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Executive Summary
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Observation: Large Language Model (LLM) decoding kernels have different and  
dynamically changed computation and memory bandwidth demands at runtime

Problem: The existing designs have two shortcomings:

− Static scheduling that fails to dynamically cater to the changing kernel demands

− Support only one type of Processing-In-Memory (PIM) device with a certain 
computation throughput and memory bandwidth capability

Goal: Design a heterogeneous system that caters to different and dynamically 
changing computation and memory demands

Key Idea: Enable online dynamic task scheduling on a heterogeneous architecture 
via online identification of kernel properties in LLM decoding
 

Key techniques: A new computing system called PAPI with

– Dynamic LLM kernel scheduling to the most suitable hardware units at runtime 

– Hybrid PIM units to meet the diverse LLM kernel demands

Key Results: PAPI outperforms a state-of-the-art PIM-enabled LLM computing 
system and a pure PIM system by 1.8X and 11.1X, respectively
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LLM Structure
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Fully-connected (FC) kernels
• Pretrained by LLM training
• Used for all token generation

Attention kernels
• Encoded from input tokens

• Different data across requests

LLM



Serial Decoding
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LLM LLMLLM LLM

Request A

• Low hardware utilization
• Low throughput



Parallel Decoding
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Token-Level Parallelism
(TLP)

Decode tokens of a request in parallel

Request-Level Parallelism
(RLP)

Decode different requests in parallel

LLM
Model

LLM
Model

Requests A & BRequest A

LLM
Model

LLM
Model

Do TLP and RLP benefit all kernels in LLM decoding?

• Higher hardware utilization
• Higher throughput



Background1

Observations & Motivation2

PAPI’s Key Idea

PAPI’s Implementation

Evaluation

Conclusion

3

5

6

Outline

8

4



9

Key Observations

1
There are varying computation and memory bandwidth 

demands across different RLP & TLP configurations

3
LLM kernels have dynamic computation demands

at runtime

2 The memory-bound kernels exhibit various 
computation demands depending on the kernel type



Varying Computation and Memory 
Bandwidth Demands (i)
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There are varying computation and memory bandwidth 
demands across different RLP & TLP configurations

RLP (4, 8, 16, 32, 64, 128) TLP (2, 4, 6, 8)

The roofline model of LLM kernels with six RLP and four TLP 
configurations on a NVIDIA A100 GPU system:
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• FC kernels benefit from RLP & TLP

Compute-Bound
FC

Attention 
#1

Attention 
#2

• Attention kernels benefit from TLP
• TLP is usually much smaller than RLP

Memory-Bound

The Reason for Different Demands



RLP (4, 8, 16, 32, 64, 128) TLP (2, 4, 6, 8)
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Varying Computation and Memory 
Bandwidth Demands (ii)

> 60 FLOPs/Byte

< 10 FLOPs/Byte

> 30 FLOPs/Byte

< 10 FLOPs/Byte

The memory-bound kernels exhibit 
various computation demands depending on the kernel type
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Dynamic Parallelism Levels

• Parallelism levels (RLP & TLP) vary dynamically in real-world scenarios

– Request-level parallelism (RLP) decreases at runtime when using 
static batching

The Decoding Cycles of Requests in One Batch
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In the Paper: Analysis of Dynamic 
Parallelism Levels
• Initial RLP:

– Service level objective

– Memory capacity limits

– Dynamic batching

• Runtime RLP:
− Static batching
− Mixed continuous batching

• TLP:
− Speculative decoding

LLM kernels have dynamic computation demands
at runtime
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In the Paper: Analysis of Dynamic 
Parallelism Levels
• Initial RLP:

– Service Level Objective

– Memory Capacity Limits

– Dynamic Batching

• TLP:

– Speculative Decoding

• Runtime RLP:
• Static Batching
• Mixed Continuous Batching

LLM kernels has dynamic computation demands at runtime

https://arxiv.org/pdf/2502.15470



The State-of-the-Art Approach
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PIM-
Enabled
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Computation-Centric Accelerator 
(e.g., GPU)

Memory-Centric Computing Device

Attention Kernels FC Kernels
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Major Shortcomings

1 Static scheduling leads to sub-optimal performance 
across different parallelism levels

2 The approach supports only one type of PIM device with 
a certain computation and memory bandwidth capability



(1) Static Scheduling (i) 

PIM-
Enabled
Memory

Computation-Centric 
Accelerator
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Attention 
Kernels

FC Kernels

The state of the art approach typically take a static scheduling:

Memory-Centric 
Computing Device



(1) Static Scheduling (ii) 

Static scheduling leads to sub-optimal performance of FC kernels 
across different parallelism levels
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• Static scheduling works well for memory-bound attention kernels
• Static scheduling fails for FC kernels that switch between being 

compute-bound or memory-bound 

RLP (4, 8, 16, 32, 64, 128) TLP (2, 4, 6, 8)

Memory
Bound

Compute
Bound

Compute
Bound

Memory
Bound



(2) One Type of PIM Device
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The approach supports only one type of PIM device with 
a certain computation and memory bandwidth capability

Prior works only leverage 
one type of PIM device with 

a certain computation and memory bandwidth

The memory-bound FC kernels and attention 
kernels have varying demands of 

computation and memory bandwidth
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Our Goal

