15 Workshop

Memory-Centric Computing:
Research Challenges & Closing Remarks

Geraldo F. Oliveira
https://geraldofojunior.github.io

ASPLOS 2025
30 March 2025

SAFARI

ETH:zurich


https://geraldofojunior.github.io/

Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

SAFARI



Potential Barriers to Adoption of PIM

1. Applications & software for PIM
2. Ease of programming (interfaces and compiler/HW support)

3. System and security support: coherence, synchronization,
virtual memory, isolation, communication interfaces, ...

4. Runtime and compilation systems for adaptive scheduling,
data mapping, access/sharing control, ...

5. Infrastructures to assess benefits and feasibility

All can be solved with change of mindset
SAFARI 3




We Need to Revisit the Entire Stack

SW/HW Interface

We can get there step by step

SAFARI



Adoption: How to Keep It Simple?

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn  Sungjoo Yoo Onur Mutlu' Kiyoung Choi
junwhan @snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University

SAFARI >


http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

Adoption: How to FEase Programmability? (1)

Geraldo F. Oliveira, Alain Kohli, David Novo,
Juan Gomez-Luna, Onur Mutlu,
“"DaPPA: A Data-Parallel Framework for Processing-

in-Memory Architectures,”
in PACT SRC Student Competition, Vienna, Austria, October
2023.

DaPPA: A Data-Parallel Framework for Processing-in-Memory Architectures

Geraldo F. Oliveira* Alain Kohli* David Novo* Juan Gémez-Luna* Onur Mutlu*
*ETH Ziirich *LIRMM, Univ. Montpellier, CNRS

SAFARI 0


https://arxiv.org/pdf/2310.10168.pdf
https://arxiv.org/pdf/2310.10168.pdf

Adoption: How to Fase Programmability? (1I)

Jinfan Chen, Juan Gomez-Luna, Izzat El Hajj, YuXin Guo,
and Onur Mutluy,
"SimplePIM: A Software Framework for Productive

and Efficient Processing in Memory"

Proceedings of the 32nd International Conference on
Parallel Architectures and Compilation Techniques (PACT),
Vienna, Austria, October 2023.

SimplePIM: A Software Framework for
Productive and Efficient Processing-in-Memory

Jinfan Chen' Juan Gémez-Luna' Izzat El Hajj* Yuxin Guo'  Onur Mutlu'
'ETH Ziirich  2American University of Beirut

SAFARI !


https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
http://pactconf.org/
http://pactconf.org/

The Programmability Barrier:
Overview

Programming the UPMEM-based system requires:
1 Splitting input data and computation across PIM chips

2 Transferring input data from main memory to PIM chips
3 Manually handling caching in PIM’s scratchpad memory

4 Transferring output data from PIM chips to main memory

Main Memory PIM Chi p
A .-'FF T
: [ Control/Status Interface }1—»[ DDR4 Interface ]
~pr—EEEEEEEE)
L 2 2 N 2 N o N _,-) H# + .
CEEEEEEEY, | —
Cih i Ly Clhvige Chig Clhvdge Chig Chvige Chig .:_-‘: _QQ#IZ "-\
S DISPATCH —_—
it 24-KB
FETCHZ2 |-l -
T FETCH3 IRAM E
i READOPL = L
o RE ADVOIPZ = 2 | 54 hits 64-MB
% READOP3 IE DRAM
;J‘ FORMAT " 7 < . Bank
ALUL
- ALL2 64-KB E (MRAM)
= ALU3 - ol
= =T WRAM L
= J
o

MERGEL F
. . MERGEZ S %'
- \J\%L g_ f j’.; y

SAFARI



The Programmability Barrier:
Vector Addition Example

Programmer’s Tasks:

SAFARI



The Programmability Barrier:

Vector Addition Example

Programmer’s Tasks:

Align
data

const unsigned int

const unsigned int

const unsigned int

const unsigned int

SAFARI

input_size = 1073741824; // Example value
input_size_8bytes =
((input_size * sizeof(T)) % 8) !'= 0

? roundup(input_size, 8) : input_size;

input_size_dpu = divceil(input_size, nr_of_dpus);

input_size_dpu_8bytes =
((input_size_dpu * sizeof(T)) % 8) != 0

? roundup(input_size_dpu, 8) : input_size_dpu;

10



The Programmability Barrier:
Vector Addition Example

Programmer’s Tasks:

Align Collect
data parameters

unsigned int kernel = 09;
dpu_arguments_t input_arguments[NR_DPUS];
for(i=0; i<nr_of_dpus-1; i++) {
input_arguments[i].size = input_size_dpu_8bytes * sizeof(T);
input_arguments[i].transfer_size = input_size_dpu_8bytes * sizeof(T);
input_arguments[i].kernel = kernel;
b
input_arguments[nr_of_dpus-1].size =
(input_size_8bytes - input_size_dpu_8bytes * (NR_DPUS-1)) * sizeof(T);
input_arguments[nr_of_dpus-1].transfer_size =
input_size_dpu_8bytes * sizeof(T);

input_arguments[nr_of_dpus-1].kernel = kernel;

SAFARI

11



The Programmability Barrier:
Vector Addition Example

Programmer’s Tasks:

Align Collect Distribute
data parameters parameters

SAFARI

DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, "DPU_INPUT_ARGUMENTS",

0, sizeof(input_arguments[0]), DPU_XFER_DEFAULT));

DPU_FOREACH(dpu_set, dpu, i) {

DPU_ASSERT(dpu_prepare_xfer(dpu, bufferA + input_size_dpu_8bytes * i));

DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME,

0, input_size_dpu_8bytes * sizeof(T), DPU_XFER_DEFAULT));

DPU_FOREACH(dpu_set, dpu, i) {

DPU_ASSERT(dpu_prepare_xfer(dpu, bufferB + input_size_dpu_8bytes * i));

DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME,

input_size_dpu_8bytes * sizeof(T),
input_size_dpu_8bytes * sizeof(T), DPU_XFER_DEFAULT));

12



The Programmability Barrier:
Vector Addition Example

Programmer’s Tasks:

Align Collect Distribute Launch
data parameters parameters computation

1
i DPU_ASSERT (dpu_launch(dpu_set, DPU_SYNCHRONOUS)); E

SAFARI

13



The Programmability Barrier:
Vector Addition Example

Programmer’s Tasks:

Align Collect Distribute Launch Collect
data parameters parameters computation results
i=20;

DPU_FOREACH (dpu_set, dpu, i) {
DPU_ASSERT (dpu_prepare_xfer(dpu,
bufferC + input_size_dpu_8bytes * i));

}

DPU_ASSERT (dpu_push_xfer(dpu_set, DPU_XFER_FROM_DPU,
DPU_MRAM_HEAP_POINTER_NAME,
input_size_dpu_8bytes * sizeof(T),
input_size_dpu_8bytes * sizeof(T),
DPU_XFER_DEFAULT) ) ;

SAFARI



The Programmability Barrier:
Vector Addition Example

Programmer’s Tasks:

Align Collect Distribute Launch Collect Manage
data parameters parameters computation results saratchpad

barrier_wait(&my_barrier);
uint32_t input_size_dpu_bytes = DPU_INPUT_ARGUMENTS.size;
uint32_t input_size_dpu_bytes_transfer =
DPU_INPUT_ARGUMENTS. transfer_size;

uint32_t base_tasklet = tasklet_id << BLOCK_SIZE_LOG2;
(uint32_t)DPU_MRAM_HEAP_POINTER;
(uint32_t) (DPU_MRAM_HEAP_POINTER

+ input_size_dpu_bytes_transfer);
T *cache_A = (T *) mem_alloc(BLOCK_SIZE);
T *cache_B = (T *) mem_alloc(BLOCK_SIZE);

uint32_t mram_base_addr_A

uint32_t mram_base_addr_B

SAFARI

15



The Programmability Barrier:
Vector Addition Example

Programmer’s Tasks:

Align Collect Distribute Launch Collect Manage Orchestrate
data parameters parameters computation results saratchpad computation

for (int byte_index = base_tasklet; byte_index < input_size_dpu_bytes;
byte_index += BLOCK_SIZE * NR_TASKLETS){
uint32_t 1l_size_bytes = (byte_index + BLOCK_SIZE >=
input_size_dpu_bytes)
? (input_size_dpu_bytes - byte_index) : BLOCK_SIZE;

mram_read((__mram_ptr void const*)(mram_base_addr_A + byte_index),

mram_read((__mram_ptr void const*)(mram_base_addr_B + byte_index),
cache_B, 1_size_bytes);

vector_addition(cache_B, cache_A, 1l_size_bytes >> DIV);

mram_write(cache_B, (__mram_ptr void*) (mram_base_addr_B + byte_index)

i cache_A, 1_size_bytes);
i 1_size_bytes);



The Programmability Barrier:
Vector Addition Example

Programmer’s Tasks: Goal:
Align Collect Distribute Launch Collect Manage Orchestrate Just write
data parameters parameters computation results saratchpad computation my kemel

static void vector_addition(T *bufferB, T *bufferA, int 1l_size){
for (unsigned int i = 0; i < 1_size; i++){

i |
= :
i :
1 1
i bufferB[i] += bufferA[i]: i
5 i
i i
l !
I 1
g 1

SAFARI 17



The Programmability Barrier:
Summary

4 N
Programming the UPMEM system
leads to non-trivial effort - requires
knowledge of the underlying hardware and
manual fine-grained data movement handling
\ J
SAFARI 18



Our Goal

4 N
To ease programmability for the UPMEM system,
allowing a programmer to write
efficient PIM-friendly code
without the need to
explicitly manage hardware resources
g J
SAFARI 19



Outline

N

5

SAFARI

Introduction
The Programmability Barrier

SimplePIM Overview

Management, Communication & Processing Interfaces

Evaluation Results

DaPPA Overview

DaPPA Main Components

Evaluation Results

Conclusion

20



SimplePIM:

A Software Framework for Productive and Efficient Processing in Memory

 Jinfan Chen, Juan Gomez-Luna, Izzat El Hajj, Yuxin Guo, and Onur Mutlu,
"SimplePIM: A Software Framework for Productive and Efficient Processing in
Memory"
Proceedings of the 32nd International Conference on Parallel Architectures and
Compilation Techniques (PACT),
Vienna, Austria, October 2023.
[Slides (pptx) (pdf)]
[SimplePIM Source Code]

SimplePIM: A Software Framework for
Productive and Efficient Processing-in-Memory

Jinfan Chen'  Juan Gémez-Luna' Izzat E1 Hajj*> Yuxin Guo'  Onur Mutlu'
IETH Ziirich 2 American University of Beirut

SAFARI 21


https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23-talk.pdf
https://github.com/CMU-SAFARI/SimplePIM

SimplePIM Programming Framework:
Overview

SimplePIM provides standard abstractions to
build and deploy applications on PIM systems

1 Management interface
—> Metadata for PIM-resident arrays

2 Communication interface
— Abstractions for host-PIM and PIM-PIM communication

3 Processing interface
—> lterators (map, reduce, zip) to implement workloads

SAFARI 22



SimplePIM Programming Framework:
Management Interface

 Metadata for PIM-resident arrays
- array meta data t describesa PIM-resident array
- simple pim management t for managing PIM-resident arrays

* lookup: Retrieves all relevant information of an array

array meta data t* simple pim array lookup(const char* id,

1
1
isimple_pim_management_t* management) ;

____________________________________________________________________________________________________________________

ivoid simple pim array register (array meta data t* meta data,

; simple pim management t* management) ;
[ _ - _

____________________________________________________________________________________________________________________

:v01d simple pim array free (const char* id, simple pim management t* management);

SAFARI



SimplePIM Programming Framework:
Communication Interface (l)

i void simple pim array broadcast (char* const id, void* arr, uint64 t len,
; uint32 t type size, simple pim management t* management) ;

e SimplePIM Host-to-CPU Broadcast
- Transfers a host array to all PIM cores in the system

2116 4115(16
Host DRAM 4[[5][6] ..+  pPiMDRAM
t SimplePIM Broadcast CINEEAT Bank
> < [ PIM Core n ]
Host CPU y [ PIM Core 0 ]

SAFARI 24



SimplePIM Programming Framework:
Communication Interface (ll)

* Host-to-PIM SimplePIM Scatter
- Distributes an array to PIM DRAM banks

____________________________________________________________________________________________________________________

:VOld simple pim array scatter (char* const id, void* arr, uinté4 t len,
:ulnt32 t type size, simple pim management t* management);

* Host-to-PIM SimplePIM Gather
- Collects portions of an array from PIM DRAM banks

____________________________________________________________________________________________________________________

iv01d* simple pim array gather (char* const id, simple pim management t* i
:management) !

