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Executive Summary

Observation: Large Language Model (LLM) decoding kernels have different and
dynamically changed computation and memory bandwidth demands at runtime

Problem: The existing designs have two shortcomings:

- Static scheduling that fails to dynamically cater to the changing kernel demands
- Support only one type of Processing-In-Memory (PIM) device with a certain
computation throughput and memory bandwidth capability

Design a that caters to different and dynamically
changing computation and memory demands

Key Idea: Enable online dynamic task scheduling on a heterogeneous architecture
via online identification of kernel properties in LLM decoding

Key techniques: A new computing system called PAPI with

— Dynamic LLM kernel scheduling to the most suitable hardware units at runtime
— Hybrid PIM units to meet the diverse LLM kernel demands

Key Results: PAPI outperforms a state-of-the-art PIM-enabled LLM computing
system and a pure PIM system by 1.8X and 11.1X, respectively
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LLM Inference

An example:
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Prefilling

(Encodes contextual information
from the input in parallel)
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Decoding

(Generates output tokens in serial / parallel)



LLM Structure
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Serial Decoding
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Low hardware utilization
Low throughput




Parallel Decoding

Decode tokens of a request in parallel Decode different requests in parallel

Request A

Token-Level Parallelism Request-Level Parallelism
(TLP) (RLP)

* Higher hardware utilization
* Higher throughput

Do TLP and RLP benefit all kernels in LLM decoding?
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Key Observations

I There are varying computation and memory bandwidth
demands across different RLP & TLP configurations

The memory-bound kernels exhibit various
computation demands depending on the kernel type

3 LLM kernels have dynamic computation demands
at runtime
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Varying Computation and Memory
Bandwidth Demands (i)

The roofline model of LLM kernels with six RLP and four TLP
configurations on a NVIDIA A100 GPU system:

RLP (4, 8, 16, 32, 64, 128)
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There are varying computation and memory bandwidth
demands across different RLP & TLP configurations
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The Reason for Different Demands

g

* FCkernels benefit from RLP & TLP
FC

Compute-Bound

 Attention kernels benefit from TLP

Attention | Attention < TLP isusually much smallerthan RLP
#1 #2

Jf i Memory-Bound
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Varying Computation and Memory
Bandwidth Demands (ii)

RLP (4, 8, 16, 32, 64, 128)
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The memory-bound kernels exhibit
various computation demands depending on the kernel type
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Dynamic Parallelism Levels

* Parallelism levels (RLP & TLP) vary dynamically in real-world scenarios

— Request-level parallelism (RLP) decreases at runtime when using
static batching

The Decoding Cycles of Requests in One Batch
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Decoding Cycles
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In the Paper: Analysis of Dynamic
Parallelism Levels

* |nitial RLP:

— Service level objective - Static batching
- Mixed continuous batching

— Memory capacity limits
— Dynamic batching

. TLP:

- Speculative decoding

LLM kernels have dynamic computation demands
at runtime
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The State-of-the-Art Approach

Memory-Centric Computing Device Computation-Centric Accelerator
(e.g., GPU)

PIM-
Enabled
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Major Shortcomings

1

Static scheduling leads to sub-optimal performance
across different parallelism levels

The approach supports only one type of PIM device with
a certain computation and memory bandwidth capability
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(1) Static Scheduling (i)

The state of the art approach typically take a static scheduling:

Memory-Centric Computation-Centric
Computing Device Accelerator
— — .
! Enabled ! x>
Attention FC Kernels
Kernels
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(1) Static Scheduling (ii)

* Static scheduling works well for memory-bound attention kernels
* Static scheduling fails for FC kernels that switch between being
compute-bound or memory-bound

RLP (4, 8, 16, 32, 64, 128)
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Static scheduling leads to sub-optimal performance of FC kernels

across different parallelism levels
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(2) One Type of PIM Device

Prior works only leverage
one type of PIM device with
a certain computation and memory bandwidth

The memory-bound FC kernels and attention
kernels have varying demands of
computation and memory bandwidth

The approach supports only one type of PIM device with

a certain computation and memory bandwidth capability
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Our Goal

Design a heterogeneous system that caters to
the varying parallelism levels in real-world LLM inference
with different and dynamically changing
computation and memory demands

SAFARI

22



PAPI's Key Idea

enable online dynamic task scheduling on a
heterogeneous architecture via online identification
of kernel properties in LLM decoding
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PAPI's Key Components

A new PIM-enabled computing system design

4 )

Hybrid PIM units
to cater to the different parallelism levels

of the FC and attention kernels
\__ J

( )

