
PAPI: Exploiting Dynamic Parallelism
in Large Language Model Decoding with

a Processing-In-Memory-Enabled Computing System

Yintao He Haiyu Mao Christina Giannoula

Mohammad Sadrosadati Juan Gómez-Luna Huawei Li

Xiaowei Li Ying Wang Onur Mutlu

ASPLOS 2025

Executive Summary

2

Observation: Large Language Model (LLM) decoding kernels have different and
dynamically changed computation and memory bandwidth demands at runtime

Problem: The existing designs have two shortcomings:

− Static scheduling that fails to dynamically cater to the changing kernel demands

− Support only one type of Processing-In-Memory (PIM) device with a certain
computation throughput and memory bandwidth capability

Goal: Design a heterogeneous system that caters to different and dynamically
changing computation and memory demands

Key Idea: Enable online dynamic task scheduling on a heterogeneous architecture
via online identification of kernel properties in LLM decoding

Key techniques: A new computing system called PAPI with

– Dynamic LLM kernel scheduling to the most suitable hardware units at runtime

– Hybrid PIM units to meet the diverse LLM kernel demands

Key Results: PAPI outperforms a state-of-the-art PIM-enabled LLM computing
system and a pure PIM system by 1.8X and 11.1X, respectively

Background1

Observations & Motivation2

PAPI’s Key Idea

PAPI’s Implementation

Evaluation

Conclusion

3

5

6

Outline

3

4

Decoding

LLM Inference

4

the

LLM

of

LLM

Sam did his PhD

LLM

at

LLM

University

LLM

at the University of Toronto

Prefilling
(Encodes contextual information

from the input in parallel)
(Generates output tokens in serial / parallel)

An example:

LLM Structure

5

QKV generation

Multi-head
attention

Projection

Feed forward
networks

Decoder 1

Decoder 2

Decoder N

…

Fully-connected (FC) kernels
• Pretrained by LLM training
• Used for all token generation

Attention kernels
• Encoded from input tokens

• Different data across requests

LLM

Serial Decoding

6

LLM LLMLLM LLM

Request A

• Low hardware utilization
• Low throughput

Parallel Decoding

7

Token-Level Parallelism
(TLP)

Decode tokens of a request in parallel

Request-Level Parallelism
(RLP)

Decode different requests in parallel

LLM
Model

LLM
Model

Requests A & BRequest A

LLM
Model

LLM
Model

Do TLP and RLP benefit all kernels in LLM decoding?

• Higher hardware utilization
• Higher throughput

Background1

Observations & Motivation2

PAPI’s Key Idea

PAPI’s Implementation

Evaluation

Conclusion

3

5

6

Outline

8

4

9

Key Observations

1
There are varying computation and memory bandwidth

demands across different RLP & TLP configurations

3
LLM kernels have dynamic computation demands

at runtime

2 The memory-bound kernels exhibit various
computation demands depending on the kernel type

Varying Computation and Memory
Bandwidth Demands (i)

10

There are varying computation and memory bandwidth
demands across different RLP & TLP configurations

RLP (4, 8, 16, 32, 64, 128) TLP (2, 4, 6, 8)

The roofline model of LLM kernels with six RLP and four TLP
configurations on a NVIDIA A100 GPU system:

Memory
Bound

Compute
Bound

Compute
Bound

Memory
Bound

11

• FC kernels benefit from RLP & TLP

Compute-Bound
FC

Attention
#1

Attention
#2

• Attention kernels benefit from TLP
• TLP is usually much smaller than RLP

Memory-Bound

The Reason for Different Demands

RLP (4, 8, 16, 32, 64, 128) TLP (2, 4, 6, 8)

Memory
Bound

Compute
Bound

Compute
Bound

Memory
Bound

12

Varying Computation and Memory
Bandwidth Demands (ii)

> 60 FLOPs/Byte

< 10 FLOPs/Byte

> 30 FLOPs/Byte

< 10 FLOPs/Byte

The memory-bound kernels exhibit
various computation demands depending on the kernel type