1 e b 3
SimplePIM Scatter 2] »
4 =——16
— 5 .+*  PIMDRAM
Host DRAM ~——_ _ _ -/M DRAM : Bank
p t 2 . t Bank [ PIM Core n ]
HostCPU SimplePIM Gather [puvl cOreo]

SAFARI 25



SimplePIM Programming Framework:
Communication Interface (lll)

e PIM-to-PIM Communication: AllReduce

- Used for algorithm synchronization
- The programmer specifies an accumulative function

i void simple pim array allreduce (char* const id, handle t* handle, i
, _
:51mple _pim management t* management) ; i

Before PIM-PIM communication After PIM-PIM communication
P—
IEE Y 1][4][2
21[1)| - - - == - - A\ 1 [«][2]™™

<7 | ————————:;"\t;; » 13]11]]3
Ofl1fl1]j .- PIMDRAN D~ 3[11[|3]f, .+~ PIMDRAM
_.I?INI DRAM Bank _.I?INI DRAM Bank
0k (Comdoren) SIMplePIM AllReduce $ san (o oren )

[ PIM Core o J [ PIM Core o ]

SAFARI 26



SimplePIM Programming Framework:
Communication Interface (V)

 PIM-to-PIM Communication: AllGather

- Combines array pieces and distributes the complete array to all
PIM cores

i void simple pim array allgather (char* const id, char* new id, i
, —_
:Smele _pim management t* management); i

Before PIM-PIM communication After PIM-PIM communication
—
| - _ 1112]]3
[|1 2/13lk=s—————"——"—=X---C-=c===cmma_____ 1[2][3]™™
T » [14]|5][6
.+*  PIMDRAM 4[|15]|6]]..©  PIMDRAM
PIM DRAM Bank . __PIM DRAM Bank
Bank o Coren SimplePIM AllGather tBank o Coren
[ PIM Core 0 ] [ PIM Core 0 ]

SAFARI 27



SimplePIM Programming Framework:
Processing Interface (l)

* Array Map

- Appliesmap func to every element of the data array

i void simple pim array map (const char* src id, const char* dest id,
. _ . _ _ _
} uint32 t output type, handle t* handle, simple pim management t* management);

e e e e .

mputdrray () () C_ ) C ) C ) -

(src id)

map fung

Outputf@rray Vv v

vV
(dest id) ( ) ( ) (_) ( ) ( )

SAFARI 28



SimplePIM Programming Framework:
Processing Interface (ll)

* Array Reduction

- Themap to val func function transforms an input
element to an output value and an output index

- The acc_ func function accumulates the output values onto
the output array

i void simple pim array red(const char* src id, const char* dest 1id,
. _ _ _ _ _

| uint32 t output type, uint32 t output len, handle t* handle,
isimple_pim_management_t* management) ;

1
e o o e o

Input@rray C) C) e

(src_id) / ry/a to va}/i func /
y

-\@I_,__)ﬁ/@:)

f
Output@rrayfdest id) (0) O ) @ )

SAFARI 29



SimplePIM Programming Framework:
Processing Interface (lll)

* Array Zip
- Takes two input arrays and combines their elements into an
output array

' void simple pim array zip (const char* srcl id, const char* src2 id,
I const char* dest id, simple pim management t* management) ;

InputfArray
(srcl id)
InputfArray
(src2 id)

z1lp func

Output@rray
(dest id)

SAFARI

30



SimplePIM Programming Framework:
General Code Optimizations

 Strength reduction

* Loop unrolling

* Avoiding boundary checks

* Function inlining

* Adjustment of data transfer sizes

SAFARI

31



Evaluation Results:
Evaluation Methodology

* Evaluated system

- UPMEM PIM system with 2,432 PIM cores with
159 GB of PIM DRAM

* Real-world Benchmarks
Vector addition
Reduction

Histogram

K-Means

Linear regression
Logistic regression

 Comparison to hand-optimized codes in terms of
programming productivity and performance

SAFARI

32



Evaluation Results:
Productive Improvement ()

* Example: Hand-optimized histogram with UPMEM SDK

// Initialize global variables and functions for histogram
int main kernel () {
if (tasklet id == 0)
mem reset(); // Reset the heap
// Initialize variables and the histogram
T *input buff A = (T*)mem alloc(2048); // Allocate buffer in scratchpad memory

for (unsigned int byte index = base tasklet; byte index < input size; byte index += stride) {
// Boundary checking
uint32 t 1 size bytes = (byte index + 2048 >= input size) ? (input size - byte index) : 2048;
// Load scratchpad with a DRAM block B
mram read((const  mram ptr void*) (mram base addr A + byte index), input buff A, 1 size bytes);
// Histogram calculation
histogram(hist, bins, input buff A, 1 size bytes/sizeof(uint32 t));

}

barrier wait(&my barrier); // Barrier to synchronize PIM threads
// Merging histograms from different tasklets into one histo dpu
// Write result from scratchpad to DRAM
if (tasklet id == 0)
if (bins * sizeof(uint32 t) <= 2048)

mram write(histo dpu, ( mram ptr void*)mram base addr histo, bins * sizeof(uint32 t));
else
for (unsigned int offset = 0; offset < ((bins * sizeof(uint32 t)) >> 11); offset++) {
mram write(histo dpu + (offset << 9), (_ mram ptr void*) (mram base addr histo +

(offset << 11)), 2048);
}

return 0;

e

SAFARI 33



Evaluation Results:
Productive Improvement (Il)

* Example: SimplePIM histogram

// Programmer-defined functions in the file "histo filepath"
void init func (uint32 t size, void* ptr) {

char* casted value ptr = (char*) ptr;
for (int 1 = 0; 1 < size; 1++)
casted value ptr[i] = 0;

void acc func (void* dest, void* src) {
*(uint32 t*)dest += *(uint32 t*)src;
}

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

i

i void map to val func (void* input, void* output, uint32 t* key) {
| uint32 t d = *((uint32_t*)input);

! *(uint32 t*)output = 1;

s *key = d * bins >> 12;

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

// Host side handle creation and iterator call
handle t* handle = simple pim create handle ("histo filepath", REDUCE, NULL, 0);

// Transfer (scatter) data to PIM, register as "tl1"
simple pim array scatter("tl", src, bins, sizeof(T), management) ;

// Run histogram on "tl1" and produce "t2"
simple pim array red("tl", "t2", sizeof(T), bins, handle, management) ;

SAFARI

34



Evaluation Results:
Productive Improvement (lll)

* Lines of code (LoC) reduction

Reduction 5.93%
Vector Addition 14 82 5.86x
Histogram 21 114 5.43X
Linear Regression 48 157 3.27X
Logistic Regression 59 176 2.98x%
K-Means 68 206 3.03x
( )
SimplePIM reduces the number of lines of
: effective code by a factor of 2.98x to 5.93x )
SAFARI 35



Evaluation Results:
Weak Scaling Analysis

Vector Addition

30| N N N
w 20
E
> 10
€E o
= 608 1216 2432
£ K-Means
£ 150 [ N N
9 100
b
W 50
0"608 1216 2432

E SimplePIM (CPU Time)

Reduction Histogram

20 N 50

10 25

0 ‘ 0

608 1216 2432 608 1216 2432

Linear Regression Logistic Regression
>0 100 [T N N
25 50

() 0

608 1216 2432 608 1216 2432
Number of PIM Cores

BN Hand-optimized Impl. (CPU Time)

1 SimplePIM (PIM Kernel Time) XN Hand-optimized Impl. (PIM Kernel Time)

SimplePIM achieves comparable performance for reduction,
histogram,and linear regression

A

Y4

SimplePIM outperforms hand-optimized implementations
for vector addition,logistic regression,
and k-means by 10%-37%

\
SAFARI



Evaluation Results:
Strong Scaling Analysis

Vector Addition Reduction Histogram
30 1.0 1.01.0 :01.0
_ WIN 20 Y 50 [ N
n 20 Lo 1717 1.81:6
R I L[] 1\
g N 0
E %608 1216 2432 0_608 1216 2432 06(_)8_ 1216 2432
c K-Means Linear Regression Logistic Regression
2 150 50(L%Lo Lo
& N 100 1o
8 100 191.8 25 1.92.0 03 50 1020
b 4 J 3.0 3.0 3.3
£ N A A N A N
0 ‘ ‘ 0 ‘ ‘ 0 ‘ ‘
608 1216 2432 608 1216 2432 608 1216 2432
Number of PIM Cores
EE SimplePIM (CPU Time) BN Hand-optimized Impl. (CPU Time)

1 SimplePIM (PIM Kernel Time) XY Hand-optimized Impl. (PIM Kernel Time)

p
SimplePIM scales better than hand-optimized implementations for
g reduction,histogram,and l1inear regression
SimplePIM outperforms hand-optimized implementations
for vector addition,logistic regression, and k-means
g by 15%-43%

SAFARI



Source Code

* https://github.com/CMU-SAFARI/SimplePIM

& CMU-SAFARI / SimplePIM  public

<> Code (%) Issues

SAFARI

11 Pull requests

[0 README &3 MIT license

(® Actions [ Projects (O Security |~ Insights

¥ main ~ ¥ Branches > Tags

Cl) 13 Commits

@ benchmarks
I lib

[ .gitignore
[ LICENSE

[ README.md

SimplePIM: A Software Framework for Productive and
Efficient In-Memory Processing

This project implements SimplePIM, a software framework for easy and efficient in-memory-hardware
programming. The code is implemented on UPMEM, an actual, commercially available PIM hardware that combines
traditional DRAM memory with general-purpose in-order cores inside the same chip. SimplePIM processes arrays
of arbitrary elements on a PIM device by calling iterator functions from the host and provides primitives for
communication among PIM cores and between PIM and the host system.

We imnlemant civ annliratinne with QimnlaPIM an | IPAMFEM-

<> Code ~

L Notifications Y F

About

SimplePIM is the first high-level
programming framework for real-world
processing-in-memory (PIM)
architectures. Described in the PACT
2023 paper by Chen et al.
(https://arxiv.org/pdf/2310.01893.pdf).

Readme

MIT license
Activity

Custom properties
18 stars

6 watching

< 00 ¢ B

4 forks

Report repository

Releases

No releases published

Packages

No packages published

Contributors 3

38


https://github.com/CMU-SAFARI/SimplePIM

SimplePIM:

A Software Framework for Productive and Efficient Processing in Memory

 Jinfan Chen, Juan Gomez-Luna, Izzat El Hajj, Yuxin Guo, and Onur Mutlu,
"SimplePIM: A Software Framework for Productive and Efficient Processing in
Memory"
Proceedings of the 32nd International Conference on Parallel Architectures and
Compilation Techniques (PACT),
Vienna, Austria, October 2023.
[Slides (pptx) (pdf)]
[SimplePIM Source Code]

SimplePIM: A Software Framework for
Productive and Efficient Processing-in-Memory

Jinfan Chen'  Juan Gémez-Luna' Izzat E1 Hajj*> Yuxin Guo'  Onur Mutlu'
IETH Ziirich 2 American University of Beirut

SAFARI 39


https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23-talk.pdf
https://github.com/CMU-SAFARI/SimplePIM

DaPPA:

A Data-Parallel Framework for Processing-in-Memory Architectures

e Geraldo F. Oliveira, Alain Kohli, David Novo, Juan Gémez-Luna,

Onur Mutlu

"DaPPA: A Data-Parallel Framework for Processing-in-Memory Architectures,”
arXiv:2310.10168 [cs.AR]

2"d Place ACM Student Research Competition at the 32nd International
Conference on Parallel Architectures and Compilation Techniques (PACT),
Vienna, Austria, October 2023.