Design a heterogeneous system that caters to 
the varying parallelism levels in real-world LLM inference 

with different and dynamically changing 
computation and memory demands 
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PAPI’s Key Idea

enable online dynamic task scheduling on a 
heterogeneous architecture via online identification 

of kernel properties in LLM decoding
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PAPI’s Key Components

Hybrid PIM units 
to cater to the different parallelism levels 

of the FC and attention kernels

Dynamic LLM kernel scheduling
to cater to the varying parallelism levels

A new PIM-enabled computing system design



25

PAPI’s Overview

FC-PIMs

Attn-PIMsPAPI System

FPU
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Sure <eos>

It is a good work <eos>

Have a nice day <eos>

How are you <eos>

Here is a cute dog ,<eos>

RLP 5 4 4 3 2 0
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Dynamic Scheduling
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High-Performance
Processor
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Interconnect

Host CPU

PAPI Architecture

Attn-PIM Devices
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Attn-
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Interconnect
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PIM

Processing
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High-Speed 
Interconnect

Scheduler

High-Performance Processor

Attn-PIM Devices

High-Performance Processor

Host CPU

When FC kernels compute-bound:
Assign FC kernels to PUs

When FC kernels memory-bound:
Assign FC kernels to FC-PIM

FC-PIM and PUs cater to the FC kernels that 
switch between memory-bound and computation-bound

FC-
PIM

Processing
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Scheduler

High-Performance
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Hybrid PIM Units (i)

Attn-
PIM

Attn-
PIM

Attn-
PIM

Interconnect

FC-
PIM

Processing
Units (PUs)

High-Speed 
Interconnect

Scheduler

High-Performance Processor

Host CPU

Hybrid PIM units cater to memory-bound kernels 
with different computational demands and memory footprints

Attn-PIM Devices Disaggregated from 
the High-Performance Processor

The FC-PIM Device Placed in 
the High-Performance Processor

FC-
PIM

Attn-
PIM

Attn-
PIM
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Hybrid PIM Units (ii)

Floating-Point Processing Units (FPU)

FC-PIMs

Bank Groups (BGs)

Bank 1 Bank 2

Bank 3 Bank 4

BG C

BG B

BG A

Attn-PIMs

Bank 1 Bank 2

Bank 3 Bank 4

BG A

BG D

BG B

BG C

Higher Computation Capabilities to 
Cater to the FC Kernels

Higher Memory Bandwidth for the 
Attention Kernels

BG A

BG D

BG B

BG C

More FPUs per Bank

More Bank Groups per Stack



PAPI Runtime Scheduler
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①Monitor Parallelism Levels
• RLP & TLP

②Arithmetic Intensity Predictor
• Estimate arithmetic intensity of FC kernels

• Compare with memory-boundedness threshold α

③Schedule the FC Kernels
• Maps the FC kernels on FC-PIM or PU

Initial: memory-boundedness threshold α 
(through offline iterative evaluation)
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Evaluation Methodology
Performance and Energy Analysis:

− Simulation via AttAcc [ASPLOS’24] and Ramulator 2 [IEEE CAL]

Baselines:

− AttAcc [ASPLOS’24]

− GPU+HBM-PIM (NVIDIA A100 GPU + Samsung’s HBM-PIM)

− PIM-only (PIM devices in AttAcc)

Workloads: Three transformer-based LLMs

– LLaMA-65B, GPT-3 66B, GPT-3 175B

Datasets: Dolly

− Creative-writing tasks

− General-QA tasks

33
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Performance Analysis
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LLAMA-65B GPT-3 66B GPT-3 175B

Initial RLP

TLP=1 TLP=2 TLP=4 TLP=1 TLP=2 TLP=4 TLP=1 TLP=2 TLP=4

PAPI provides speedup by 1.8X, 1.9X, and 11.1X 
compared to the baselines

AttAcc GPU+HBM-PIM PIM-only PAPI
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Energy Analysis
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PAPI provides energy savings by 2.42X, 2.42X, and 0.15X 
compared to the baselines
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More in the Paper 

• Details on PAPI’s Heterogeneous Architecture

• Details on PAPI Runtime Scheduler

• Sensitivity to Parallelism Levels

• Speedup of FC-PIM

• PAPI’s Execution Time Breakdown

36



More in the Paper 

• Details about PAPI’s Heterogeneous Architecture

• Details about PAPI Runtime Scheduler

• Sensitivity to Parallelization Levels

• Performance Speedup of FC-PIM

• PAPI’s Execution Time Breakdown
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https://arxiv.org/pdf/2502.15470
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There are varying computation and memory bandwidth 
demands across different RLP & TLP configurations

The memory-bound kernels exhibit various computation 
demands depending on the kernel type

LLM kernels have dynamic computation demands at runtimeK
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•PAPI
• Key Idea:  To enable online dynamic task scheduling on a 

heterogeneous architecture via online identification of kernel 
properties in LLM decoding

Key Result: Simultaneously improves performance and energy 
efficiency of the state-of-the-art baselineK
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RESULT - - - PU PIM PIM - - PIM

RLP 5 5 5 4 2 1 1 1 0
TLP 1 1 1 1 1 1 1 1 1

Reschedule         

Estimated
value 5 5 5 4 2 1 1 1 0

Today is sunny <eos>

It is a good work <eos>

Have a nice day .

How are you ? <eos>

Here is a cute dog , look ! <eos>

Output Tokens of Requests

<eos>

The Process of Dynamic Scheduling

41

• Assume the memory-boundedness threshold α=4 in this case
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