0 250 500 750 1000 1250 1500 1750 2000
Decoding Cycles

13

Dynamic Parallelism Levels

• Parallelism levels (RLP & TLP) vary dynamically in real-world scenarios

– Request-level parallelism (RLP) decreases at runtime when using
static batching

The Decoding Cycles of Requests in One Batch

N
um

b
er

 o
f

R
eq

u
es

ts
in

 a
 B

at
ch

14

In the Paper: Analysis of Dynamic
Parallelism Levels
• Initial RLP:

– Service level objective

– Memory capacity limits

– Dynamic batching

• Runtime RLP:
− Static batching
− Mixed continuous batching

• TLP:
− Speculative decoding

LLM kernels have dynamic computation demands
at runtime

15

In the Paper: Analysis of Dynamic
Parallelism Levels
• Initial RLP:

– Service Level Objective

– Memory Capacity Limits

– Dynamic Batching

• TLP:

– Speculative Decoding

• Runtime RLP:
• Static Batching
• Mixed Continuous Batching

LLM kernels has dynamic computation demands at runtime

https://arxiv.org/pdf/2502.15470

The State-of-the-Art Approach

16

PIM-
Enabled
Memory

Computation-Centric Accelerator
(e.g., GPU)

Memory-Centric Computing Device

Attention Kernels FC Kernels

Map Map

17

Major Shortcomings

1 Static scheduling leads to sub-optimal performance
across different parallelism levels

2 The approach supports only one type of PIM device with
a certain computation and memory bandwidth capability

(1) Static Scheduling (i)

PIM-
Enabled
Memory

Computation-Centric
Accelerator

18

Attention
Kernels

FC Kernels

The state of the art approach typically take a static scheduling:

Memory-Centric
Computing Device

(1) Static Scheduling (ii)

Static scheduling leads to sub-optimal performance of FC kernels
across different parallelism levels

19

• Static scheduling works well for memory-bound attention kernels
• Static scheduling fails for FC kernels that switch between being

compute-bound or memory-bound

RLP (4, 8, 16, 32, 64, 128) TLP (2, 4, 6, 8)

Memory
Bound

Compute
Bound

Compute
Bound

Memory
Bound

(2) One Type of PIM Device

20

The approach supports only one type of PIM device with
a certain computation and memory bandwidth capability

Prior works only leverage
one type of PIM device with

a certain computation and memory bandwidth

The memory-bound FC kernels and attention
kernels have varying demands of

computation and memory bandwidth

Background1

Observations & Motivation2

PAPI’s Key Idea

PAPI’s Implementation

Evaluation

Conclusion

3

5

6

Outline

21

4

22

Our Goal

Design a heterogeneous system that caters to
the varying parallelism levels in real-world LLM inference

with different and dynamically changing
computation and memory demands

23

PAPI’s Key Idea

enable online dynamic task scheduling on a
heterogeneous architecture via online identification

of kernel properties in LLM decoding

24

PAPI’s Key Components

Hybrid PIM units
to cater to the different parallelism levels

of the FC and attention kernels

Dynamic LLM kernel scheduling
to cater to the varying parallelism levels

A new PIM-enabled computing system design

25

PAPI’s Overview

FC-PIMs

Attn-PIMsPAPI System

FPU

Attn-

PIM

Attn-

PIM

Attn-

PIM

Interconnect

FC-

PIM

Processing

Units (PUs)

High-Speed

Interconnect

Host CPU

Scheduler

High-Performance Processor

Bank Groups (BGs)

Sure <eos>

It is a good work <eos>

Have a nice day <eos>

How are you <eos>

Here is a cute dog ,<eos>

RLP 5 4 4 3 2 0

TLP 1 1 1 1 1 1

Reschedule

RESULT - PU - PIM PIM PIM

Dynamic Scheduling

Bank 1 Bank 2

Bank 3 Bank 4

BG C

BG B

BG A

Bank 1 Bank 2

Bank 3 Bank 4

BG A

BG D

BG B

BG C

Background1

Observations & Motivation2

PAPI’s Key Idea

PAPI’s Implementation

Evaluation

Conclusion

3

5

6

Outline

26

4

High-Performance
Processor

27

Interconnect

Host CPU

PAPI Architecture

Attn-PIM Devices

28

Attn-
PIM

Attn-
PIM

Attn-
PIM

Interconnect

FC-
PIM

Processing
Units (PUs)