DaPPA: A Data-Parallel Framework for Processing-in-Memory Architectures

Geraldo F. Oliveira* Alain Kohli* David Novo* Juan Gomez-Luna* Onur Mutlu*

*ETH Ziirich
1. Motivation & Problem

The increasing prevalence and growing size of data in mod-
ern applications have led to high costs for computation in
traditional processor-centric computing systems. To mitigate
these costs, the processing-in-memory (PIM) [1-6] paradigm
moves computation closer to where the data resides, reducing
the need to move data between memory and the processor.

Even though the concept of PIM has been first proposed in
the 1960< [7 %1 real-warld PIM svstems have onlv recentlv

SAFARI

*LIRMM, Univ. Montpellier, CNRS

face [15, 16] that abstracts the hardware components of the
UPMEM system. Using this key idea, DaPPA transforms a
data-parallel pattern-based application code into the appro-
priate UPMEM-target code, including the required APIs for
data management and code partition, which can then be com-
piled into a UPMEM-based binary transparently from the
programmer. While generating UPMEM-target code, DaPPA
implements several code optimizations to improve end-to-end
performance.

40


https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
https://arxiv.org/abs/2310.10168
http://pactconf.org/
http://pactconf.org/

DaPPA:

Key Idea & Overview

Leverage an intuitive
data-parallel pattern-based interface for
PIM programming

DaPPA, a Data-Parallel PIM Architecture that
automatically distributes input and gathers output data, handles
memory management, and
parallelizes work across PIM cores

DaPPA is composed of three main components:
1 Data-Parallel Pattern APIs

2 Dataflow Programming Interface

3 Dynamic Template-Based Compilation

SAFARI



Pre-defined functions that implement high-level

e Skeleton and pattern-based parallel programming are a common
abstraction for parallel architectures

- M. Cole, “Bringing Skeletons Out of the Closet: A Pragmatic Manifesto for Skeletal
Parallel Programming,” Parallel Computing, 2004

* DaPPA supports five primary data-parallel patterns

reduce fllter wmdow group

3993 ¥ 3930 3505 5.5

SAFARI



DaPPA:

Dataflow Programming Interface

DaPPA exposes to the user a
dataflow-based programming interface

defines a collection of
- transformations over the input data

V4
( . ) ) )
Pipeline
nput _stagel stage 2 _stageN output
= s s =
2 | |
— \[/ o @ /\D —
T | e )
!
'

each stage represents
a parallel pattern

SAFARI 43



DaPPA:

Dynamic Template-Based Compilation

DaPPA uses a dynamic template-based compilation to
generate PIM code in two main steps

Templating: DaPPA creates a base UPMEM code based on a basic
skeleton of a UPMEM application
- We use the Inja C++ templating engine

2 Optimizations: DaPPA uses a series of transformations to
- extract data required by the UPMEM code template
- calculate the memory offsets for MRAMs and WRAMs
- divide computation between CPU and PIM cores

allows for runtime optimizations

[ DaPPA compiles and executes each stage in a Pipeline per time - ]

SAFARI 44



DaPPA:
Putting All Together

reduce
C= AOBO +
AiB +
AoB, +
AsB3

target
computation

SAFARI

Example of DaPPA’s implementation of a
vector dot product operation

45



DaPPA:
Putting All Together

Example of DaPPA’s implementation of a
vector dot product operation

@ data-parallel pattern APIs

reduce fllter window group

@w Y 3380 §37% ¥

reduce
C= AOBO +
AB; +
AsB; +
AsB3

target
computation

SAFARI

46



DaPPA:
Putting All Together

Example of DaPPA’s implementation of a
vector dot product operation

@ data-parallel pattern APIs

___________________________________________________________________________________________

reduce fllter wmdow group
reduce fu'p'M'E'pr'mpeme“p'(d'a'{a = ™)
_ p.stage (MAP(([](int *c, int *a, int xb){
C_AOBO+ *xC = *a * *b;

AB; + }), OUTPUT (int, &c),

AB, + INPUT (int, a), INPUT(int, b)));

ASB3 p.stage (REDUCE (([] (int *sum, int *c){

XSUM += *C;
target Q), REDUCE_OUT (int, &sum), INPUT(int, &C)))_;J

computation @) dataflow programming interface

SAFARI



DaPPA:
Putting All Together

Example of DaPPA’s implementation of a
vector dot product operation

@ data-parallel pattern APIs

___________________________________________________________________________________________

reduce fllter wmdow group
UPMEM
reduce “UPMEM: : P 55{;;5“p_(_d_a_t_a§1_ z_(;)_: _________________ N 7 g < binary
_ p.stage (MAP(([](int *c, int *a, int xb){ trin iﬁcation] int main(){ -
C=AcBo+ * [ string {f in kernel S >
C = *xa % *b; or arg in kernel} =
AB;+ _p! 1), OUTPUT(int, &), N [ type removal] mram_read_full() g_
AB, + INPUT (int, a), INPUT(int, b)));
mram_write_full() 9
AzB3 p.stage (REDUCE (([] (int *sum, 1int *c){ [mem. arrange.] . - - o «m
*sum += *C, \ = = = J \ )
farget  \JL REDUCEOUTCint, &eum), TNPUTCIng, ac)); ) \_OPAmizations femplate in-DRAM exec
computation @) dataflow programming interface © dynamic template-based compilation

SAFARI 48



Evaluation:
Methodology Overview

e Evaluation Setup

- Host CPU: 2-socket Intel® Xeon Silver 4110 CPU
- PIM Cores: 20 UPMEM PIM DIMMs (160 GB PIM memory)
- 2560 DPUs in total

e Workloads: 6 workloads from the PrIM benchmark suite

- Vector addition (VA); Select (SEL); Unique (UNI); Reduce (RED); General
matrix-vector multiply (GEMV); Histogram small (HST-S)

e Metrics

- End-to-end execution time (average of 10 runs)
- Programming complexity (in lines of code)

SAFARI

49



Evaluation:
Performance Analysis

[EEN
o

= PriM

@ DaPPA

Normalized Performance

SAFARI

N i (&)} 00
|

o
|

VA

SEL UNI

\

Large performance improvement
due to
parallel data transfers &

host+PIM collaborative exec.

RED

GEMV

HST-S

GMEAN

50




Evaluation:
Performance Analysis

@ PriM @ DaPPA
Y 10
C
o
€ 8
O
o 6
Q.
®)
L 4
©
£ 2
o
< 0
VA SEL UNI RED GEMV  HST-S GMEAN
DaPPA significantly improves end-to-end performance
compared to hand-tuned implementations
SAFARI 51




Evaluation:
Programming Complexity Analysis

EPriM EDaPPA <€-Reduction
200 98%
(@)
S 150 - 94.4%- 96%
Q
O
S 100 - - 94%
©
o 50 A - 92%
g
-
0 - - 90%
VA SEL UNI RED GEMV  HST-S GMEAN
DaPPA significantly reduces programming complexity
by abstracting hardware components
SAFARI 52



Evaluation:
Comparison to State-of-the-Art

SimplePIM [chen+, PACT’23]: @ framework that uses
(1) iterator functions and (2) primitives for communication
to aid PIM programmability

Compared to SimplePIM, DaPPA provides three key benefits

1. Higher abstraction level - The programmer does not need

to manually specify communication patterns used
during computation

2. Support for more parallel patterns - DaPPA supports
two more parallel primitives (window and group), and
allows the mixing of parallel patterns

3. Further execution optimizations - DaPPA allows
using idle host resources for collaborative execution

DaPPA improves state-of-the-art frameworks for
PIM programmability

SAFARI

53




DaPPA:

A Data-Parallel Framework for Processing-in-Memory Architectures

e Geraldo F. Oliveira, Alain Kohli, David Novo, Juan Gémez-Luna,

Onur Mutlu

"DaPPA: A Data-Parallel Framework for Processing-in-Memory Architectures,”
arXiv:2310.10168 [cs.AR]

2"d Place ACM Student Research Competition at the 32nd International
Conference on Parallel Architectures and Compilation Techniques (PACT),
Vienna, Austria, October 2023.

DaPPA: A Data-Parallel Framework for Processing-in-Memory Architectures

Geraldo F. Oliveira* Alain Kohli* David Novo* Juan Gomez-Luna* Onur Mutlu*

*ETH Ziirich
1. Motivation & Problem

The increasing prevalence and growing size of data in mod-
ern applications have led to high costs for computation in
traditional processor-centric computing systems. To mitigate
these costs, the processing-in-memory (PIM) [1-6] paradigm
moves computation closer to where the data resides, reducing
the need to move data between memory and the processor.

Even though the concept of PIM has been first proposed in
the 1960< [7 %1 real-warld PIM svstems have onlv recentlv

SAFARI

*LIRMM, Univ. Montpellier, CNRS

face [15, 16] that abstracts the hardware components of the
UPMEM system. Using this key idea, DaPPA transforms a
data-parallel pattern-based application code into the appro-
priate UPMEM-target code, including the required APIs for
data management and code partition, which can then be com-
piled into a UPMEM-based binary transparently from the
programmer. While generating UPMEM-target code, DaPPA
implements several code optimizations to improve end-to-end
performance.

54


https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
https://arxiv.org/abs/2310.10168
http://pactconf.org/
http://pactconf.org/

Adoption: How to Maintain Cohetrencer (I)

Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,

"LazyPIM: An Efficient Cache Coherence Mechanism

for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'®, Brandon LuciaT,
Kevin Hsieh', Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*f

t Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich

SAFARI >


https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

Coherence for Hybrid CPU-PIM Apps

Challenge

Traditional

()]
&)
8 ___ % s|Z| 5
3 4 /vG ®) N %fm 2
S Sl © 2|8|= O %%
o ~
BN B 0|2 O nNu 2
Ue3aND
= -- STV g
. [a)
=
9G9¢-dV1H =
yueyased
6
lipey =
Ll
Z# sjusuodwo)
s e e
L
npey =
c
Eufte, ln e e Ny Sy iy Hy Wy G
T u.umuum-umum. uHHm-uHm. ] m“:mconEou
R | eyoSeg
L .N
| lpey >
o
sjuauodwo)

56

SAFARI



Adoption: How to Maintain Coherencer (1I)

Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutluy,

"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators”

Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

CoNDA: Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand' Saugata Ghose' Minesh Patel* Hasan Hassan*
Brandon Lucia’ Rachata Ausavarungnirun’* Kevin Hsieh'
Nastaran Hajinazar®" Krishna T. Malladi® Hongzhong Zheng® Onur Mutlu*"

TCarnegie Mellon University *ETH Ziirich *KMUTNB
°Simon Fraser University SSamsung Semiconductor, Inc.

SAFARI >7


https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/
http://iscaconf.org/isca2019/

Adoption: How to Support Synchronization?

= Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas, Ivan
Fernandez, Juan GoOmez-Luna, Lois Orosa, Nectarios Koziris, Georgios Goumas, Onur Mutlu,
"SynCron: Efficient Synchronization Support for Near-Data-Processin
Architectures”
Proceedings of the 27th International Symposium on High-Performance Computer
Architecture (HPCA), Virtual, February-March 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (21 minutes)]
[Short Talk Video (7 minutes)]

SynCron: Efficient Synchronization Support
for Near-Data-Processing Architectures

Christina Giannoula™ Nandita Vijaykumar** Nikela Papadopoulou’ Vasileios Karakostas” Ivan Fernandez®*
Juan Gémez-Luna* Lois Orosa* Nectarios Koziris' Georgios Goumas’ Onur Mutlu*

T National Technical University of Athens ~ *ETH Ziirich *University of Toronto $University of Malaga

SAFARI >8


https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21.pdf
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21.pdf
https://www.hpca-conf.org/2021/
https://www.hpca-conf.org/2021/
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-short-talk.pdf
https://www.youtube.com/watch?v=2DNDjQjNDTw
https://www.youtube.com/watch?v=kGiN-YjeUUA

Adoption: How to Support Virtual Memory?

Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,

"Accelerating Pointer Chasing in 3D-Stacked Memory:

Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer

Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

TCarnegie Mellon University — *University of Virginia SETH Ziirich

SAFARI >


https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/
http://www.iccd-conf.com/

Adoption: Code and Data Mapping

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,

"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU

Systems”
Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA), Seoul, South Korea, June 2016.

