchmark Short name

Dense linear algebra
Vector Addition VA

Matrix-Vector Multiply GEMV

Sparse linear algebra Sparse Matrix-Vector Multiply SpMV

Databases
Select SEL

Unique UNI

Data analytics
Binary Search BS

Time Series Analysis TS

Graph processing Breadth-First Search BFS

Neural networks Multilayer Perceptron MLP

Bioinformatics Needleman-Wunsch NW

Image processing
Image histogram (short) HST-S

Image histogram (large) HST-L

Parallel primitives

Reduction RED

Prefix sum (scan-scan-add) SCAN-SSA

Prefix sum (reduce-scan-scan) SCAN-RSS

Matrix transposition TRNS
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PrIM Benchmarks are Open Source

• All microbenchmarks, benchmarks, and scripts

• https://github.com/CMU-SAFARI/prim-benchmarks

https://github.com/CMU-SAFARI/prim-benchmarks


Understanding a Modern PIM Architecture

35https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9 

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9


More on Analysis of the UPMEM PIM Engine

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9 36

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9


More on Analysis of the UPMEM PIM Engine

https://www.youtube.com/watch?v=Pp9jSU2b9oM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=159 37

https://www.youtube.com/watch?v=Pp9jSU2b9oM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=159


ML Training on Real PIM Systems
◼ Juan Gómez Luna, Yuxin Guo, Sylvan Brocard, Julien Legriel, Remy Cimadomo, 

Geraldo F. Oliveira, Gagandeep Singh, and Onur Mutlu,
"Evaluating Machine Learning Workloads on Memory-Centric 
Computing Systems"
Proceedings of the 2023 IEEE International Symposium on Performance 
Analysis of Systems and Software (ISPASS), Raleigh, North Carolina, USA, 
April 2023.
[arXiv version, 16 July 2022.]
[PIM-ML Source Code]
Best paper session.

38https://arxiv.org/pdf/2207.07886.pdf 

https://github.com/CMU-SAFARI/pim-ml 

https://arxiv.org/pdf/2207.07886.pdf
https://arxiv.org/pdf/2207.07886.pdf
https://ispass.org/ispass2023/
https://ispass.org/ispass2023/
https://arxiv.org/abs/2207.07886
https://github.com/CMU-SAFARI/pim-ml
https://arxiv.org/pdf/2207.07886.pdf
https://github.com/CMU-SAFARI/pim-ml
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ML Training on a Real PIM System

Short version: https://arxiv.org/pdf/2206.06022.pdf

Long version: https://arxiv.org/pdf/2207.07886.pdf

https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s

https://arxiv.org/pdf/2206.06022.pdf
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ML Training on a Real PIM System

• Need to optimize data representation
(1) fixed-point

(2) quantization 

(3) hybrid precision 

• Use lookup tables (LUTs) to implement complex functions 
(e.g., sigmoid)

• Optimize data placement & layout for streaming

• Large speedups: 2.8X/27X vs. CPU, 1.3x/3.2x vs. GPU



41

ML Training on Real PIM Talk Video

https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s 

https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s


SpMV Multiplication on Real PIM Systems

◼ Appears at SIGMETRICS 2022

42

https://arxiv.org/pdf/2201.05072.pdf 

https://github.com/CMU-SAFARI/SparseP 

https://www.youtube.com/watch?v=5kaOsJKlGrE 

https://arxiv.org/pdf/2201.05072.pdf
https://github.com/CMU-SAFARI/SparseP
https://www.youtube.com/watch?v=5kaOsJKlGrE


Transcendental Functions on Real PIM Systems

◼ Maurus Item, Juan Gómez Luna, Yuxin Guo, Geraldo F. Oliveira, Mohammad 
Sadrosadati, and Onur Mutlu,
"TransPimLib: Efficient Transcendental Functions for Processing-in-
Memory Systems"
Proceedings of the 2023 IEEE International Symposium on Performance 
Analysis of Systems and Software (ISPASS), Raleigh, North Carolina, USA, 
April 2023.
[arXiv version]
[Slides (pptx) (pdf)]
[TransPimLib Source Code]
[Talk Video (17 minutes)]