High-Speed
Interconnect

Scheduler

High-Performance Processor

Attn-PIM Devices

High-Performance Processor

Host CPU

When FC kernels compute-bound:
Assign FC kernels to PUs

When FC kernels memory-bound:
Assign FC kernels to FC-PIM

FC-PIM and PUs cater to the FC kernels that
switch between memory-bound and computation-bound

FC-
PIM

Processing
Units (PUs)

Scheduler

High-Performance
Processor

29

Hybrid PIM Units (i)

Attn-
PIM

Attn-
PIM

Attn-
PIM

Interconnect

FC-
PIM

Processing
Units (PUs)

High-Speed
Interconnect

Scheduler

High-Performance Processor

Host CPU

Hybrid PIM units cater to memory-bound kernels
with different computational demands and memory footprints

Attn-PIM Devices Disaggregated from
the High-Performance Processor

The FC-PIM Device Placed in
the High-Performance Processor

FC-
PIM

Attn-
PIM

Attn-
PIM

Attn-
PIM

30

Hybrid PIM Units (ii)

Floating-Point Processing Units (FPU)

FC-PIMs

Bank Groups (BGs)

Bank 1 Bank 2

Bank 3 Bank 4

BG C

BG B

BG A

Attn-PIMs

Bank 1 Bank 2

Bank 3 Bank 4

BG A

BG D

BG B

BG C

Higher Computation Capabilities to
Cater to the FC Kernels

Higher Memory Bandwidth for the
Attention Kernels

BG A

BG D

BG B

BG C

More FPUs per Bank

More Bank Groups per Stack

PAPI Runtime Scheduler

31

①Monitor Parallelism Levels
• RLP & TLP

②Arithmetic Intensity Predictor
• Estimate arithmetic intensity of FC kernels

• Compare with memory-boundedness threshold α

③Schedule the FC Kernels
• Maps the FC kernels on FC-PIM or PU

Initial: memory-boundedness threshold α
(through offline iterative evaluation)

Background1

Observations & Motivation2

PAPI’s Key Idea

PAPI’s Implementation

Evaluation

Conclusion

3

5

6

Outline

32

4

Evaluation Methodology
Performance and Energy Analysis:

− Simulation via AttAcc [ASPLOS’24] and Ramulator 2 [IEEE CAL]

Baselines:

− AttAcc [ASPLOS’24]

− GPU+HBM-PIM (NVIDIA A100 GPU + Samsung’s HBM-PIM)

− PIM-only (PIM devices in AttAcc)

Workloads: Three transformer-based LLMs

– LLaMA-65B, GPT-3 66B, GPT-3 175B

Datasets: Dolly

− Creative-writing tasks

− General-QA tasks

33

0

0.5

1

1.5

2

2.5

3

4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64

spe=1 spe=2 spe=4 spe=1 spe=2 spe=4 spe=1 spe=2 spe=4

S
p

ee
d

up

A100+AttAcc A100+HBM-PIM AttAcc-only PAPI

Performance Analysis

34

LLAMA-65B GPT-3 66B GPT-3 175B

Initial RLP

TLP=1 TLP=2 TLP=4 TLP=1 TLP=2 TLP=4 TLP=1 TLP=2 TLP=4

PAPI provides speedup by 1.8X, 1.9X, and 11.1X
compared to the baselines

AttAcc GPU+HBM-PIM PIM-only PAPI

4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64

Energy Analysis

35

PAPI provides energy savings by 2.42X, 2.42X, and 0.15X
compared to the baselines