[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh? Eiman Ebrahimi' Gwangsun Kim*  Niladrish Chatterjee]L Mike O’Connor'
Nandita Vijaykumari Onur Mutlu’? Stephen W. Keckler!

fCarnegie Mellon University 'NVIDIA *KAIST SETH Ziirich

SAFARI 60


https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

DAMOV Analysis Methodology & Workloads

DAMOYV: A New Methodology and Benchmark Suite
for Evaluating Data Movement Bottlenecks

GERALDO F. OLIVEIRA, ETH Ziirich, Switzerland

JUAN GOMEZ-LUNA, ETH Ziirich, Switzerland

LOIS OROSA, ETH Ziirich, Switzerland

SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA

NANDITA VIJAYKUMAR, University of Toronto, Canada

IVAN FERNANDEZ, University of Malaga, Spain & ETH Ziirich, Switzerland

MOHAMMAD SADROSADATI, Institute for Research in Fundamental Sciences (IPM), Iran & ETH

Zurich, Switzerland

ONUR MUTLU, ETH Ziirich, Switzerland

Data movement between the CPU and main memory is a first-order obstacle against improving performance,
scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to
reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache
hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP),
where some computation is moved close to memory. Prior NDP works investigate the root causes of data
movement bottlenecks using different profiling methodologies and tools. However, there is still a lack of
understanding about the key metrics that can identify different data movement bottlenecks and their relation
to traditional and emerging data movement mitigation mechanisms. Our goal is to methodically identify
potential sources of data movement over a broad set of applications and to comprehensively compare traditional
compute-centric data movement mitigation techniques (e.g., caching and prefetching) to more memory-centric
techniques (e.g., NDP), thereby developing a rigorous understanding of the best techniques to mitigate each
source of data movement.

With this goal in mind, we perform the first large-scale characterization of a wide variety of applications,
across a wide range of application domains, to identify fundamental program properties that lead to data
movement to/from main memory. We develop the first systematic methodology to classify applications based
on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K
functions across 345 applications, we select 144 functions to form the first open-source benchmark suite
(DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent
different types of data movement bottlenecks, and (2) come from a wide range of application domains.
Using NDP as a case study, we identify new insights about the different data movement bottlenecks and
use these insights to determine the most suitable data movement mitigation mechanism for a particular

application. We open-source DAMOV and the complete source code for our new characterization methodology

S A FA R ’ at https://github.com/CMU-SAFARI/DAMOV. .
https://arxiv.org/pdf/2105.03725.pdf


https://arxiv.org/pdf/2105.03725.pdf

Identifying Memory Bottlenecks

» Multiple approaches to identify applications that:
- suffer from data movement bottlenecks
- take advantage of NDP

* Existing approaches are not comprehensive enough

Roofline model High LLC MPKI

Performance (GOPS/SD

4 NDP Speedup over CPU\

\ _ Arithmetic Intensity (OPS/byte) ) Last-Level Cache MPKI

SAFARI 9



Limitations of Prior Approaches (1/2)

* Roofline model — identifies when an application is
bounded by compute or memory units

Compute Roof
/ y = Peak System Throughput

Memory Roof 1000

y=BWxAI \

300

Compute Bound -

Performance (GOPS/s)

100 Memory Not suitable for NDP
Bound -
Suitable for
0f NDP :
] :10 100 1000

Arithmetic Intensity (OPS/byte)

SAFARI 10



Limitations of Prior Approaches (1/2)

* Roofline model — identifies when an application is
bounded by compute or memory units

™ "= = o = - Y —————— L _— . oy

@ Similar on CPU/NDP| ‘O Depends |

____________ S J it

300 f

100

Performance (GOPS/s)

30r

1 10 100 1000

Arithmetic Intensity (OPS/byte)

SAFARI 11



Limitations of Prior Approaches (1/2)

* Roofline model — identifies when an application is
bounded by compute or memory units

@ Faster on CPU O Faster on NDP @ Similar on CPU/NDP O Depends

Memory Bound 1000
applications Compute Bound
are faster on - \ | applications
CPY, @ 30 0l e® o are faster on CPU v
or performance g Y o
depends ¥ " B A
g 100} e/ I/
= 0N S
o | __--- ! "\ y . .
S N \ & Compute Bound applications
o o y ,: \ @ ® . .
Memory Bound o - ALY have similar performance
applications are\* lo ; on CPU/NDP or
\/ i | performance depends X
\___. K :
1 10 100 1000

Arithmetic Intensity (OPS/byte)

SAFARI 12



Limitations of Prior Approaches (1/2)

Roofline model does not accurately account
for the NDP suitability of memory-bound applications

SAFARI 13



Limitations of Prior Approaches (2/2)

* Application with a last-level cache MPKI > 10
— memory intensive and benefits from NDP

@ Faster on CPU O Faster on NDP @ Similar on CPU/NDP © Depends

1
: ©
1
\ o)
i
4 \
o)
) o ©! o ©
a e 0 9 o o)
O 1 ©
- 8 % o
O 3 h o
> @0 00
o & '~ o
o ' %@
3 d o
8 2 e :
Q_ ]
(,') ]
o @o® o ©
=z 1"“ ----- ‘-r--. ---------------------------- 0----.
° @
®% ° o
’%i ®o®
,0-
0 10 20 30 40

SAFARI LLC MPK] 14



Limitations of Prior Approaches (2/2)

* Application with a last-level cache MPKI > 10
— memory intensive and benefits from NDP

Applications with low

MPKI can be @ Faster on CPU O Faster on NDP @ Similar on CPU/NDP © Depends
; 3 S
have similar o  Applications with
performance on — o . high MPKI are
CPU/NDPor; 4| ot . . ; v
performance g ® i © 0° o
can depends = | Por ° -
% > 3 ' ©Q 00 ,
oo TR !
3 | b ! ° ;
L ok ® ) :
- i :
Applications with 2 | o ! o |
low MPKlare 2 |- ;_.-_:_:_-_i-:':_':'.c:rzg:::'_'_'.'::::'.'_'_'::::'_'.':::: '''''''' e 1.
faster (:r} CPU @ o . o
\ﬂ j ’ ; o ©o®
-I; ----------- 10 20 30 40
SAFARI LLC MPK] 15



Limitations of Prior Approaches (2/2)

LLC MPKI does not accurately account
for the NDP suitability of memory-bound applications

SAFARI 16



Identifying Memory Bottlenecks

» Multiple approaches to identify applications that:
- suffer from data movement bottlenecks

- take advantage of NDP

* Existing approaches are not comprehensive enough

Roofline model

Performance (GOPS/SD

\ _ Arithmetic Intensity (OPS/byte) )
SAFARI

High LLC MPKI

4 NDP Speedup over CPU\

Last-Level Cache MPKI

J

17



The Problem

No available methodology can comprehensively:

- identify data movement bottlenecks

— correlate them with the most suitable
data movement mitigation mechanism

SAFARI 18



* Our Goal: develop a methodology to:

- methodically identify sources of data movement
bottlenecks

- comprehensively compare compute- and memory-
centric data movement mitigation techniques

SAFARI 19



Methodology Overview

__UserInput Step 1 DAMOV-SIM Simulator

| Target Application ! Application Profiling (R [ —— )
! I { 1d oxFF 1} |

i o T i N roi_begin st OxAF
:g : ................. —_ . 1d OXFF |
ig NS i Q P st OxAF

] g —~— | / - /\/ IR CROEEE R ) # Cores 4

1 o 1 roi end || 0| et st

I A i . - . :

: —— |1 / Profiler \Memory Traces Scalability Analysis/

Step 2
Locality-based Clustering

SAFARI \ ) P64




Methodology Overview

User Input

Target Application

-

{  SourceCode =

N

Step 1
\ Application Profiling

roi_begin
— N\

/\/
roi_end

SAFARI

265



Step 1: Application Profiling

Goal: Identify application functions that suffer from data
movement bottlenecks

Signal

. processing
Machine Data

Hardware Profiling Tool:

learning mining
Data
Genomics analytics

Intel VTune

Deep .

Neural Secnr" pr
Networks \ Linear \!
‘5_"‘-.__ algebra Jf
Image W
Data processing el

reorganization

o ... MemoryBound:
rocssng CPU is stalled due to load/store

SAFARI 266



Methodology Overview

@ — “_ —

.
R

Step 2
Locality-based Clustering

A

Temporal Locality

Spatial Locality

SAFARI 267



Step 2: Locality-Based Clustering

* Goal: analyze application’'s memory characteristics

Stride Profile Histogram Stride Profile Histogram
S nlninlaTa

stride profile(1)+=1 1 2 4 8 16 32 - oN 1 2 4 8 16 32 -
Stride Profile (bin) Stride Profile (bin)
Low spatial locality High spatial locality

Memory Trace

Frequency (count)
Frequency (count)

SAFARI 268



Step 2: Locality-Based Clustering

* Goal: analyze application’'s memory characteristics

T emp or al L oC ality7 _Reuse Profile Histogram Reuse Profile Histogram_
Memory Trace 3 5
o o
ST SELELTILLL
] 1 2 4 8 16 32 1 2 4 8 16 32 - 2N
reuse proflle (4)+= 1 Reuse Profile (bin) Reuse Profile (bin)
Low temporal locality High temporal locality

SAFARI 269



Methodology Overview

DAMOV-SIM Simulator

.......................................
o
0
.
H
.
.
.
.

.
.
.
)
.
.
.
.
.
.
E —
.
.
.
.

# Cores

N o
------------------------------------

Step 3
Memory Bottleneck Class.

Arithmetic Intensity

LLC MPKI

( )

Last-to-First

SAFARI __MissRatio (LFMR) _J +70




Step 3: Memory Bottleneck Classification (1/2)

4 )
Arithmetic Intensity (Al)

- floating-point/arithmetic operations per L1 cache lines accessed
— shows computational intensity per memory request

- J
4 N

LLC Misses-per-Kilo-Instructions (MPKI)

- LLC misses per one thousand instructions
— shows memory intensity

N\
AN

Last-to-First Miss Ratio (LFMR)

- LLC misses per L1 misses
— shows if an application benefits from L2 /L3 caches

SAFARI 271



Step 3: Memory Bottleneck Classification (2/2)

* oal: identify the specific sources of data movement

bottlenecks
Configuration 1: Host CPU System

DAMOV-SIM Simulator

/- ...............................................................
y
0’ .’
. 3
- 3
: )
; 3
:
: -
:
L -
- =

# Cores :
-------------------------------------------------------------- Oﬂ‘_chip link i
\ Scalability Analysis A

Integrated ZSim and Ramulator Logic Layer

Off-chip link
—

* Scalability Analysis:
- 1,4, 16, 64, and 256 out-of-order/in-order host and NDP CPU cores
- 3D-stacked memory as main memory

SAFARI DAMOV-SIM: https://github.com /CMU-SAFARI/DAMOQV 272


https://github.com/CMU-SAFARI/DAMOV

Step 3: Memory Bottleneck Analysis

| Memory Bottleneck Class!

1a: DRAM
Bandwidth

1b: DRAM Latency

4 N

Six classes of

data movement bottlenecks: le: L1/L2

Cache Capacity

each class < data movement
\_ mitigation mechanism .