43https://arxiv.org/pdf/2304.01951.pdf 

https://github.com/CMU-SAFARI/transpimlib 

https://people.inf.ethz.ch/omutlu/pub/TransPIMLib_ispass23.pdf
https://people.inf.ethz.ch/omutlu/pub/TransPIMLib_ispass23.pdf
https://ispass.org/ispass2023/
https://ispass.org/ispass2023/
https://arxiv.org/abs/2304.01951
https://people.inf.ethz.ch/omutlu/pub/TransPIMLib_ispass23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MLonUPMEM-PIM_ispass23-talk.pdf
https://github.com/CMU-SAFARI/transpimlib
https://www.youtube.com/watch?v=lqqf4eaaEE4
https://arxiv.org/pdf/2304.01951.pdf
https://github.com/CMU-SAFARI/transpimlib


Sequence Alignment on Real PIM Systems

◼ Safaa Diab, Amir Nassereldine, Mohammed Alser, Juan Gómez Luna, Onur 
Mutlu, and Izzat El Hajj,
"A Framework for High-throughput Sequence Alignment using Real 
Processing-in-Memory Systems"
Bioinformatics, [published online on] 27 March 2023.
[Online link at Bioinformatics Journal]
[arXiv preprint]
[AiM Source Code]

44https://arxiv.org/pdf/2208.01243.pdf 

https://github.com/CMU-SAFARI/alignment-in-memory 

https://arxiv.org/pdf/2208.01243.pdf
https://arxiv.org/pdf/2208.01243.pdf
http://bioinformatics.oxfordjournals.org/
https://doi.org/10.1093/bioinformatics/btad155
https://arxiv.org/abs/2208.01243
https://github.com/CMU-SAFARI/alignment-in-memory
https://arxiv.org/pdf/2208.01243.pdf
https://github.com/CMU-SAFARI/alignment-in-memory


Homomorphic Operations on Real PIM Systems

◼ Harshita Gupta, Mayank Kabra, Juan Gómez-Luna, Konstantinos Kanellopoulos, 
and Onur Mutlu,
"Evaluating Homomorphic Operations on a Real-World Processing-In-
Memory System"
Proceedings of the 2023 IEEE International Symposium on Workload 
Characterization Poster Session (IISWC), Ghent, Belgium, October 2023.
[arXiv version]
[Lightning Talk Slides (pptx) (pdf)]
[Poster (pptx) (pdf)]

45https://arxiv.org/pdf/2309.06545.pdf 

https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23.pdf
https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23.pdf
https://iiswc.org/iiswc2023/
https://iiswc.org/iiswc2023/
https://arxiv.org/abs/2309.06545
https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23-poster.pdf
https://arxiv.org/pdf/2309.06545.pdf


Accelerating Reinforcement Learning
◼ Kailash Gogineni, Sai Santosh Dayapule, Juan Gomez-Luna, Karthikeya Gogineni, Peng 

Wei, Tian Lan, Mohammad Sadrosadati, Onur Mutlu, Guru Venkataramani,
"SwiftRL: Towards Efficient Reinforcement Learning on Real Processing-In-

Memory Systems"

Proceedings of the 2024 IEEE International Symposium on Performance Analysis of 
Systems and Software (ISPASS), Indianapolis, Indiana, May 2024.

[Slides (pptx) (pdf)]
[arXiv version]

46
https://arxiv.org/pdf/2405.03967 

https://arxiv.org/pdf/2405.03967
https://arxiv.org/pdf/2405.03967
https://ispass.org/ispass2024/
https://ispass.org/ispass2024/
https://safari.ethz.ch/wp-content/uploads/UPMEM_Kailash_2024.pptx
https://safari.ethz.ch/wp-content/uploads/UPMEM_Kailash_2024.pdf
https://arxiv.org/abs/2405.03967
https://arxiv.org/pdf/2405.03967


Accelerating ML Training on Real PIM Systems

47https://arxiv.org/pdf/2404.07164 

◼ Steve Rhyner, Haocong Luo, Juan Gómez-Luna, Mohammad Sadrosadati, Jiawei 
Jiang, Ataberk Olgun, Harshita Gupta, Ce Zhang, and Onur Mutlu,
"PIM-Opt: Demystifying Distributed Optimization Algorithms on a 
Real-World Processing-In-Memory System"
Proceedings of the 33rd International Conference on Parallel Architectures and 
Compilation Techniques (PACT), Long Beach, CA, USA, October 2024.
[Preliminary arXiv version]

https://arxiv.org/pdf/2404.07164
https://arxiv.org/pdf/2404.07164
https://arxiv.org/pdf/2404.07164
http://pactconf.org/
http://pactconf.org/
https://arxiv.org/abs/2404.07164