Dynamic LLM kernel scheduling
to cater to the varying parallelism levels

\ J/
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PAPI's Overview

High-Performance Processor;

Bank Groups (BGs)
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PAPI System
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' Bank Bank 2 '

A \\'|Bank 3| |Bank 4| '

Attn-PIMs

Sure <eo0s>
It is a good work <eos>
Have a nice day [<e0s>
How are you |<e0s>
Here s a cute dog |<eos>
RLP 5 4 4 3 2 0
TLP 1 1 1 1 1 1
Reschedulgl % v x v v v
RESULT - PU - PIM | PIM | PIM

Dynamic Scheduling
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PAPI Architecture

SAFARI

High-Performance
Processor

Host CPU

!

Interconnect

Attn-PIM Devices
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High-Performance Processor

High-Performance
Processor

When FC kernels compute-bound:

Assign FC kernels to PUs

When FC kernels memory-bound:

Assign FC kernels to FC-PIM

FC-PIM and PUs cater to the FC kernels that
switch between memory-bound and computation-bound

SAFARI

28



Hybrid PIM Units (i)

High-Performance Processor
The FC-PIM Device Placed in
PIM the High-Performance Processor
Interconnect

Attn-PIM Devices Disaggregated from
the High-Performance Processor

Hybrid PIM units cater to memory-bound kernels
with different computational demands and memory footprints
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Hybrid PIM Units (ii)
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Higher Computation Capabilities to
Cater to the FC Kernels

Higher Memory Bandwidth for the
Attention Kernels
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PAPI Runtime Scheduler

Initial: memory-boundedness threshold a
(through offline iterative evaluation)

(D Monitor Parallelism Levels
e RLP&TLP

@ Arithmetic Intensity Predictor
* Estimate arithmetic intensity of FC kernels
Compare with memory-boundedness threshold a

.

@ Schedule the FC Kernels
* Maps the FC kernels on FC-PIM or PU

SAFARI
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Evaluation Methodology

Performance and Enerqy Analysis:
— Simulation via AttAcc [ASPLOS'24] and Ramulator 2 [IEEE CAL]

Baselines:

— AttAcc [ASPLOS 24]

- GPU+HBM-PIM (NVIDIA A100 GPU + Samsung’s HBM-PIM)
— PIM-only (PIM devices in AttAcc)

Workloads: Three transformer-based LLMs
— LLaMA-65B, GPT-3 66B, GPT-3 175B

Datasets: Dolly

— Creative-writing tasks
- General-QA tasks

SAFARI
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Performance Analysis

@ AttAcc m GPU+HBM-PIM  m PIM-only l PAPI
; LLAMA-65B GPT-366B GPT-3 175B
oc |TLP=1 TLP=2 TLP=4|TLP=1 TLP=2 TLP=4 |TLP=1 TLP=2 TLP=
Q 2
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o
wn |
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Initial RLP
PAPI provides speedup by 1.8X, 1.9X, and 11.2X
compared to the baselines
SAFARI
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Energy Analysis

@ AttAcc m GPU+HBM-PIM  m PIM-only m PAPI

LLAMA-65B GPT-3 66B GPT-3 175B
TLP=1 TLP=2 TLP=4 |TLP=1 TLP=2 TLP=4 |TLP=1 TLP=2 TLP=4

4I6644I6644I6644I6644I6644I6644I664‘4I664‘4I664
Initial RLP

PAPI provides energy savings by 2.42X, 2.42X, and 0.15X
compared to the baselines
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More in the Paper

* Details on PAPI's Heterogeneous Architecture
* Details on PAPI Runtime Scheduler
* Sensitivity to Parallelism Levels

* Speedup of FC-PIM

PAPI’s Execution Time Breakdown
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More in the Paper
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Conclusion

There are varying computation and memory bandwidth
demands across different RLP & TLP configurations

The memory-bound kernels exhibit various computation
demands depending on the kernel type
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e LLM kernels have dynamic computation demands at runtime

PAPI

Key Idea: To enable online dynamic task schedulingon a
heterogeneous architecture via online identification of kernel
properties in LLM decoding

Key Result: Simultaneously improves performance and energy
efficiency of the state-of-the-art baseline
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The Process of Dynamic Scheduling

* Assume the memory-boundedness threshold a=4 in this case

Output Tokens of Requests

Today is sunny
It IS a
Have a nice
How are you
Here IS a
RLP 5 5 5
TLP 1 1 1
Estimated
value 5 5 5
Reschedule| X X X
RESULT - - -
SAFARI
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