2a: L3 Cache
Contention

2b: L1 Cache
Capacity

2c: Compute-Bound

SAFARI e ;



DAMOYV i1s Open Source

* We open-source our benchmark suite and our toolchain

CMU-SAFARI / DAMOV

<> Code (%) Issues 11 Pull requests (*) Actions [1] Projects (1) Security [~ Insights 51 Settings

¥ main ~ # 1branch  0tags Go to file Add file ~ About b}

DAMOV is a benchmark suite and a
Q omutlu Update README.md celbdea 17 days ago Y9 5 commits methodical framework targeting the
EEEEEEEEEEEEEEEN study of data movement bottlenecks

[ §
D AM OV-S I M » I simulator Cleaning 19 days ago in modern applications. It is intended

4NN EEEEEEEEEEEEENPD 2
[ README.md Update README.md 17 days ago to study new amh'j(ecmres' S_UCh as
near-data processing. Described by

.llllllllllllllll.
DAMOV -- first commit 19 days ago Oliveira et al. (preliminary version at

DAM OV = [@ get_workloads.sh
https://arxiv.org/pdf/2105.03725.pdf)

n
L]
4EEEEEEEEEEEEEEED

Benchmarks

‘= README.md Z [0 Readme

DAMOV: A New Methodology and Benchmark Suite for Releases
Evaluating Data Movement Bottlenecks Norelsases pubished

Create a new release

DAMOV is a benchmark suite and a methodical framework targeting the study of data movement bottlenecks in

modern applications. It is intended to study new architectures, such as near-data processing.
Packages

The DAMOV benchmark suite is the first open-source benchmark suite for main memory data movement-related No packages published
studies, based on our systematic characterization methodology. This suite consists of 144 functions representing Publish your first package
different sources of data movement bottlenecks and can be used as a baseline benchmark set for future data-

movement mitigation research. The applications in the DAMOV benchmark suite belong to popular benchmark

suites, including BWA, Chai, Darknet, GASE, Hardware Effects, Hashjoin, HPCC, HPCG, Ligra, PARSEC, Parboil, Languages

PolyBench, Phoenix, Rodinia, SPLASH-2, STREAM.
| ] L L]

SAFARI



DAMOYV i1s Open Source

* We open-source our benchmark suite and our toolchain

CMU-SAFARI / DAMOV

<> Code (%) Issues 1) Pull requests (») Actions [1] Projects (1) Security [~ Insights 51 Settings

¥ main ~ ¥ 1branch © 0tags Go to file Add file ~ About b}

DAMOQV is a benchmark suite and a

Get DAMOV at:

‘=  README.md Ve [0 Readme

DAMOV: A New Methodology and Benchmark Suite for Releases
Evaluating Data Movement Bottlenecks No releases published

Create a new release

DAMOV is a benchmark suite and a methodical framework targeting the study of data movement bottlenecks in

modern applications. It is intended to study new architectures, such as near-data processing.
Packages

The DAMOV benchmark suite is the first open-source benchmark suite for main memory data movement-related No packages published
studies, based on our systematic characterization methodology. This suite consists of 144 functions representing Publish your first package
different sources of data movement bottlenecks and can be used as a baseline benchmark set for future data-

movement mitigation research. The applications in the DAMOV benchmark suite belong to popular benchmark

suites, including BWA, Chai, Darknet, GASE, Hardware Effects, Hashjoin, HPCC, HPCG, Ligra, PARSEC, Parboil, Languages

PolyBench, Phoenix, Rodinia, SPLASH-2, STREAM.
O ] ]

SAFARI


https://github.com/CMU-SAFARI/DAMOV

More on DAMOYV Analysis Methodology & Workloads

Step 3: Memory Bottleneck Classification (2/.

* Goal: identify the specific sources of data movement p——
bottlenecks

DAMOV-SIM Simulator

\

# Cores

\ Scalability Analysis /

Integrated ZSim and Ramulator

Logic Layer

 Scalability Analysis:
- 1,4, 16, 64, and 256 out-of-order/in-order host and NDP CPU cores
- 3D-stacked memory as main memory

T QAEFAR
>l X)) 2642724040

SAFARI Live Seminar: DAMOV: A New Methodology & Benchmark Suite for Data Movement Bottlenecks

352 views * Streamed live on Jul 22, 2021 |‘ 18 ql 0 ) SHARE =} SAVE

@ Onur Mutlu Lectures ANALYTICS | EDIT viDEO
&> 17.7K subscribers



https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=3

More on DAMOYV Methods & Benchmarks

Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata Ghose, Nandita
Vijaykumar, Ivan fernandez, Mohammad Sadrosadati, and Onur Mutlu,
"DAMOV: A New Methodology and Benchmark Suite for Evaluating Data
Movement Bottlenecks"

TEEE Access, 8 September 2021.

Preprint in arXiv, 8 May 2021.

[arXiv preprint]

[IEEE Access version]

[DAMOV Suite and Simulator Source Code]

[SAFARI Live Seminar Video (2 hrs 40 mins)]

[Short Talk Video (21 minutes)]

DAMOYV: A New Methodology and Benchmark Suite
for Evaluating Data Movement Bottlenecks

GERALDO F. OLIVEIRA, ETH Ziirich, Switzerland
JUAN GOMEZ-LUNA, ETH Ziirich, Switzerland
LOIS OROSA, ETH Ziirich, Switzerland
SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA
NANDITA VIJAYKUMAR, University of Toronto, Canada
IVAN FERNANDEZ, University of Malaga, Spain & ETH Ziirich, Switzerland
MOHAMMAD SADROSADATI, ETH Ziirich, Switzerland
S A FA RI ONUR MUTLU, ETH Ziirich, Switzerland 86


https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://doi.org/10.1109/ACCESS.2021.3110993
https://arxiv.org/abs/2105.03725
https://arxiv.org/pdf/2105.03725.pdf
https://doi.org/10.1109/ACCESS.2021.3110993
https://github.com/CMU-SAFARI/DAMOV
https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=156
https://www.youtube.com/watch?v=HkMYuYMuZOg&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=161

Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures

SAFARI




Challenge and Opportunity for Future

Fundamentally
High-Performance
(Data-Centric)
Computing Architectures

SAFARI




Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI



Concluding Remarks

= We must design systems to be balanced, high-performance,
energy-efficient (all at the same time) - intelligent systems

o Data-centric, data-driven, data-aware

= Enable computation capability inside and close to memory

= This can

o Lead to orders-of-magnitude improvements

o Enable new applications & computing platforms
o Enable better understanding of nature
a

= Future of truly memory-centric computing is bright

o We need to do research & design across the computing stack
SAFARI 90




Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware

SAFARI

91



We Need to Revisit the Entire Stack

SW/HW Interface

We can get there step by step

SAFARI

92



We Need to Exploit Good Principles

= Data-centric system design

= All components intelligent

= Better (cross-layer) communication, better interfaces
= Better-than-worst-case design

= Heterogeneity

= Flexibility, adaptability Open mlnds

SAFARI 93



PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu?b, Saugata Ghoseb°, Juan Gémez-Luna?, Rachata Ausava.rungnirund

SAFARI Research Group

“ETH Ziirich
2 Carnegie Mellon University
©University of Illinois at Urbana-Champaign
dKing Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

SAFARI https: //arxiv.org/pdf/1903.03988.pdf 7



https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf

Spectal Research Sessions & Courses (1)
Special Session at ISVLSI 2022: 9 cutting-edge talks

In-Memory Processing
ISVLSI 2022 Special Session

IEEE Computer Society Annual Symposium on VLSI

July 4th, 2022

ISVLSI 2022 Special Session on Processing-in-Memory

1,286 views * Premiered Aug 9, 2022 e 61 GJ DISLIKE > SHARE L DOWNLOAD ${ CLIP =+ SAVE ...
€\ InurMutiu L ectures ANALYTICS | EDIT VIDEO
&> 26.9K subscribers

SAFARI https: //www.youtube.com/watch?v=geukNs5XI3



https://www.youtube.com/watch?v=qeukNs5XI3g

Special Research Sessions & Courses (11

= Special Session at ISVLSI 2022: 9 cutting-edge talks

GenStore: In-Storage Filtering for High-Performance and Energy-Efficient Genome Analysis

Onur Mutlu Lectures + + Premieres 3/12/23,7:00 PM

Introduction to the ISVLSI 2022 Special Session on Processing-in-Memory

In-Memory Processing
ISVLSI 2022 Specil Session

Onur Mutlu Lectures + 286 views * 2 days ago

Livestream - P&S Data-Centric
Heterog: Data-Centric Architectures for Data-Intensive Applications: Case Studies in ML and DB

Architectures: Fundamentally...
Onur Mutlu Lectures « 2 waiting * Premieres 3/10/23, 7:00 PM

Onur Mutlu Lectures

27 videos 1,034 views Last updated on Feb 25, 2023

=+ 2

P Play all >3 Shuffle

AState ofthe Art PIM System

o)

Machine Learning Training on a Real Processing-In-Memory System

Onur Mutlu Lectures * + Premieres 3/14/23,7:00 PM

Exploiting Near-Data Processing to Accelerate Time Series Analysis

Onur Mutlu Lectures « + Premieres 3/11/23,7:00 PM

PiDRAM: An FPGA-Based Framework for End-To-End Evaluation of Processing-In-DRAM Techniques

Onur Mutlu Lectures « + Premieres 3/9/23,7:00 PM

The Road to Widely Deploying Processing-In-Memory: Challenges and Opportunities

Onur Mutlu Lectures + 399 views * 1 day ago

SparseP: Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures

Onur Mutlu Lectures « 1 waiting + Premieres 3/13/23, 7:00 PM

HPCA 2023 Tutorial: Real-World Processing-in-Memory Architectures

Onur Mutlu Lectures « 1.6K views * Streamed 10 days ago

SAFAR] https://www.youtube.com/playlist?list=PL 5Q2s0XY2Zi8KzG2CQYRNQOVDOGOBrmKy



https://www.youtube.com/playlist?list=PL5Q2soXY2Zi8KzG2CQYRNQOVD0GOBrnKy

Processing-in-Memory Course (Fall 2024)

Short weekly lectures
H a nd S-On p rO_] eCtS f SAFARI Project & Seminars Courses (Fall Searon

%, 2024) Recent Changes Media Manager Sitemap

Trace: - start - processing_in_memory

Home Table of Contents
Gatrsds Data-Centric Architectures: Fundamentally Data-Centric Architecture
DRAM Bender Improving Performance and Energy (227-0085- Sbssaliogien

Accelerating Genomics

Mobile Genomics 37L) 0085-37L)
Modern SSDs Edit se Description
Clinical Genomics Course Description Mentors

Lecture Video Playlist on
pute units of YouTube
energy bottleneck. Fall 2024 Meetings/Schedule

Past Lecture Video Playlists on

ent costs dominate 8
YouTube

prgy consumption.

y and the

nergy in consumer
is a huge burden
of modern computing systems. This phenomenon is
PIM Course: Lecture 3: Processing-Near-Memory (Fall 2024) nd the processor, which leads to the data movement

Learning Materials

Assignments

Onur Mutlu Lectures + 324 views + Streamed 9 days agc

P learning, computational biology, graph processing,
— - suffer greatly from the data movement bottleneck.
@ Onur Mutlu Lectures s cesses, relatively low data reuse, low cache line

s per accessed byte), and large datasets that greatly

Playlist - Public - 4 videos - 179 views
b workloads cannot usually compensate for the data

N . : - t bottleneck, we need a paradigm shift from the
P Playall Vi H 3 g
on takes place in the compute units, to a more data-

pser to or inside where the data resides. This paradigm

https://safari.ethz.ch/projects and seminars/fall2024/
doku.php?id=processing in memory

https: //www.youtube.com/playlist ?list=PL5Q2s0XY2Zi9DSQg70AIsNO8dOQKx
F9sl

SAFARI o7



https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/fall2024/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/fall2024/doku.php?id=processing_in_memory
https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9DSQg7OAlsNO8dOQKxF9sl
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9DSQg7OAlsNO8dOQKxF9sl

Processing-in-Memory Course (Spring 2023)

1_7_ “ . . = LUHI\TI
. S h O rt Wee kIy Iect u res \;IILZ (SSADT#IS Iz'zrzoé?Ct & Semmars COUrSes Recent Changes Media Manager Sitemap

Trace: « heterogeneous_systems = processing_in_memory

= Hands-on projects —

Home
Table of Contents
Courses N .
Data-Centric Architectures: Fundamentally Data-Centric Architectures:
= SoftMC . Fundamentally Improving
= Ramulator |mPr0Vll19 Performance and Energy (227- Performance and Energy (227-
: 0085-37L)
. Am?leratnng Genomics 0085_37L) Course Description
= Mobile Genomics Ment
= Processing-in-Memory entors N
= Heterogeneous Systems Course Description b‘;‘u";‘u’ﬁ;"““ Flyliat on
» Modem SSD ; .
. H:r;;:,e,&;ware Co-design Data movement between the memory units and the compute units of Spring 2023 Meetings/Schedule
¢ current computing systems is a major performance and energy 533%;;‘“"9 Video Playlists on
PIM Course: Lecture 1: Data-Centric Archil i & Energy (Spring 2023) bottleneck. From large-scale servers to mobile devices, data movement Learning Materials
costs dominate computation costs in terms of both performance and Assignments

Onur Mutly Lectures + 1.1K views » Streamed 3 months ago

energy consumption. For example, data movement between the main

memory and the processing cores accounts for 62% of the total system
PIM Course: Lecture 2: How to Evaluate Data Movement Bottlenecks (Spring 2023) energy in consumer applications. As a result, the data movement bottleneck is a huge burden that greatly
limits the energy efficiency and performance of modemn computing systems. This phenomenon is an
undesired effect of the dichotomy between memory and the processor, which leads to the data movement
bottleneck.