Accelerating GNNs on Real PIM Systems

◼ https://arxiv.org/pdf/2402.16731 

48

https://arxiv.org/pdf/2402.16731


SpMV Multiplication on Real PIM Systems

◼ Appears in SIGMETRICS 2022

49

https://arxiv.org/pdf/2201.05072.pdf 

https://github.com/CMU-SAFARI/SparseP 

https://www.youtube.com/watch?v=5kaOsJKlGrE 

https://arxiv.org/pdf/2201.05072.pdf
https://github.com/CMU-SAFARI/SparseP
https://www.youtube.com/watch?v=5kaOsJKlGrE


Sequence Alignment on Real PIM Systems

◼ Safaa Diab, Amir Nassereldine, Mohammed Alser, Juan Gómez Luna, Onur 
Mutlu, and Izzat El Hajj,
"A Framework for High-throughput Sequence Alignment using Real 
Processing-in-Memory Systems"
Bioinformatics, [published online on] 27 March 2023.
[Online link at Bioinformatics Journal]
[arXiv preprint]
[AiM Source Code]

50https://arxiv.org/pdf/2208.01243.pdf 

https://github.com/CMU-SAFARI/alignment-in-memory 

https://arxiv.org/pdf/2208.01243.pdf
https://arxiv.org/pdf/2208.01243.pdf
http://bioinformatics.oxfordjournals.org/
https://doi.org/10.1093/bioinformatics/btad155
https://arxiv.org/abs/2208.01243
https://github.com/CMU-SAFARI/alignment-in-memory
https://arxiv.org/pdf/2208.01243.pdf
https://github.com/CMU-SAFARI/alignment-in-memory


ⓒ All  rights reserved. American University o f Bei rut 2023.

◼ Sequence alignment on traditional systems is limited by the memory bandwidth bottleneck

◼ Processing-in-memory (PIM) overcomes this bottleneck by placing cores near the memory

◼ Our framework, Alignment-in-Memory (AIM), is a PIM framework that supports multiple 

alignment algorithms (NW, SWG, GenASM, WFA)

❑ Implemented on UPMEM, the first real PIM system

◼ Results show substantial speedups over both CPUs (1.8X-28X) and GPUs (1.2X-2.7X)

◼ AIM is available at: 

❑ https://github.com/CMU-SAFARI/alignment-in-memory 

Summary

51

https://github.com/CMU-SAFARI/alignment-in-memory


Possible PNM Designs

52

◼ Fixed-function units

❑ Hardware/software co-designed PIM for efficiency

❑ E.g. from academia: Mensa for NN Edge Inference

❑ E.g. from industry: Samsung HBM-PIM, SK hynix AiM

PIM-Accelerator  
1

PIM-Accelerator 
N

…

◼ Reconfigurable architectures

❑ PNM cores coupled with FPGAs, CGRA

❑ E.g. from academia: NERO for Weather Prediction

❑ E.g. from industry: Samsung AxDIMM

Reconfigurable 

Accelerator

◼ General-purpose programmable cores

❑ Wimpy cores (possibility of running any workload)

❑ E.g. from academia: Tesseract PIM for Graph Processing

❑ E.g. from industry: UPMEM PIM Cache

PIM Core



Drawbacks and Limitations of PIM

PIM designs are restricted by low area and power budgets, 

manufacturing challenges, and limited clock frequencies  

To avoid subpar performance,  an efficient PIM architecture needs 

to take into consideration PIM constraints 

Co-designing hardware and software to take advantage of PIM properties while 

mitigating its shortcomings can lead to a better system design
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HW/SW Co-Design for PIM 
We follow a two-step approach to co-design software 

and hardware to efficiently take advantage of PIM paradigm 

Step 1:

Application Profiling

performance 

bottleneck

HW/SW 

requirements 

energy 

bottleneck

high-performance 

and energy-efficient 

PIM architecture 

Step 2:

Co-design SW and HW

Target Application

We showcase our two-step approach for several applications:

1 Machine learning inference models for edge devices 

5454

2 Genome sequence alignment & filtering 
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Google Edge Neural Network Models

