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Key Results: PyGim improves (i) performance and energy efficiency by 3.7× and 2.3× over state-

of-the-art schemes, and (ii) resource utilization on PIM system by 11.6× over PyTorch on GPUs

Executive Summary
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Motivation: Graph Neural Networks (GNNs) analyze graph-structure data in important real-world 

applications such as drug discovery, social network analysis, recommendation systems… 

Problem: The memory-intensive kernels of GNNs, which dominate execution time (~91%), are 

significantly bottlenecked by memory bandwidth in procesor-centric systems (CPUs/GPUs)

PyGim: An efficient and easy-to-use GNN library for real PIM systems 

Key Ideas & Benefits: 

• Cost Effectiveness: Heteregenous GNN kernels are executed in the best-fit hardware 

• High Performance: (i) Enabling three levels of parallelism with various strategies in the PIM 

side and (ii) adapting best-performing parallelization strategy to the graph’s unique 

characteristics

• High Programming Ease: (i) Providing a handy Python API and (ii) automatically tuning the best-

fit parallelization strategy without programmer intervention

github.com/CMU-SAFARI/PyGim

https://github.com/CMU-SAFARI/PyGim


Talk Outline
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Background & Motivation

PyGim Design

Evaluation



GNNs Are Widely Used in Real-World Applications
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• GNNs are state-of-the-art ML models for analyzing graph-structure data

• Applications of GNNs are:

Drug Discovery

Recommendation Systems

Fraud Detection



Execution Steps of GNN Layers
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• GNNs comprise a few layers (e.g., 3-5 layers)

• Each GNN layer has two execution steps:

Adjacency (Sparse) Matrix

(= input graph data)

Input Feature Matrix Output Feature Matrix

Aggregation Combination

Output Result Small Neural

Network

Aggregation corresponds to Sparse 

Matrix Matrix Multiplication (SpMM)

Combination typically comprises 

computational kernels (e.g., GEMMs)



GNN Aggregation Is Memory-Bandwidth-Bound In GPUs
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Using a RTX 3090 GPU with ~900 GB/s bandwidth, we find that GNN Aggregation

• takes ~91% of the inference time

• achieves less than 2% core utilization

Roofline Analysis

Bandwidth-Bound



PIM Provides A Promising Solution for GNN Aggregation
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• Near-bank PIM: each PIM core is tightly coupled with one (or a few) DRAM banks 

• Near-bank PIM cores have significantly higher memory bandwidth than that 

available on Host cores
A Near-Bank PIM System
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PyGim Overview
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• An efficient and easy-to-use GNN library for real PIM systems

• PyGim incorporates 4 key components:

1. Cooperative Acceleration (CoA)

2. Parallelism Fusion (PaF)

3. Lightweight Tuning

4. Handy Programming Interface

• PyGim is open source:

PyGim: github.com/CMU-SAFARI/PyGim

Deploy your GNNs effortless and enjoy the PIM benefits!

https://github.com/CMU-SAFARI/PyGim


1. Cooperative Acceleration (CoA)
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Heterogeneous kernels are running in the best-fit underlying hardware

• Combination runs on Host cores

• Aggregation runs on PIM cores

A Near-Bank PIM System
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Challenge 1: Data Transfer Costs
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• Minimize the overheads of passing the output data of the one step as input data 

to the next step

A Near-Bank PIM System
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2. Parallelism Fusion (PaF)
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• PaF (i) strives a balance between computation and data transfer costs and (ii) 

efficiently covers various real-world graphs that exhibit diverse characteristics

• PaF enablers 3 levels of parallelism:

1. Across PIM Clusters: Edge- + Feature-level parallelism
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2. Parallelism Fusion (PaF)
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• PaF (i) strives a balance between computation and data transfer costs and (ii) 

efficiently covers various real-world graphs that exhibit diverse characteristics

• PaF enablers 3 levels of parallelism:

1. Across PIM Clusters: Edge- + Feature-level parallelism
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2. Parallelism Fusion (PaF)
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• PaF (i) strives a balance between computation and data transfer costs and (ii) 

efficiently covers various real-world graphs that exhibit diverse characteristics

• PaF enablers 3 levels of parallelism:

1. Across PIM Clusters: Edge- + Feature-level parallelism

2. Within PIM Cluster: Vertex-/Edge-level parallelism

3. Within PIM Core: Vertex-/Edge-level parallelism
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2. Parallelism Fusion (PaF)
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• PaF (i) strives a balance between computation and data transfer costs and (ii) 

efficiently covers various real-world graphs that exhibit diverse characteristics

• PaF enablers 3 levels of parallelism:
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Across PIM Clusters: Edge- + Feature-Level Parallelism
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• E.g., creating 4 PIM clusters with 2 sparse partitions and 2 dense partitions
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Within a PIM Cluster: Vertex-/Edge-Level Parallelism
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• E.g., balancing vertices or balancing edges across PIM cores within the cluster

Adjacency (Sparse) Matrix
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Within a PIM Core: Vertex-/Edge-Level Parallelism
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• E.g., balancing vertices or balancing edges across threads within a PIM core