Onur Muths Lectures + 332 views » 2 months ago

Livestream - Data-Centric = ASPLOS 2023 Tutorial: Real-world Processing-in-Memory Systems for Modern Workloads

Architectures: Fundamentally... : 3 Onur Mutlu Lectures + 1.5K views - Streamed 2 months ago Many modern and important workloads such as machine learning, computational biology, graph
processing, databases, video analytics, and real-time data analytics suffer greatly from the data
movement bottleneck. These workloads are exemplified by irregular memory accesses, relatively low data

Onur Mutlu Lectures
19 videos 813 views Updated 3 days ago

PIM Course: Lecture 3: Real-world PIM: UPMEM PIM (Spring 2023) reuse, low cache line utilization, low arithmetic intensity (i.e., ratio of operations per accessed byte), and
= T e Onur Muths Lectures - 411 views 2 months ago large datasets that greatly exceed the main memory size. The computation in these workloads cannot
usually compensate for the data movement costs. In order to alleviate this data movement bottleneck, we
m need a paradigm shift from the traditional processor-centric design, where all computation takes place in
% PiM Course: Lecture 4: Real-world PIM: Microbenchmarking of UPMEM PIM (Spring 2023) the compute units, to a more data-centric design where processing elements are placed closer to or
Oour phitia Lectres. 2 188 viwm + 2 morthe sge inside where the data resides. This paradigm of computing is known as Processing-in-Memory (PIM).

This is your perfect P&S if you want to become familiar with the main PIM technologies, which represent
“the next big thing” in Computer Architecture. You will work hands-on with the first real-world PIM

Opsbui Lacwnysi152 iews 2 morehe a9 architecture, will explore different PIM architecture designs for important workloads, and will develop tools
to enable research of future PIM systems. Projects in this course span software and hardware as well as
the software/hardware interface. You can potentially work on developing and optimizing new workloads
for the first real-world PIM hardware or explore new PIM designs in simulators, or do something else that
can forward our understanding of the PIM paradigm.

Andlisis Experimental de una Arquitectura PIM - Juan G6mez Luna - Lecture in Spanish @ U. de Cérdoba

PIM Course: Lecture 5: Real-world PIM: Samsung HBM-PIM (Spring 2023)

Onur Muthu Lectures + 483 views + 2 months ago

PIM Course: Lecture 6: Real-world PIM: SK Hynix AiM (Spring 2023) Prerequisites of the course:

Onur Mutu Lectures + 573 views + 1 month ago

Digital Design and Computer Architecture (or equivalent course).
Familiarity with C/C++ programming.

Interest in future computer architectures and computing paradigms.
Interest in discovering why things do or do not work and solving problems
Interest in making systems efficient and usable

PIM Course: Lecture 7: Real-world PIM: Samsung AxDIMM (Spring 2023)

" Onur Mutlu Lectures 325 views + 1 month ago

SAFARI 78


https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=processing_in_memory
https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi_EObuoAZVSq_o6UySWQHvZ

PIM Course (Fall 2022)

A Modern Primer on Processing in Memor:

Onur Mutlu*®, Saugata Ghose"<, Juan Gémez-Luna*, Rachata Ausavarungnirun®

Fall 2022 Edition:

o  https://safari.ethz.ch/projects and seminars/fall2022
/doku.php?id=processing in _memory

Spring 2022 Edition:

o https://safari.ethz.ch/projects and seminars/spring2
022 /doku.php?id=processing in_memory

Youtube Livestream (Fall 2022):

o https://www.youtube.com/watch?v=0QLLOwQ9I4Dw&
list=PL5Q2s0XY2Zi8KzG2CQYRNQOVDOGOBrnKy

Youtube Livestream (Spring 2022):

o https://www.youtube.com/watch?v=9e4Chnwdovog&ii
st=PL50Q2s0XY2Zi-841fUYYUK9EsXKhQKRPyX

Project course

o Taken by Bachelor's/Master’s students
o Processing-in-Memory lectures

o Hands-on research exploration

o Many research readings

https: //www.youtube.com/onurmutlulectures

SAFARI

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
“A Modern Primer on Processing in Memory™

Invited Book Chapter in Emerging Computin
goking Beyond Moore &

ing: From Devic s -
eumann, Springer, to be published in 2021.

Watch on 88 Youlube

https://arxiv.ora/pdf/1903,03988.pdf

Spring 2022 Meetings/Schedule

Week Date Livestream Meeting

W1 1003 YeolllD Live M1: P&S PIM Course Presentation

Thu am (PDF) s (PPT)
w2 15.03 Hands-on Project Proposals
Tue.

17.03 Yol Premiere  M2: Real-world PIM: UPMEM PIM

Thu aui (PDF) s (PPT)
W3 2403 Yol Live M3: Real-world PIM:
Thu Microbenchmarking of UPMEM
PIM
am (POF) ma (PPT)

w4 31.03 Yolll® Live M4: Real-world PIM: Samsung
Thu. HBM-PIM
am (POF) @ (PPT)

w5 07.04 Yool Live M5: How to Evaluate Data
Thu. Movement Bottienecks
am (PDF) an (PPT)

w6  14.04 Yool Live M8: Real-world PIM: SK Hynix AiM
Thu an (PDF) um (PPT)

W7 21.04 Yufll Premiere = M7: Programming PIM
Thu Architectures
aa (PDF) zm (PPT)

w8 2804 Yl Premiere M8: Benchmarking and Workioad
Thu. Suitability on PIM
am (PDF) @ (PPT)

wo 0505 Yoo} Premiere = M9: Real-world PIM: Samsung
Thu AXDIMM
am (PDF) am (PPT)

W10 1205 Yo} Premiere = M10: Real-world PIM: Alibaba HB-
Thu PNM
aul (PDF) as (PPT)

Wit 1905 Yool Live M11: SpMV on a Real PIM
Thu Architecture
am (POF) g (PPT)

w12 2605 Yool Live M12: End-to-End Framework for
Thu. Processing-using-Memory
au (PDF) @a (PPT)

w13 0206 Yool Live M13: Bit-Serial SIMD Processing
Thu using DRAM
@ (PDF) us (PPT)

w14 09.06 Yol Live M14: Analyzing and Mitigating ML
Thu Inference Bottlenecks
am (PDF) an (PPT)

w15 1506 Yool Live M15: In-Memory HTAP Databases
Thu with HW/SW Co-design
am (PDF) s (PPT)

w16 2306 Yool Live M16: In-Storage Processing for
Thu. Genome Analysis
au (PDF) aa (PPT)

W17 18,07 Yool Premiere =M17: How to Enable the Adoption
Mon. of PIM?
am (PDF) un (PPT)

w18 09.08 Yo} Premiere = SS1: ISVLSI 2022 Special Session
Tue. on PIM
(PDF & PPT)

Learning Assignments
Materials

Required Materlals  HW 0 Out
Recommen: ded

99


https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://www.youtube.com/watch?v=QLL0wQ9I4Dw&list=PL5Q2soXY2Zi8KzG2CQYRNQOVD0GOBrnKy
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/onurmutlulectures

Real PIM Tutorials [1sCcA’23, ASPLOS’23, HPCA’23]

= June, March, Feb : Lectures + Hands-on labs + Invited talks

ISCA 2023 Real-World PIM Tutorial

4,‘ Recent Changes Media Manager Sitemap

4:;_‘.—1

Trace: * start
start
Table of Contents

Real-world Processing-in-Memory Systems for Modern Workloads Real-world Processing-in-Memory

Systems for Modern Workloads
Tutorial Description
Organizers

Processing-in-Memory (PIM) is a computing paradigm that aims at overcoming the data movement Agenda (June 18, 2023)

bottleneck (i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement Lactlres(fentative)

between memory units and compute units) by making memory compute-capable i
ry p y 9 ry P pable. Learning Materials

Tutorial Description

Explored over several decades since the 1960s, PIM systems are becoming a reality with the advent of the
first commercial products and prototypes.

A number of startups (e.g., UPMEM, Neuroblade) are already commercializing real PIM hardware, each with its own design approach and
target applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two
years. Most of these architectures have in common that they place compute units near the memory arrays. This type of PIM is called
processing near memory (PNM).

PIM can provide large improvements in both performance and energy
consumption for many modern applications, thereby enabling a
commercially viable way of dealing with huge amounts of data that is
bottlenecking our computing systems. Yet, it is critical to (1) study and
understand the characteristics that make a workload suitable for a PIM
architecture, (2) propose optimization strategies for PIM kernels, and (3)
develop programming frameworks and tools that can lower the learning
curve and ease the adoption of PIM.

2,560-DPU Processmg—m Memory System

This tutorial focuses on the latest advances in PIM technology, workload
characterization for PIM, and programming and optimizing PIM kernels. We
will (1) provide an introduction to PIM and taxonomy of PIM systems, (2)
give an overview and a rigorous analysis of existing real-world PIM
hardware, (3) conduct hand-on labs about important workloads (machine
learning, sparse linear algebra, bioinformatics, etc.) using real PIM systems,
and (4) shed light on how to improve future PIM systems for such workloads.

ps:/ /arxiv.org/pdf/2105.03814.pdf

SAFARI https: //events.safari.ethz.ch/isca-pim-tutorial 100



https://events.safari.ethz.ch/isca-pim-tutorial/

Real PIM Tutorial [ISCA 2023]

= June 18: Lectures + Hands-on labs + Invited talks

ISCA 2023 Real-World PIM Tutorial
Sunday, June 18, Orlando, Florida

Organizers: Juan Gémez Luna, Onur Mutlu, Ataberk Olgun
Program: https://events.safari.ethz.ch/isca-pim-tutorial/

Tutorial Materials

Time

8:55am-
9:00am

9:00am-
10:20am

10:20am-
11:00am

11:20am-
11:50am

11:50am-
12:30pm

2:00pm-
2:45pm

2:45pm-
3:30pm

4:00pm-
4:40pm

4:40pm-
5:20pm

5:20pm-

Speaker

Dr. Juan Gémez Luna

Prof. Onur Mutlu

Dr. Juan Gémez Luna

Prof. I1zzat El Hajj

Dr. Christina Giannoula

Dr. Sukhan Lee

Dr. Juan Gémez Luna /

Ataberk Olgun

Dr. Juan Gémez Luna

Dr. Juan Gémez Luna

Dr. Juan Gémez Luna

"SAFARI

PNM for neural networks |

PNM for ML workloads |

Title
Welcome & Agenda

Memory-Centric Computing

Processing-Near-Memory: Real PNM Architectures / Programming
General-purpose PIM

High-throughput Sequence Alignment using Real Processing-in-Memory
Systems

SparseP: Towards Efficient Sparse Matrix Vector Multiplication for Real
Processing-In-Memory Systems

Introducing Real-world HBM-PIM Powered System for Memory-bound
Applications

Processing-Using-Memory: Exploiting the Analog Operational
Properties of Memory Components / PUM Prototypes: PIDRAM

Accelerating Modern Workloads on a General-purpose PIM System

Adoption Issues: How to Enable PIM?