We analyze inference execution using 24 edge NN models 

Face Detection

Speech Recognition
Language Translation

Image Captioning

Google Edge TPU

56



Diversity Across the Models

Insight 1: there is significant variation in terms of 

layer characteristics across the models
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Diversity Within the Models

For example, our analysis of edge CNN models shows: 

1

2

Insight 2: even within each model, layers exhibit 

significant variation in terms of layer characteristics
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Variation in FLOP/Byte: up to 244x across layers

Variation in MAC intensity: up to 200x across layers
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Mensa High-Level Overview
Edge TPU Accelerator Mensa

Monolithic Accelerator
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Identifying Layer Families
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Key observation:  the majority of layers group into 

a small number of layer families

Family 1
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Family 3 Family 4

Family 5

Families 1 & 2: low parameter footprint, high data reuse and MAC intensity 

→ compute-centric layers 

Families 3, 4 & 5: high parameter footprint, low data reuse and MAC intensity 

→ data-centric layers 
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Mensa Runtime Scheduler

Accelerator 

characteristics

Layer 

characteristics

Scheduler

NN model

Layer

Mapping

The goal of Mensa’s software runtime scheduler is to identify 

which accelerator each layer in an NN model should run on

Generated once

 during initial setup 

of a system

Layers tend to group 

together into a small

number of families  

Each of the accelerators 

caters to 

a specific family of layers
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Mensa-G reduces energy consumption by 3.0X 

compared to the baseline Edge TPU
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Mensa:  Throughput Improvement
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Mensa-G improves inference throughput by 3.1X 

compared to the baseline Edge TPU
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Mensa: Highly-Efficient ML Inference

◼ Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo 
F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu,
"Google Neural Network Models for Edge Devices: Analyzing and 
Mitigating Machine Learning Inference Bottlenecks"
Proceedings of the 30th International Conference on Parallel Architectures and 
Compilation Techniques (PACT), Virtual, September 2021.
[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pdf
https://www.youtube.com/watch?v=A5gxjDbLRAs&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=178


HW/SW Co-Design for PIM 
We follow a two-step approach to co-design software 

and hardware to efficiently take advantage of PIM paradigm 

Step 1:

Application Profiling

performance 

bottleneck

HW/SW 

requirements 

energy 

bottleneck

high-performance 

and energy-efficient 

PIM architecture 

Step 2:

Co-design SW and HW

Target Application

We showcase our two-step approach for several applications:

1 Machine learning inference models for edge devices 

6565

2 Genome sequence alignment & filtering 



Possible PNM Designs

66

◼ Fixed-function units

❑ Hardware/software co-designed PIM for efficiency

❑ E.g. from academia: Mensa for NN Edge Inference

❑ E.g. from industry: Samsung HBM-PIM, SK hynix AiM

PIM-Accelerator  
1

PIM-Accelerator 
N

…

◼ Reconfigurable architectures

❑ PNM cores coupled with FPGAs, CGRA

❑ E.g. from academia: NERO for Weather Prediction

❑ E.g. from industry: Samsung AxDIMM

Reconfigurable 

Accelerator

◼ General-purpose programmable cores

❑ Wimpy cores (possibility of running any workload)

❑ E.g. from academia: Tesseract PIM for Graph Processing

❑ E.g. from industry: UPMEM PIM Cache

PIM Core



Samsung Function-in-Memory DRAM (2021)

67https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power

https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power


Samsung Function-in-Memory DRAM (2021)
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Samsung Function-in-Memory DRAM (2021)
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Samsung Function-in-Memory DRAM (2021)
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Samsung Function-in-Memory DRAM (2021)
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Samsung PNM Solutions for Generative AI (2023)

◼ Main target: transformer decoders used in ChatGPT, GPT-3

❑ Compute-bound step: Summarization 

❑ Memory-bound step: Generation

◼ Most of the execution time is spent on the memory copy from the 
host CPU memory to the CPU memory

◼ GEMV portion can be 60%-80% of total generation latency, 
which is the target of PIM/PNM

72[J. H. Kim+ HC, 2023] 



Solution I: Samsung’s HBM-PIM (2023)

◼ AMD MI100 GPUs fabricated with HBM-PIM

◼ Experimental setup: GPT-J (6B, 32 input tokes), single AMD 
MI100-PIM GPU

◼ GPT can be accelerated by more than 2x over baseline

73[J. H. Kim+ HC, 2023] 