0.0

0.2

0.4

0.6

0.8

1.0

1.2
LLAMA-65B GPT-3 66B GPT-3 175B

Batch size

TLP=1 TLP=2 TLP=4 TLP=1 TLP=2 TLP=4 TLP=1 TLP=2 TLP=4

Initial RLP

4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

More in the Paper

• Details on PAPI’s Heterogeneous Architecture

• Details on PAPI Runtime Scheduler

• Sensitivity to Parallelism Levels

• Speedup of FC-PIM

• PAPI’s Execution Time Breakdown

36

More in the Paper

• Details about PAPI’s Heterogeneous Architecture

• Details about PAPI Runtime Scheduler

• Sensitivity to Parallelization Levels

• Performance Speedup of FC-PIM

• PAPI’s Execution Time Breakdown

37

https://arxiv.org/pdf/2502.15470

Background1

Observations & Motivation2

PAPI’s Key Idea

PAPI’s Implementation

Evaluation

Conclusion

3

5

6

Outline

38

4

There are varying computation and memory bandwidth
demands across different RLP & TLP configurations

The memory-bound kernels exhibit various computation
demands depending on the kernel type

LLM kernels have dynamic computation demands at runtimeK
e

y
 F

in
d

in
g

s

•PAPI
• Key Idea: To enable online dynamic task scheduling on a

heterogeneous architecture via online identification of kernel
properties in LLM decoding

Key Result: Simultaneously improves performance and energy
efficiency of the state-of-the-art baselineK
e

y
 M

e
ch

a
n

is
m

Conclusion

PAPI: Exploiting Dynamic Parallelism
in Large Language Model Decoding with

a Processing-In-Memory-Enabled Computing System

Yintao He Haiyu Mao Christina Giannoula

Mohammad Sadrosadati Juan Gómez-Luna Huawei Li

Xiaowei Li Ying Wang Onur Mutlu

ASPLOS 2025

RESULT - - - PU PIM PIM - - PIM

RLP 5 5 5 4 2 1 1 1 0
TLP 1 1 1 1 1 1 1 1 1

Reschedule

Estimated
value 5 5 5 4 2 1 1 1 0

Today is sunny <eos>

It is a good work <eos>

Have a nice day .

How are you ? <eos>

Here is a cute dog , look ! <eos>

Output Tokens of Requests

<eos>

The Process of Dynamic Scheduling

41

• Assume the memory-boundedness threshold α=4 in this case

	Slide 1: PAPI: Exploiting Dynamic Parallelism in Large Language Model Decoding with a Processing-In-Memory-Enabled Computing System
	Slide 2: Executive Summary
	Slide 3: Outline
	Slide 4: LLM Inference
	Slide 5: LLM Structure
	Slide 6: Serial Decoding
	Slide 7: Parallel Decoding
	Slide 8: Outline
	Slide 9: Key Observations
	Slide 10: Varying Computation and Memory Bandwidth Demands (i)
	Slide 11
	Slide 12: Varying Computation and Memory Bandwidth Demands (ii)
	Slide 13: Dynamic Parallelism Levels
	Slide 14: In the Paper: Analysis of Dynamic Parallelism Levels
	Slide 15: In the Paper: Analysis of Dynamic Parallelism Levels
	Slide 16: The State-of-the-Art Approach
	Slide 17: Major Shortcomings
	Slide 18: (1) Static Scheduling (i)
	Slide 19: (1) Static Scheduling (ii)
	Slide 20: (2) One Type of PIM Device
	Slide 21: Outline
	Slide 22: Our Goal
	Slide 23: PAPI’s Key Idea
	Slide 24: PAPI’s Key Components
	Slide 25: PAPI’s Overview
	Slide 26: Outline
	Slide 27: PAPI Architecture
	Slide 28: High-Performance Processor
	Slide 29: Hybrid PIM Units (i)
	Slide 30: Hybrid PIM Units (ii)
	Slide 31: PAPI Runtime Scheduler
	Slide 32: Outline
	Slide 33: Evaluation Methodology
	Slide 34: Performance Analysis
	Slide 35: Energy Analysis
	Slide 36: More in the Paper
	Slide 37: More in the Paper
	Slide 38: Outline
	Slide 39
	Slide 40: PAPI: Exploiting Dynamic Parallelism in Large Language Model Decoding with a Processing-In-Memory-Enabled Computing System
	Slide 41: The Process of Dynamic Scheduling