Hands-on Lab: Programming and Understanding a Real Processing-in-
Memory Architecture

Overview PIM | PNM | UPMEM PIM |
PNM for recommender systems |
How to enable PIM? | PUM prototypes

Hands-on Labs: Benchmarking |
Accelerating real-world workloads

hitps:/ /arxiv.ora/pdf/ 2105.03814.pdf

Materials

[X](PDF) [P](PPT)

(PDF) [P](PPT)

[=(POF) [F1(PPT)

(PDF) [P](PPT)

(PDF) [P](PPT)

(PDF) [P](PPT)
[X](PDF) [P](PPT)

(PDF) [P](PPT)
(PDF) [P](PPT)

[A] (Handout)
(PDF) [F](PPT)

International Symposium on Computer Architecture (ISCA)

Real-world
Processing-in-Memory

Systems
for Modern Workloads

Room: Magnolia 16
Marriott World Center Orlando
Orlando, FL, USA

ISCA2023"
ave— = o July 18th, 2023

ISCA 2023 Tutorial: Real-world Processing-in-Memory Systems for Modern Workloads

Q Onur Mutlu Lectures

33.9K subscribers

A subscribed 57 G} 2 shae L Download 3¢ Clip

1,687 views Streamed live on Jun 18, 2023 Livestream - D: Improving

and Energy (Spring 2023)

https:/ /www.youtube.com/
live/GIb5EgSrWkO

https:/ /events.safari.ethz.ch/
isca-pim-tutorial/

101


https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://events.safari.ethz.ch/isca-pim-tutorial/
https://events.safari.ethz.ch/isca-pim-tutorial/
https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/live/GIb5EgSrWk0
https://www.youtube.com/live/GIb5EgSrWk0

Real PIM Tutorial [ASPLOS 2023]

March 26: Lectures + Hands-on labs + Invited talks

| j ASPLOS 2023 Real-World PIM Tutorial

Trace: « start

Real-world Processing-in-Memory Systems for Modern Workloads

© Important note about registration

Tutorial Description

g-in-M ry (PIM) is a paradigm that aims at overcoming the data movement
bottleneck (i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement

Recent Changes Media Manager Sitemap

Table of Contents

between memory units and compute units) by making memory compute-capable.

Explored over several decades since the 1960s, PIM systems are becoming a reality with the advent of the first commercial products and
prototypes.

A number of startups (e.g., UPMEM, Neuroblade) are already commercializing real PIM hardware, each with its own design approach and
target applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two
years. Most of these architectures have in common that they place compute units near the memory arrays. This type of PIM is called
processing near memory (PNM).

2,560-DPU Processing-in-Memory System

Tutorial Materials

Time
9:00am-
10:20am
10:40am-
12:00pm
1:40pm-
2:20pm
2:20pm-
3:20pm

3:40pm-
4:10pm

4:10pm-
4:50pm
4:50pm-
5:00pm

Speaker
Prof. Onur Mutlu

Dr. Juan Gémez Luna

Prof. Alexandra (Sasha) Fedorova
(UBC)

Dr. Juan Gémez Luna & Ataberk
Olgun

Dr. Juan Gémez Luna

Dr. Yongkee Kwon & Eddy
(Chanwook) Park (SK Hynix)

Dr. Juan Gémez Luna

SAFARI

1

PIM can provide large improvements in both performance and energy
consumption for many modem applications, thereby enabling a
commercially viable way of dealing with huge amounts of data that is
bottlenecking our computing systems. Yet, it is critical to (1) study and
understand the characteristics that make a workload suitable for a PIM

arnhitanhira [9\ nrannea anlimizatinn atrataniac far DIM Lamale and (2\

Title

Memory-Centric Computing

Processing-Near-Memory: Real PNM Architectures Programming
General-purpose PIM

Processing in Memory in the Wild

Processing-Using-Memory: Exploiting the Analog Operational
Properties of Memory Components

Adoption issues: How to enable PIM?
Accelerating Modern Workloads on a General-purpose PIM
System

System Architecture and Software Stack for GDDR6-AIM

Hands-on Lab: Programming and Understanding a Real
Processing-in-Memory Architecture

Materials

(PDF)
(PPT)

33
=l

H FE FEHEEH EFEEEH EH EE EEF

PDF)

ASPLOS 2023 Tutorial
Real-world Processing-in-Memory Systems for Modern Workloads

Accelerating Modern Workloads
on a General-purpose PIM System

Dr. Juan Gémez Luna
Professor Onur Mutlu

ASPLOS 2023 Tutorial: Real-world Processing-in-Memory Systems for Modern Workloads

Onur Mutlu Lectures

[ Subscribed b3 GF  Dshae 3{Clp =+ Save

views Streamed 7 days ago Livestream - Data-Centric Improving ance and Energy (Spring 2023)
LOS 2023 Tutorial: Reak-world Processing-in-Memory Systems for Modern Workloads

5:/fevents safari.ethz.ch/asplos

https:/ /www.youtube.com/
watch?v=0YCaLcTOKmo

https:/ /events.safari.ethz.ch/

asplos-pim-tutorial/

102


https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://events.safari.ethz.ch/asplos-pim-tutorial/
https://events.safari.ethz.ch/asplos-pim-tutorial/
https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=oYCaLcT0Kmo
https://www.youtube.com/watch?v=oYCaLcT0Kmo

Real PIM Tutorial [HPCA 2023]

= February 26: Lectures + Hands-on labs + Invited Talks

ol HPCA 2023 Real-World PIM Tutorial

=

Trace: - start

Recent Changes Media Manager Sitemap

Table of Contents phee ———— rC———/Database

Real-world Processing-in-Memory Architectures

4 Processing-in-Memory
£an o Graphs
Tutorial Description »
P! .
g-in-Memory (PIM) is a paradigm that aims at g the data 26, 2023) Media
(i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement between ) s

memory units and compute units) by making memory compute-capable

Explored over several decades since the 1960s, PIM systems are becoming a reality with the advent of the first Results
commercial products and prototypes.

Anumber of startups (e.9., UPMEM, Neuroblade, Mythic) are already commercializing real PIM hardware, each with its own design approach and = Many questions ... How do we design the:
target applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two years.
o compute-capable memory & controllers?

Most of these architectures have in common that they place compute units near iy P
the memory arrays. But, there is more to come: Academia and Industry are o processors & communication units?
actively exploring other types of PIM by, e.g., exploiting the analog operation of . vl
DRAM, SRAM, flash memory and emerging non-volatile memories. a software & hardware interfaces?

systel ftw i ?

PIM can provide large improvements in both performance and energy g m SO are, oompllers, languages‘
consumption, thereby enabling a commercially viable way of dealing with huge m:hms & ﬂ‘l cal ti ?
amounts of data that is bottienecking our computing systems. Yet, it is critical to e

examine and research adoption issues of PIM using especially learnings from
real PIM systems that are available today.

2,560-DPU Processing-in-Memory System

HPCA 2023 Tutorial: Real-World Processing-in-Memory Architectures

This tutorial focuses on the latest advances in PIM technology. We wil (1) T p—
provide an introduction to PIM and taxonomy of PIM systems, (2) give an ,ﬁ S L1 subscribed il 50 G shae  G{Cp =+ Save
< overview and a rigorous analysis of existing real-world PIM hardware, (3)
T T e Ry conduct hand-on labs using real PIM systems, and (4) shed light on how to 1.8K views Streamed 1 month ago Livestream - P&S Data-Centric Improving Performance and Energy (Fall 2022)

enable the adoption of PIM in future computing systems. HPCA 2023 Tutorial: Real-World Processing-in-Memory Architectures

hitps:/events.safari.ethz.ch/real-pi

Time Speaker Title Materials
8:00am- Prof. Onur Mutlu = Memory-Centric Computing h [} m
Baoam J/WWWw.youtune.C
8:40am- Dr. Juan Gémez | Processing-Near-Memory: Real PNM Architectures Programming General-purpose (
10:00am Luna PIM ?
-— - I
10:20am- Dr. Dimin Niu A 3D Logic-to-DRAM Hybrid Bonding Process-Near-Memory Chip for Recommendation System Wa tc ° v— 5 n 1t z 5w
11:00am
11:00am- Dr. Christina SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-
11:40am Giannoula In-Memory Architectures
1:30pm- Dr. Juan Gémez | Processing-Using-Memory: Exploiting the Analog Operational Properties of Memory
2:10pm Luna Components
2:10pm- Dr. Manuel Le Deep Learning Inference Using Computational Phase-Change Memory ° e
ttps://events.sarari.ethz.c
[ [ L] [
2:50pm- Dr. Juan Gémez | PIM Adoption Issues: How to Enable PIM Adoption? (l )
3:30pm Luna ° °
3:40pm- Dr. Juan Gémez | Hands-on Lab: Programming and Understanding a Real Processing-in-Memory re a I - p I m -t ut O r I a I /
5:40pm Luna Architecture

SAFARI 103


https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=f5-nT1tbz5w
https://www.youtube.com/watch?v=f5-nT1tbz5w
https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://events.safari.ethz.ch/real-pim-tutorial/
https://events.safari.ethz.ch/real-pim-tutorial/

Real PIM Tutorial [MICRO 2023]

October 29: Lectures + Hands-on labs + Invited talks

Log In

MICRO 2023 Real-World PIM Tutorial Soa

{ 2,560-DPU Processing-in-Memory System
%, Recent Changes Media Mat r Sitemap E - il - o e

e / " . -

Table of Contents

Real-world Processing-in-Memory Systems for Modern Workloads

Tutorial Description

Processing-in-Memory (PIM) is a computing paradigm that aims at g the data movement
(i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement between
memory units and compute units) by making memory compute-capable.

Explored over several decades since the 1960s, PIM systems are becoming a reality with the advent of the first ming Materials
commercial products and prototypes.

A number of startups (e.g., UPMEM, are already ing real PIM hardware, each with its own design approach and target
applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two years. Most of
these architectures have in common that they place compute units near the memory arrays. This type of PIM is called processing near memory
(PNM)

2 560-DPU Processi PIM can provide large improvements in both performance and energy
consumption for many modern applications, thereby enabling a commercially
viable way of dealing with huge amounts of data that is bottlenecking our oher’ ' 0 Notityme
computing systems. Yet, it is critical to (1) study and understand the — =
characteristics that make a workload suitable for a PIM architecture, (2) propose
optimization strategies for PIM kernels, and (3) develop programming
frameworks and tools that can lower the learning curve and ease the adoption of @ Onur Mutlu Lectures 4\ g cribed
PIM -

MICRO 2023 Tutorial: Real-world Processing-in-Memory Systems for Modern Workloads

This tutorial focuses on the latest advances in PIM technology, workload

for PIM, and prog and optimizing PIM kernels. We will
(1) provide an introduction to PIM and taxonomy of PIM systems, (2) give an
overview and a rigorous analysis of existing real-world PIM hardware, (3)

conduct hand-on labs about important workloads (machine learning, sparse
PRIRENCIEYCERSYERT]  finear algebra, bioinformatics, etc.) using real PIM systems, and (4) shed light htt S " WWW 0 UtU b e c o m
on how to improve future PIM systems for such workloads. u u u
L —— — —

Agenda (Tentative, October 29, 2023)

Lectures
1. Introduction: PIM as a paradigm to overcome the data movement bottleneck.
2. PIM taxonomy: PNM (processing near memeory) and PUM (processing using memary).
3. General-purpose PNM: UPMEM FIM. L L]
4. PN for ol networke: Sameung HEM-PIM, SK Hynbx AR https: [|/events.safari.ethz.ch/micro
5. PNM for recommender systems: Samsung AxDIMM, Alibaba PNM.
6. PUM prototypes: PIDRAM, SRAM-based PUM, Flash-based PUM. - u I
7. Other approaches: Neuroblade, Mythic. = p " I l 'tUtO rl a
8. Adoption issues: How to enable PIM?
9. Hands-on labs: Programming a real PIM system.

