
Pitfalls of UPMEM kernel
development

Heterogeneous Memory Software Lab, Poland

Krystian Chmielewski, Tadeusz Kobus, Paweł Piotrowicz, Jarosław
Ławnicki, Uladzislau Lukyanau, Maciej Maciejewski, Zhang Hongjun

krystian.chmielewski@huawei.com1

What is UPMEM?

x8

BANK

High Bandwidth (1GB/s)
Internal Data Bus

DRAM Processing Unit (DPU)

DRAM Array
(MRAM) 64MB

Instruction
Memory (IRAM)

<= 3968 instr

Working Memory
(WRAM)

<= 63488 B

RISC Multi-threaded Pipeline
400MHz

UPMEM PIM Rank

uleduleUPMEM PIM
Module

HOST

CPU CPU

MC

CPU CPU CPU

MC

CPU

DRAM

NUMA 0 NUMA 1

uleduleUPMEM PIM
Module

DRAM

DDR4 channels DDR4 channels

2

ADD and MUL performance analysis

3

Basic operations on UPMEM

0

20

40

60

80

100

INT8 ADD INT8 MUL INT32 ADD INT32 MUL

M
O

P
S

-82%
No native support

for INT32 MUL

-64%

But why?

4

Basic operations on UPMEM

0

20

40

60

80

100

INT8 ADD INT8 MUL INT32 ADD INT32 MUL

M
O

P
S

-82%
No native support

for INT32 MUL

-64%

But why?

5

Issues with INT8 MUL

• Compiler sometimes uses
INT32 MUL __mulsi3 function

(SHIFT&ADD, ~9 cycles)
instead of

INT8 MUL mul_sl_sl (1 cycle) instruction
• Often loops are not being unrolled at all
• Unrolling through #pragma unroll is often not

possible – not enough IRAM

6

7

__mulsi3 – SHIFT & ADD

Changing instructions on function inline

• Compilation with –O2 or –O3 will result in inlining
based on N (if it’s compile time constant)

• Loop unrolling also depends on N

• Inside the main function, INT32 MUL (SHIFT&ADD) is
used

• Function is inlined
• Loop is fully unrolled
• INT8 MUL is used

(1 cycle)

• Function is not inlined
• Loop is fully unrolled,
• INT8 MUL is used

(1 cycle)

• Function is inlined
• Loop is not unrolled
• INT32 MUL (SHIFT&ADD) is used

(~9 cycles)

0 28 39N:

8

INT8/INT32 MUL Optimization

9

0 20 40 60 80 100 120 140 160 180

INT8 (x1, __mulsi3)

INT8 (x1)

INT8 (x4)

INT8 (x8)

INT8 (full_unroll)

INT8x4 (x1)

INT8x4 (full_unroll)

INT8x8 (x1)

INT8x8 (full unroll)

MOPS

Optimized INT8 MUL

baseline

• Ensuring the use of the
correct instruction for INT8

• Unrolling:
• Full (compiler decides)

#pragma unroll
• Manual, e.g., x4

#pragma unroll 4
• Loading data by 4 or 8 bytes

(INT8x4, INT8x8)

> 5x speedup
vs baseline

10

0 5 10 15 20 25

INT32

INT32 (full unroll)

INT32_FAST

INT32_FAST (x64)

MOPS

Optimized INT32 MUL

• Replacing _mulsi3
(SHIFT&ADD, ~30 cycles) with
a custom implementation that
uses INT8 MUL

• Unrolling also helps baseline

2x speedup
vs baseline

X = (x3, x2, x1, x0)
Y = (y3, y2, y1, y0)

X * Y = 2^0 (x0 * y0)
+ 2^8 (x0 * y1 + x1 * y0)
+ 2^16 (x0 * y2 + x1 * y1 + x2 * y0)
+ 2^24 (x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0)

11

Unrolling helps a lot

• Loops are pretty costly, when we are not spending a lot of cycles on single
iteration