Solution II: Samsung’s LPDDR-PIM (2023)

◼ PIM for on-device generative AI

❑ Datacenter costs and power consumption are increasing due to the 
growing demand for cloud AI

◼ LPDDR-PIM improves battery life by preventing memory over-
provisioning just for bandwidth

◼ 4.47x performance gains and 70.6% energy reduction in GPT-2
74[J. H. Kim+ HC, 2023] 



Solution III: Samsung’s CXL-PNM (2023)

◼ A CXL-based processing-near-memory solution

❑ Improves capacity, bandwidth, and power 

❑ Large-scale large-language models are often capacity-bound 

◼ Multiple CXL-PNM can offer 4.4x higher energy efficiency and

53% higher throughput than multiple GPUs

75[J. H. Kim+ HC, 2023] 



◼ 4 Gb AiM die with 16 processing units (PUs)

76
Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep-Learning 
Applications, ISSCC 2022Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various 

Activation Functions for Deep-Learning Applications, ISSCC 2022

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE 
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◼ Fixed-function units

❑ Hardware/software co-designed PIM for efficiency

❑ E.g. from academia: Mensa for NN Edge Inference

❑ E.g. from industry: Samsung HBM-PIM, SK hynix AiM

PIM-Accelerator  
1

PIM-Accelerator 
N

…

◼ Reconfigurable architectures

❑ PNM cores coupled with FPGAs, CGRA

❑ E.g. from academia: NERO for Weather Prediction

❑ E.g. from industry: Samsung AxDIMM

Reconfigurable 

Accelerator

◼ General-purpose programmable cores

❑ Wimpy cores (possibility of running any workload)

❑ E.g. from academia: Tesseract PIM for Graph Processing

❑ E.g. from industry: UPMEM PIM Cache

PIM Core



FPGA-based Processing Near Memory

◼ Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-
Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for 
Weather Prediction Modeling"
Proceedings of the 30th International Conference on Field-Programmable Logic 
and Applications (FPL), Gothenburg, Sweden, September 2020.
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Heterogeneous System: CPU+FPGA

POWER9 AC922 DDR4-based AD9V3 

board

CAPI2

Source: AlphaData
Source: IBM

 2. DDR4-based board 
AD9V3
  Xilinx Virtex Ultrascale+  XCVU3P-
2

We evaluate two POWER9+FPGA systems:

1. HBM-based board AD9H7  
Xilinx Virtex Ultrascale+  XCVU37P-2  
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NERO Design Flow
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Horizontal DiffusionVertical Advection

NERO Performance Analysis

NERO is 4.2x and 8.3x faster than 
a complete POWER9 socket
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◼ Fixed-function units

❑ Hardware/software co-designed PIM for efficiency

❑ E.g. from academia: Mensa for NN Edge Inference

❑ E.g. from industry: Samsung HBM-PIM, SK hynix AiM
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…

◼ Reconfigurable architectures

❑ PNM cores coupled with FPGAs, CGRA

❑ E.g. from academia: NERO for Weather Prediction

❑ E.g. from industry: Samsung AxDIMM

Reconfigurable 

Accelerator

◼ General-purpose programmable cores

❑ Wimpy cores (possibility of running any workload)

❑ E.g. from academia: Tesseract PIM for Graph Processing

❑ E.g. from industry: UPMEM PIM Cache

PIM Core



Samsung AxDIMM (2021)
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Samsung AxDIMM (2021)

◼ DIMM-based PIM

❑ DLRM recommendation system
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Baseline System

AxDIMM System
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Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architectur e of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that servesasa
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on theAxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to thehost through thestandard memory interface.

To support the interaction with thehost, oneDDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interfacewith thetwo internal ranks,
one AxDIMM can theoretically provide 2⇥memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in thesame
way asanormal DDR4 DRAM DIMM. All accesses from the
host bypassthe logic of theRank-NMP modules. In theaccel-
eration mode, NMP-instructions are issued by thehost to per-
form the embedding lookup and pooling operation inside the
Rank-NMPmodulesand all theregular DRAM accesses from
the host areblocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
a