SAFARI 104


https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://events.safari.ethz.ch/micro-pim-tutorial
https://events.safari.ethz.ch/micro-pim-tutorial
https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/live/ohU00NSIxOI
https://www.youtube.com/live/ohU00NSIxOI

PIM Tutorial at HEART 2024

HEART 2024 Memgry.centric Overview of PIM | PIM taxonomy
Computing Systems Tutorial PIM in memory & storage

_ Real-world PNM systems
Friday, June 21, Porto, Portugal PUM for bulk bitwise operations

Programming techniques & tools

Organizers: Geraldo F. Oliveira, Dr. Mohammad Sadrosadati, IRRRerictiras for PIN Rasaarch

Ataberk Olgun, Professor Onur Mutlu

Program: https://events.safari.ethz.ch/heart24-memorycentric-tutorial/ Research challenges &
opportunities

NE ; ! g

.— lntemgtlp | SymeSlurp Qn
mwd’ato:sand

024 RQCONﬁKU#ble Technologies -

1 " 1 arxiv oval pdt/ 21050881 4 pdf

SAFARI https://events.safari.ethz.ch/heart24-memorycentric-tutorial 105



https://events.safari.ethz.ch/heart24-memorycentric-tutorial

PIM Tutorial at ISCA 2024

ISCA 2024 Memory-Centric Computing  ©verview of PIM | PiMtaxonomy
. PIM in memory & storage

syﬁems Tutorial : Real-world PNM systems

Saturday, June 29, Buenos Aires, Argentina PUM for bulk bitwise operations

Programming techniques & tools
Infrastructures for PIM Research

Organizers: Geraldo F. Oliveira, Dr. Mohammad Sadrosadati,
Ataberk Olgun, Professor Onur Mutlu

Program: https://events.safari.ethz.ch/isca24-memorycentric-tutorial/ Research challenges &
opportunities

SAFARI https://events.safari.ethz.ch/isca24-memorycentric-tutorial 106



https://events.safari.ethz.ch/isca24-memorycentric-tutorial

Tutorial at MICRO 2024

MICRO 2024 - Tutorial on Overview of PIM | PIM taxonomy

. . PIM in memory & storage
Memory-Centric Computing Systems sl P e atairs

Saturday, November 27, Austin, Texas, USA PUM for bulk bitwise operations

Programming techniques & tools

Organizers: Geraldo F. Oliveira, Dr. Mohammad Sadrosadati, Inhsstrichiras for PIM Research

Ataberk Olgun, Professor Onur Mutlu

Program: https://events.safari.ethz.ch/micro24-memorycentric-tutorial/ Research challenges &
opportunities

- "y s

|

o Noveinber 2.- November5;2024 5% T o
- | a3 . ‘- oy _—

SRSt Toxas, USA== ©
o | -

X ]

el

ML/ { arxiv ora/ pdf/ 2005,0381 4. 0dt

SAFAR/| https://events.safari.ethz.ch/micro24-memorycentric-tutorial 107



https://events.safari.ethz.ch/micro24-memorycentric-tutorial

PIM Tutorial at PPoPP 2025

PPoPP 2025 - Tutorial on Overview of PIM | PIM taxonomy
. . PIM in memory & storage

Memory-Centric Computing Systems Y T

March 1st- March 5%, Las Vegas, Nevada, USA Bl TblkE o SO et o

Programming techniques & tools

Organizers: Geraldo F. Oliveira, Dr. Mohammad Sadrosadati,
Ataberk Olgun, Professor Onur Mutlu

Program: https://events.safari.ethz.ch/ppopp25-memorycentric-tutorial/ Research challenges &
opportunities

Infrastructures for PIM Research

SAFARI 108



Referenced Papers, Talks, Artifacts

= All are available at

https://people.inf.ethz.ch/omutlu/projects.htm

https://www.youtube.com/onurmutlulectures

https://github.com/CMU-SAFARI/

SAFARI 109


https://people.inf.ethz.ch/omutlu/projects.htm
https://www.youtube.com/onurmutlulectures

Open Source Tools: SAFARI GitHub

SAFARI Research Group at ETH Zurich and Carnegie Mellon University

SAFAR’ Site for source code and tools distribution from SAFARI Research Group at ETH Zurich and Carnegie Mellon University.

SAFARI Research Group

A1 241 followers @ ETH Zurich and Carnegie Mellon U...

() Overview [ Repositories 80

Pinned

& ramulator  Public

A Fast and Extensible DRAM Simulator, with built-in support for
modeling many different DRAM technologies including DDRx, LPDDRYX,
GDDRx, WIOx, HBMx, and various academic proposals. Described in
the...

@C++ w442 %195

J MQSim  Public

MQSim is a fast and accurate simulator modeling the performance of
modern multi-queue (MQ) SSDs as well as traditional SATA based
SSDs. MQSim faithfully models new high-bandwidth protocol
implement...

®c++ w213 %120

] SoftMC  Public

SoftMC is an experimental FPGA-based memory controller design that
can be used to develop tests for DDR3 SODIMMs using a C++ based
API. The design, the interface, and its capabilities and limitatio...

@ Verilog w104 % 26

SAFARI

f] Projects & Packages

& https://safari.ethz.ch/ [ omutlu@gmail.com

A People 13

Customize pins

(] prim-benchmarks | Public

PrIM (Processing-In-Memory benchmarks) is the first benchmark suite
for a real-world processing-in-memory (PIM) architecture. PrIM is
developed to evaluate, analyze, and characterize the first publ...

®c ir100 % 38

] rowhammer ' Public

Source code for testing the Row Hammer error mechanism in DRAM
devices. Described in the ISCA 2014 paper by Kim et al. at
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_iscal4.pdf.

®c Yr2s8 % a1

(] Pythia | Public

A customizable hardware prefetching framework using online
reinforcement learning as described in the MICRO 2021 paper by Bera
et al. (https://arxiv.org/pdf/2109.12021.pdf).

@®c++ Yrss %25

https://github.com/CMU-SAFARI/ 110



https://github.com/CMU-SAFARI/

15 Workshop

Memory-Centric Computing:
Research Challenges & Closing Remarks

Geraldo F. Oliveira
https://geraldofojunior.github.io

ASPLOS 2025
30 March 2025

SAFARI

ETH:zurich


https://geraldofojunior.github.io/

	Slide 1: 1st Workshop  Memory-Centric Computing: Research Challenges & Closing Remarks 
	Slide 2: Eliminating the Adoption Barriers
	Slide 3: Potential Barriers to Adoption of PIM
	Slide 4: We Need to Revisit the Entire Stack
	Slide 5: Adoption: How to Keep It Simple?
	Slide 6: Adoption: How to Ease Programmability? (I)
	Slide 7: Adoption: How to Ease Programmability? (II)
	Slide 8: The Programmability Barrier:  Overview
	Slide 9: The Programmability Barrier:  Vector Addition Example
	Slide 10: The Programmability Barrier:  Vector Addition Example
	Slide 11: The Programmability Barrier:  Vector Addition Example
	Slide 12: The Programmability Barrier:  Vector Addition Example
	Slide 13: The Programmability Barrier:  Vector Addition Example
	Slide 14: The Programmability Barrier:  Vector Addition Example
	Slide 15: The Programmability Barrier:  Vector Addition Example
	Slide 16: The Programmability Barrier:  Vector Addition Example
	Slide 17: The Programmability Barrier:  Vector Addition Example
	Slide 18: The Programmability Barrier:  Summary 
	Slide 19: Our Goal
	Slide 20: Outline 
	Slide 21: SimplePIM:  A Software Framework for Productive and Efficient Processing in Memory
	Slide 22: SimplePIM Programming Framework:  Overview 
	Slide 23: SimplePIM Programming Framework:  Management Interface  
	Slide 24: SimplePIM Programming Framework:  Communication Interface (I)
	Slide 25: SimplePIM Programming Framework:  Communication Interface (II)
	Slide 26: SimplePIM Programming Framework:  Communication Interface (III)
	Slide 27: SimplePIM Programming Framework:  Communication Interface (IV)
	Slide 28: SimplePIM Programming Framework:  Processing Interface (I)
	Slide 29: SimplePIM Programming Framework:  Processing Interface (II)
	Slide 30: SimplePIM Programming Framework:  Processing Interface (III)
	Slide 31: SimplePIM Programming Framework:  General Code Optimizations
	Slide 32: Evaluation Results:  Evaluation Methodology
	Slide 33: Evaluation Results:  Productive Improvement (I)
	Slide 34: Evaluation Results:  Productive Improvement (II)
	Slide 35: Evaluation Results:  Productive Improvement (III)
	Slide 36: Evaluation Results:  Weak Scaling Analysis
	Slide 37: Evaluation Results:  Strong Scaling Analysis
	Slide 38: Source Code
	Slide 39: SimplePIM:  A Software Framework for Productive and Efficient Processing in Memory
	Slide 40: DaPPA:  A Data-Parallel Framework for Processing-in-Memory Architectures
	Slide 41: DaPPA:   Key Idea & Overview
	Slide 42: DaPPA:   Data-Parallel Pattern APIs  
	Slide 43: DaPPA:   Dataflow Programming Interface
	Slide 44: DaPPA:   Dynamic Template-Based Compilation
	Slide 45: DaPPA:   Putting All Together
	Slide 46: DaPPA:   Putting All Together
	Slide 47: DaPPA:   Putting All Together
	Slide 48: DaPPA:   Putting All Together
	Slide 49: Evaluation:   Methodology Overview
	Slide 50: Evaluation:   Performance Analysis
	Slide 51: Evaluation:   Performance Analysis
	Slide 52: Evaluation:   Programming Complexity Analysis
	Slide 53: Evaluation:   Comparison to State-of-the-Art
	Slide 54: DaPPA:  A Data-Parallel Framework for Processing-in-Memory Architectures
	Slide 55: Adoption: How to Maintain Coherence? (I)
	Slide 56: Challenge: Coherence for Hybrid CPU-PIM Apps
	Slide 57: Adoption: How to Maintain Coherence? (II)
	Slide 58: Adoption: How to Support Synchronization?
	Slide 59: Adoption: How to Support Virtual Memory?
	Slide 60: Adoption: Code and Data Mapping
	Slide 61: DAMOV Analysis Methodology & Workloads
	Slide 62: Identifying Memory Bottlenecks
	Slide 63: Limitations of Prior Approaches (1/2) 
	Slide 64: Limitations of Prior Approaches (1/2) 
	Slide 65: Limitations of Prior Approaches (1/2) 
	Slide 66: Limitations of Prior Approaches (1/2) 
	Slide 67: Limitations of Prior Approaches (2/2) 
	Slide 68: Limitations of Prior Approaches (2/2) 
	Slide 69: Limitations of Prior Approaches (2/2) 
	Slide 70: Identifying Memory Bottlenecks
	Slide 71: The Problem
	Slide 72: Our Goal
	Slide 73: Methodology Overview
	Slide 74: Methodology Overview
	Slide 75: Step 1: Application Profiling
	Slide 76: Methodology Overview
	Slide 77: Step 2: Locality-Based Clustering 
	Slide 78: Step 2: Locality-Based Clustering 
	Slide 79: Methodology Overview
	Slide 80: Step 3: Memory Bottleneck Classification (1/2)
	Slide 81: Step 3: Memory Bottleneck Classification (2/2)
	Slide 82: Step 3: Memory Bottleneck Analysis
	Slide 83: DAMOV is Open Source
	Slide 84: DAMOV is Open Source
	Slide 85: More on DAMOV Analysis Methodology & Workloads
	Slide 86: More on DAMOV Methods & Benchmarks
	Slide 87: Challenge and Opportunity for Future
	Slide 88: Challenge and Opportunity for Future
	Slide 89: Challenge and Opportunity for Future
	Slide 90: Concluding Remarks
	Slide 91: Fundamentally Better Architectures
	Slide 92: We Need to Revisit the Entire Stack
	Slide 93: We Need to Exploit Good Principles
	Slide 94: PIM Review and Open Problems
	Slide 95: Special Research Sessions & Courses (I)
	Slide 96: Special Research Sessions & Courses (II)
	Slide 97: Processing-in-Memory Course (Fall 2024)
	Slide 98: Processing-in-Memory Course (Spring 2023)
	Slide 99: PIM Course (Fall 2022)
	Slide 100: Real PIM Tutorials [ISCA’23, ASPLOS’23, HPCA’23]
	Slide 101: Real PIM Tutorial [ISCA 2023]
	Slide 102: Real PIM Tutorial [ASPLOS 2023]
	Slide 103: Real PIM Tutorial [HPCA 2023]
	Slide 104
	Slide 105: PIM Tutorial at HEART 2024
	Slide 106: PIM Tutorial at ISCA 2024
	Slide 107: Tutorial at MICRO 2024
	Slide 108: PIM Tutorial at PPoPP 2025
	Slide 109: Referenced Papers, Talks, Artifacts
	Slide 110: Open Source Tools: SAFARI GitHub
	Slide 111: 1st Workshop  Memory-Centric Computing: Research Challenges & Closing Remarks 