Adjacency (Sparse) Matrix

Thread 1

Balance Vertices Across Threads Balance Edges Across Threads

Adjacency (Sparse) Matrix

PIM Core

Threads

PIM Core supports 

4 threads

Thread 2

Thread 3

Thread 4

Thread 1
Thread 2

Thread 3

Thread 4

Synchronization is implement with coarse-

grained and fine-grained locking schemes

Each thread 

undertakes 2 vertices
Each thread 

undertakes 5 non-zeros
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• Real-world graphs exhibit diverse (non-zero point) characteristics: 
• Min, max or average vertex neighboring degree, graph’s diameter…

• Typically there is no one-size-fits-all solution: 
→ PaF supports a wide variety of parallelization strategies for diverse real-world graphs

• Key challenge = manually tuning the best-performing parallelization strategy 

for each unique graph's characteristics poses significant challenges for 

developers 

Challenge 2: Programmability in Real-World Graphs

real-world graphs with diverse characteristics

regular graph power-law graph diagonal graph
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• PyGim Tuner predicts and automatically tunes the best-performing PaF 

strategy without the need for manual programmer intervention based on the:
• Graph’s characteristics (i.e., non-zero patterns)

• PIM system’s characteristics (i.e., compute capabilities, available memory bandwidth…)

3. Lightweight Tuning

PIM-Enabled Memory

DRAM Bank

PIM Core

DRAM Bank

PIM Core

DRAM Bank

PIM Core

DRAM Bank

PIM Core

Real PIM System

Real-world Graph

PyGim Tuner

PyGim PaF Strategy

tunes
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• PyGim integrates a handy Python interface (currently integrated with PyTorch)

4. Handy Programming Interface

import torch, pygim as gyn
   class GCNConv(torch.nn.Module):
   def __init__(self, hidden_size):
     self.linear = torch.nn.Linear(feature_size, features_size)
    
   def forward(self, graph_pim, in_dense):
     # Execute memory-intensive operator in PIM devices
     dense_parts = col_split(in_dense)
     out_dense = gyn.pim_run_aggr(graph_pim, dense_parts)
     # Execute compute-intensive operator in Host (e.g., CPU/GPU)
     out = self.linear(out_dense)
     return out
  
   gyn.pim_init_devices(num_pim_devices) # Initialize PIM devices
   data = load_dataset() # Load graph
   # Tune the PaF strategy
   graph_parts, config = gyn.tune(data.graph, feature_size, device_info)  
   graph_pim = gyn.load_graph_pim(graph_parts) # Partition graph to PIM
   # Create GNN model
   model = torch.nn.Sequential([Linear(in_channels, feature_size),
    GCNConv(feature_size),
    GCNConv(feature_size),
    GCNConv(feature_size),
    Linear(feature_size, out_channels)])  
   model.forward(graph_pim, data.features) # GCN inference
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# Create GNN model
model=torch.nn.Sequential([Linear(in_channels,feature_size),
    GCNConv(feature_size),
    GCNConv(feature_size),
    GCNConv(feature_size),
    Linear(feature_size, out_channels)])

import …   pygim as gyn

out_dense = gyn.pim_run_aggr(graph_pim, dense_parts)

# Execute memory-intensive kernel in real PIM devices

graph_pim= gyn.tune(data.graph, feature_size, device_info)
# Tune the PaF strategy
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• PyGim integrates a handy Python interface (currently integrated with PyTorch)

4. Handy Programming Interface

import torch, pygim as gyn
   class GCNConv(torch.nn.Module):
   def __init__(self, hidden_size):
     self.linear = torch.nn.Linear(feature_size, features_size)
    
   def forward(self, graph_pim, in_dense):
     # Execute memory-intensive operator in PIM devices
     dense_parts = col_split(in_dense)
     out_dense = gyn.pim_run_aggr(graph_pim, dense_parts)
     # Execute compute-intensive operator in Host (e.g., CPU/GPU)
     out = self.linear(out_dense)
     return out
  
   gyn.pim_init_devices(num_pim_devices) # Initialize PIM devices
   data = load_dataset() # Load graph
   # Tune the PaF strategy
   graph_parts, config = gyn.tune(data.graph, feature_size, device_info)  
   graph_pim = gyn.load_graph_pim(graph_parts) # Partition graph to PIM
   # Create GNN model
   model = torch.nn.Sequential([Linear(in_channels, feature_size),
    GCNConv(feature_size),
    GCNConv(feature_size),
    GCNConv(feature_size),
    Linear(feature_size, out_channels)])  
   model.forward(graph_pim, data.features) # GCN inference
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# Create GNN model
model=torch.nn.Sequential([Linear(in_channels,feature_size),
    GCNConv(feature_size),
    GCNConv(feature_size),
    GCNConv(feature_size),
    Linear(feature_size, out_channels)])

import …   pygim as gyn

out_dense = gyn.pim_run_aggr(graph_pim, dense_parts)

# Execute memory-intensive kernel in real PIM devices

graph_pim= gyn.tune(data.graph, feature_size, device_info)
# Tune the PaF strategy

UPMEM PIM

fast-forwarded

Memory
small cores

PyGim: github.com/CMU-SAFARI/PyGim

Deploy your GNNs effortless and enjoy the PIM benefits!