n
k
-0

D
D

R
4
 S

la
v
e
 P

H
Y

In
p

u
t 
I/
F

O
u
tp

u
t 
I/
F

M
IG

 (
P

H
Y

)
M

IG

Rank-0.NMP

Rank-1.NMP

WR

Emb Table
Mode

Change

WR

Inst

SLS

Execute

RD

Status Reg

RD

Psum
Host

Rank-

NMP

1
Emb Table

Data

CONF REG

INST BUF

Acc Mode

Enable

Write Inst

2

Set SLS

ExeReg

DEC

Decode Inst

CMDGEN

RD Emb

RD Psumt

Accumulate Psumt+1

DRAM CMD

ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM

Rank-0

AxDIMM

Rank-1

Embedding

Table

INST BUF

CONF REG

PSUM BUF

Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read

StatusReg

DDR WR
DDR WR
DDR RD

R
a

n
k
-0

R
a
n
k
-1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode  Decode  Decode  Decode
Inst         Inst         Inst        Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following themecha-
nism of memory-mapped I/O (MMIO). Thememory-mapped
configuration registers (CONF REG) are set by the host to
choosebetween thetwo execution modeof aRank-NMPmod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load theembedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by thehost in

4

FPGA board with standard DIMM interface:

It serves as a real-system 
near-memory processing implementation

86[Ke+, IEEE Micro’2021]
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3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that servesasa
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on theAxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to thehost through thestandard memory interface.

To support the interaction with thehost, oneDDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interfacewith thetwo internal ranks,
one AxDIMM can theoretically provide 2⇥memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in thesame
way asanormal DDR4 DRAM DIMM. All accesses from the
host bypassthe logic of theRank-NMP modules. In theaccel-
eration mode, NMP-instructions are issued by thehost to per-
form the embedding lookup and pooling operation inside the
Rank-NMPmodulesand all theregular DRAM accesses from
the host areblocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions
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and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following themecha-
nism of memory-mapped I/O (MMIO). Thememory-mapped
configuration registers (CONF REG) are set by the host to
choosebetween thetwo execution modeof aRank-NMPmod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load theembedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by thehost in
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3.1 HardwareArchitecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that servesasa
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on theAxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to thehost through thestandard memory interface.

To support the interaction with thehost, oneDDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interfacewith thetwo internal ranks,
one AxDIMM can theoretically provide 2⇥memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in thesame
way asanormal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of theRank-NMPmodules. In theaccel-
eration mode, NMP-instructions are issued by thehost to per-
form the embedding lookup and pooling operation inside the
Rank-NMPmodulesand all theregular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions
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and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

TheRank-NMP module isoperates following themecha-
nism of memory-mapped I/O (MMIO). Thememory-mapped
configuration registers (CONF REG) are set by the host to
choosebetween thetwo execution modeof aRank-NMPmod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
theDRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load theembedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. Theadder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by thehost in

4

Two execution modes:

(1) non-acceleration mode
(2) acceleration mode (blocking)

87[Ke+, IEEE Micro’2021]



Sparse Length Sum with AxDIMM (IEEE Micro 2021)

88https://doi.org/10.1109/MM.2021.3097700

https://doi.org/10.1109/MM.2021.3097700


Sparse Length Sum with AxDIMM (AICAS 2022)

89https://doi.org/10.1109/AICAS54282.2022.9869896

https://doi.org/10.1109/AICAS54282.2022.9869896


Database Operations with AxDIMM (DaMoN 2022)

90https://doi.org/10.1145/3533737.3535093

https://doi.org/10.1145/3533737.3535093


Longer Lecture on AxDIMM

91https://youtu.be/SXdzQZAKG-Y

https://youtu.be/SXdzQZAKG-Y


Another Longer Lecture on AxDIMM

92https://youtu.be/2FMQg786GKs

https://youtu.be/2FMQg786GKs


Processing-in-Memory Landscape Today

93

[UPMEM 2019][Samsung 2021][SK Hynix 2022]

[Samsung 2021]

This does not include many experimental chips and startups

[Alibaba 2022]



Possible PNM Designs
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◼ Fixed-function units

❑ Hardware/software co-designed PIM for efficiency

❑ E.g. from academia: Mensa for NN Edge Inference

❑ E.g. from industry: Samsung HBM-PIM, SK hynix AiM

PIM-Accelerator  
1

PIM-Accelerator 
N

…

◼ Reconfigurable architectures

❑ PNM cores coupled with FPGAs, CGRA

❑ E.g. from academia: NERO for Weather Prediction

❑ E.g. from industry: Samsung AxDIMM

Reconfigurable 

Accelerator

◼ General-purpose programmable cores

❑ Wimpy cores (possibility of running any workload)

❑ E.g. from academia: Tesseract PIM for Graph Processing

❑ E.g. from industry: UPMEM PIM Cache

PIM Core



Research Tools PNM: DAMOV-SIM
◼ Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata Ghose, Nandita 

Vijaykumar, Ivan fernandez, Mohammad Sadrosadati, and Onur Mutlu,

"DAMOV: A New Methodology and Benchmark Suite for Evaluating Data 
Movement Bottlenecks"
IEEE Access, 8 September 2021.

