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What is UPMEM?
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ADD and MUL performance analysis
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Basic operations on UPMEM
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Issues with INT8 MUL

• Compiler sometimes uses 
INT32 MUL __mulsi3 function

(SHIFT&ADD, ~9 cycles)
instead of

INT8 MUL mul_sl_sl (1 cycle) instruction
• Often loops are not being unrolled at all
• Unrolling through #pragma unroll is often not 

possible – not enough IRAM
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__mulsi3 – SHIFT & ADD



Changing instructions on function inline

• Compilation with –O2 or –O3 will result in inlining 
based on N (if it’s compile time constant)

• Loop unrolling also depends on N

• Inside the main function, INT32 MUL (SHIFT&ADD) is 
used

• Function is inlined
• Loop is fully unrolled
• INT8 MUL is used

(1 cycle)

• Function is not inlined
• Loop is fully unrolled,
• INT8 MUL is used

(1 cycle)

• Function is inlined
• Loop is not unrolled
• INT32 MUL (SHIFT&ADD) is used

(~9 cycles)

0 28 39N:
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INT8/INT32 MUL Optimization
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Optimized INT8 MUL

baseline

• Ensuring the use of the 
correct instruction for INT8

• Unrolling: 
• Full (compiler decides)

#pragma unroll
• Manual, e.g., x4

#pragma unroll 4
• Loading data by 4 or 8 bytes

(INT8x4, INT8x8)

> 5x speedup
vs baseline
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MOPS

Optimized INT32 MUL

• Replacing _mulsi3
(SHIFT&ADD, ~30 cycles) with 
a custom implementation that 
uses INT8 MUL

• Unrolling also helps baseline

2x speedup
vs baseline

X = (x3, x2, x1, x0)
Y = (y3, y2, y1, y0)

X * Y =     2^0   (x0 * y0)
+ 2^8   (x0 * y1 + x1 * y0)
+ 2^16 (x0 * y2 + x1 * y1 + x2 * y0)
+ 2^24 (x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0)
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Unrolling helps a lot

• Loops are pretty costly, when we are not spending a lot of cycles on single 
iteration

• Use #pragma unroll to force compiler to unroll loops
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Basic operations on UPMEM revisited
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UPMEM vs CPU
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Memory transfer optimizations
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Memory transfers

Host → PIM (dpu_prepare_xfer, dpu_push_xfer):

• Transfer size and symbol offset need to be a multiple of 8B→ error otherwise

• Extra care is needed to handle the remainder, if any

• Host buffers need to be aligned up to 8B

MRAM→WRAM (mram_read, mram_write):

• Transfer size needs to be a multiple of 8B (max 2048B)

• Read/write operations silently align down the address to 8B → no error is raised

• mram_read_unaligned and mram_write_unaligned functions require ~300 more 
instructions 
→ GEMV where the matrix is stored contiguously and row size is odd
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Reading unaligned memory MRAM
• Address we read from/write to must be aligned to 8B

• Number of bytes read/written must be a multiple of 8B
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Optimized data transfers 
UPMEM server: 

• DRAM can be the bottleneck (only 2 DDR4-3200  
channels)

• Transposing data heavily engages the CPU

DPU allocation is not NUMA-aware:

• No way to allocate DPUs assigned to specific CPU

• A significant variance (~12%) in memory transfer
speeds with default DPU allocation

Simple API extension to allow DPU allocation on
specific NUMA node:

• Changes only in the user-space library

• Simple filtering of available ranks 
during DPU allocations
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Optimized data transfers (parallel copy) 
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Summary 

20

UPMEM Compiler:

• Generates inefficient INT8 MUL (__mulsi3 SHIFT&ADD)

• Rarely performs unrolling

DPU Optimizations:

• A little extra care with INT8 MUL provides huge gains

• INT32 MUL performance is also improved

• The achieved performance of INT8/INT32 ADD/MUL makes UPMEM viable for testing AI workloads 
(albeit with quantization, FP remains unpractical on UPMEM)

Optimized data transfers:

• NUMA-awareness can go a long way

Contact me at: krystian.chmielewski@huawei.com



Thank you!
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