Computation is performed 

inside real PIM devices!

https://github.com/CMU-SAFARI/PyGim
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Evaluation Methodology
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• UPMEM PIM server: 16 PIM DIMMs with 1992 PIM Cores (24 threads per core) in total

• Graph models: GCN, GIN SAGE

• Datasets: obn-proteins, reddit, amazonProducts

• Comparison points:

• PyTorch running on host CPU

• SparseP [Sigmetrics’22] (2×) running SpMM as multiple SpMV kernels on PIM cores

• GraNDe [IEEE Trans. Comput.’23]: optimizes GNN aggregation on near-rank PIM systems

UPMEM PIM System
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Performance Evaluation in GNN Inference
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PyGim significantly outperforms PyTorch (CPU) 

and prior PIM-based schemes by 3.1× and 4.4× respectively
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Energy Efficiency Evaluation in GNN Inference
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PyGim improves energy efficiency by 2.7× and 3.3× compared to 

PyTorch (CPU) and prior PIM-based schemes respectively
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Characteristics of CPU, PIM and GPU Systems
System Total 

Cores

Freq. INT32 Peak

Performance

FP32 Peak 

Performance

Memory 

Capacity

Total 

Bandwidth

Technology 

Node

CPU Intel 

Xeon 4215

2×8 x86 

cores
2.5 GHz 0.64 TOPS 1.28 TFLOPS 128 GB 23.1 GB/s 14nm

UPMEM PIM
1992 PIM 

cores
350 MHz 115.93 GOPS 24.85 GFLOPS 124.5 GB 1.39 TB/s at least 20nm

GPU GTX 

1080 Ti

3584 CUDA 

cores
1.48 GHz 13.25 TOPS 13.25 TFLOPS 11 GB 359.9 GB/s 16nm

GPU RTX 

2080 Ti

4352 CUDA 

cores
1.35 GHz 16.94 TOPS 16.94 TFLOPS 11 GB 558.1 GB/s 12nm

GPU RTX 

3090

10496 

CUDA cores
1.40 GHz 17.79 TOPS 35.58 TFLOPS 24 GB 936.2 GB/s 8nm

Across last GPU generations:

• memory bandwidth has tripled (~3×)

• (last two generations) compute throughput has been doubled (~2×)

Comparing latest GPU vs PIM:

• GPU RTX 3090 provides ~150× greater compute throughput

• PIMs provide only ~1.5× larger memory bandwidth
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Resource Utilization in GNN Aggregation

Dataset & data type/

Software library

OGBN

INT32

RDT 

INT32

AMZ

INT32

OGBN 

FP32

RDT

FP32

AMZ 

FP32

pytorch_sparse – Intel MKL (CPU Intel Xeon 4215) 0.74% 0.63% 0.67% 0.26% 0.22% 0.20%

pytorch_sparse – CUDA (GPU GTX 1080 Ti) 2.15% 0.62% 0.71% 2.02% 0.62% 0.71%

pytorch_sparse – CUDA (GPU RTX 2080 Ti) 1.45% 0.68% 0.71% 1.45% 0.67% 0.71%

pytorch_sparse – CUDA (GPU RTX 3090) 3.03% 1.56% 1.32% 1.58% 0.78% 0.67%

PyGim (UPMEM PIM) 14.09% 13.86% 12.32% 8.21% 9.13% 8.84%

Although memory bandwidth and compute throughput have improved across GPU 

generations, resource utilization in GNN aggregation remains similarly low (less than ~3%)

PyGim running on a real PIM system achieves significantly higher resource utilization than 

the state-of-the-art PyTorch library running on high-end GPUs (at least a 9× increase)
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More in the Paper

• Analysis within a PIM core

• Analysis within a PIM cluster

• Analysis across PIM clusters

• PyGim tuning efficiency

• Scalability analysis

• Analysis on different data types 

• Analysis on different compression formats

• Performance evaluation in GNN training

• Recommendations

https://arxiv.org/pdf/2402.16731

https://arxiv.org/pdf/2402.16731
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PyGim is Open Source

github.com/CMU-SAFARI/PyGim

PyGim

https://github.com/CMU-SAFARI/PyGim
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Conclusion

We present PyGim, a handy ML library that significantly improves performance, energy efficiency and 

cost effectiveness in GNNs through real PIM devices

Key Ideas & Benefits: PyGim runs heterogeneous kernels in the best-fit underlying hardware and 

balances computation and data transfer costs via configurable parallelization strategies for diverse real-

world graphs. PyGim automatically tunes the best-fit strategy, enhancing both efficiency and ease of 

use without programmer intervention

Key Results: PyGim improves (i) performance and energy efficiency by 3.7× and 2.3× over state-of-the-

art schemes, and (ii) resource utilization on PIM system by 11.6× over PyTorch on GPUs

github.com/CMU-SAFARI/PyGim
PyGim

https://github.com/CMU-SAFARI/PyGim
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Thank you!

https://cgiannoula.github.io/
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