• Use #pragma unroll to force compiler to unroll loops

0%

20%

40%

60%

80%

100%

120%

Sp
e

ed
u

p

12

0

20

40

60

80

100

120

140

160

180

INT32 ADD INT32 ADD
full unroll

INT32 MUL INT32_FAST
MUL x64

M
O

P
S

Basic operations on UPMEM revisited

0

20

40

60

80

100

120

140

160

180

INT8 ADD INT8 ADD full
unroll

INT8 MUL INT8x8 full
unroll

M
O

P
S

+26%
MUL is now faster than
optmized ADD for INT8

-82%
MUL is still slower

than ADD for INT32

Still, 2x speedup for
MUL in raw

numbers

13

baselinebaseline baseline baseline

UPMEM vs CPU

0

50

100

150

200

250

300

350

400

450

500

INT8 ADD INT8 MUL INT32 ADD INT32 MUL

G
O

P
S

Upmem (2560 DPUs) Upmem optimized (2560 DPUs) Kunpeng 920 (2*64 cores)

1.5x → 2.6x

1.1x → 6.5x

5.2x → 10.4x

1.9x → 3.5x

Speedup vs Kunpeng

14

Memory transfer optimizations

15

Memory transfers

Host → PIM (dpu_prepare_xfer, dpu_push_xfer):

• Transfer size and symbol offset need to be a multiple of 8B→ error otherwise

• Extra care is needed to handle the remainder, if any

• Host buffers need to be aligned up to 8B

MRAM→WRAM (mram_read, mram_write):

• Transfer size needs to be a multiple of 8B (max 2048B)

• Read/write operations silently align down the address to 8B → no error is raised

• mram_read_unaligned and mram_write_unaligned functions require ~300 more
instructions
→ GEMV where the matrix is stored contiguously and row size is odd

16

Reading unaligned memory MRAM
• Address we read from/write to must be aligned to 8B

• Number of bytes read/written must be a multiple of 8B

17

Optimized data transfers
UPMEM server:

• DRAM can be the bottleneck (only 2 DDR4-3200
channels)

• Transposing data heavily engages the CPU

DPU allocation is not NUMA-aware:

• No way to allocate DPUs assigned to specific CPU

• A significant variance (~12%) in memory transfer
speeds with default DPU allocation

Simple API extension to allow DPU allocation on
specific NUMA node:

• Changes only in the user-space library

• Simple filtering of available ranks
during DPU allocations

CPU

DRAM

UPMEM DIMMS

UPMEM DIMMS

UPMEM DIMMS

UPMEM DIMMS

UPMEM DIMMS

CPU

DRAM

UPMEM DIMMS

UPMEM DIMMS

UPMEM DIMMS

UPMEM DIMMS

UPMEM DIMMS

18

Optimized data transfers (parallel copy)

0

5

10

15

20

25

2 6 10 14 18 22 26 30 34 38

Tr
an

sf
er

 r
at

e
 [

G
B

/s
]

Ranks

PIM to host (baseline) PIM to host (NUMA aware)

Host to PIM (baseline) Host to PIM (NUMA aware)

+12-240%

+2-218%

19

Summary

20

UPMEM Compiler:

• Generates inefficient INT8 MUL (__mulsi3 SHIFT&ADD)

• Rarely performs unrolling

DPU Optimizations:

• A little extra care with INT8 MUL provides huge gains

• INT32 MUL performance is also improved

• The achieved performance of INT8/INT32 ADD/MUL makes UPMEM viable for testing AI workloads
(albeit with quantization, FP remains unpractical on UPMEM)

Optimized data transfers:

• NUMA-awareness can go a long way

Contact me at: krystian.chmielewski@huawei.com

Thank you!

21

	Slide 1: Pitfalls of UPMEM kernel development
	Slide 2: What is UPMEM?
	Slide 3: ADD and MUL performance analysis
	Slide 4: Basic operations on UPMEM
	Slide 5: Basic operations on UPMEM
	Slide 6: Issues with INT8 MUL
	Slide 7
	Slide 8: Changing instructions on function inline
	Slide 9: INT8/INT32 MUL Optimization
	Slide 10: Optimized INT8 MUL
	Slide 11: Optimized INT32 MUL
	Slide 12: Unrolling helps a lot
	Slide 13: Basic operations on UPMEM revisited
	Slide 14: UPMEM vs CPU
	Slide 15: Memory transfer optimizations
	Slide 16: Memory transfers
	Slide 17: Reading unaligned memory MRAM
	Slide 18: Optimized data transfers
	Slide 19: Optimized data transfers (parallel copy)
	Slide 20: Summary
	Slide 21: Thank you!