Preprint in arXiv, 8 May 2021.
[arXiv preprint]

[IEEE Access version]
[DAMOV Suite and Simulator Source Code]
[SAFARI Live Seminar Video (2 hrs 40 mins)]

[Short Talk Video (21 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://doi.org/10.1109/ACCESS.2021.3110993
https://arxiv.org/abs/2105.03725
https://arxiv.org/pdf/2105.03725.pdf
https://doi.org/10.1109/ACCESS.2021.3110993
https://github.com/CMU-SAFARI/DAMOV
https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=156
https://www.youtube.com/watch?v=HkMYuYMuZOg&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=161


Step 3: Memory Bottleneck Classification (2/2)

• Goal: identify the specific sources of data movement 
bottlenecks

DAMOV-SIM Simulator

# Cores

Scalability Analysis

Integrated ZSim and Ramulator 

• Scalability Analysis: 
− 1, 4, 16, 64, and 256 out-of-order/in-order host and NDP CPU cores
− 3D-stacked memory as main memory

Configuration 2: NDP System

Off-chip link

DRAM
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CPU

L
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L
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L
2

L
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L
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L
1 L2L1CPU

Configuration 1: Host CPU System 

Off-chip link

272DAMOV-SIM: https://github.com/CMU-SAFARI/DAMOV 

…

Logic Layer
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CPU

L
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L
1

L
1L1CPU

DRAMDRAMDRAMDRAM

DRAMDRAMDRAM

https://github.com/CMU-SAFARI/DAMOV


DAMOV is Open Source

• We open-source our benchmark suite and our toolchain

DAMOV-SIM

DAMOV 
Benchmarks



DAMOV is Open Source

• We open-source our benchmark suite and our toolchain

DAMOV-SIM

DAMOV 
Benchmarks

Get DAMOV at: 

https://github.com/CMU-SAFARI/DAMOV 

https://github.com/CMU-SAFARI/DAMOV


More on DAMOV Analysis Methodology & Workloads

https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=3 

https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=3


More on DAMOV Methods & Benchmarks
◼ Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata Ghose, Nandita 

Vijaykumar, Ivan fernandez, Mohammad Sadrosadati, and Onur Mutlu,

"DAMOV: A New Methodology and Benchmark Suite for Evaluating Data 
Movement Bottlenecks"
IEEE Access, 8 September 2021.

Preprint in arXiv, 8 May 2021.
[arXiv preprint]

[IEEE Access version]
[DAMOV Suite and Simulator Source Code]
[SAFARI Live Seminar Video (2 hrs 40 mins)]

[Short Talk Video (21 minutes)]

100

https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://doi.org/10.1109/ACCESS.2021.3110993
https://arxiv.org/abs/2105.03725
https://arxiv.org/pdf/2105.03725.pdf
https://doi.org/10.1109/ACCESS.2021.3110993
https://github.com/CMU-SAFARI/DAMOV
https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=156
https://www.youtube.com/watch?v=HkMYuYMuZOg&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=161


Research Tools PNM: Samsung HBM-PIM

101

https://github.com/SAITPublic/PIMSimulator 

https://github.com/SAITPublic/PIMSimulator


Research Tools PNM: UPMEM PIM (I)
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https://github.com/VIA-Research/uPIMulator 

https://github.com/VIA-Research/uPIMulator


Research Tools PNM: UPMEM PIM (II)
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https://ieeexplore.ieee.org/document/10476411/  

https://ieeexplore.ieee.org/document/10476411/


1st Workshop on 

Memory-Centric Computing:

Processing-Near-Memory

Geraldo F. Oliveira

https://geraldofojunior.github.io

ASPLOS 2025

30 March 2025

https://geraldofojunior.github.io/
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