
PyGim: An Efficient Graph Neural Network Library
for Real Processing-In-Memory Architectures

Christina Giannoula
https://cgiannoula.github.io/

Peiming Yang, Ivan Fernandez, Jiacheng Yang, Sankeerth Durvasula, Yu Xin Li,

Mohammad Sadrosadati, Juan Gomez Luna, Onur Mutlu, Gennady Pekhimenko

1st Workshop on Memory-Centric Computing Systems (MCCSys)

March 2025

https://cgiannoula.github.io/

Key Results: PyGim improves (i) performance and energy efficiency by 3.7× and 2.3× over state-

of-the-art schemes, and (ii) resource utilization on PIM system by 11.6× over PyTorch on GPUs

Executive Summary

2

Motivation: Graph Neural Networks (GNNs) analyze graph-structure data in important real-world

applications such as drug discovery, social network analysis, recommendation systems…

Problem: The memory-intensive kernels of GNNs, which dominate execution time (~91%), are

significantly bottlenecked by memory bandwidth in procesor-centric systems (CPUs/GPUs)

PyGim: An efficient and easy-to-use GNN library for real PIM systems

Key Ideas & Benefits:

• Cost Effectiveness: Heteregenous GNN kernels are executed in the best-fit hardware

• High Performance: (i) Enabling three levels of parallelism with various strategies in the PIM

side and (ii) adapting best-performing parallelization strategy to the graph’s unique

characteristics

• High Programming Ease: (i) Providing a handy Python API and (ii) automatically tuning the best-

fit parallelization strategy without programmer intervention

github.com/CMU-SAFARI/PyGim

https://github.com/CMU-SAFARI/PyGim

Talk Outline

3

Background & Motivation

PyGim Design

Evaluation

GNNs Are Widely Used in Real-World Applications

4

• GNNs are state-of-the-art ML models for analyzing graph-structure data

• Applications of GNNs are:

Drug Discovery

Recommendation Systems

Fraud Detection

Execution Steps of GNN Layers

5

• GNNs comprise a few layers (e.g., 3-5 layers)

• Each GNN layer has two execution steps:

Adjacency (Sparse) Matrix

(= input graph data)

Input Feature Matrix Output Feature Matrix

Aggregation Combination

Output Result Small Neural

Network

Aggregation corresponds to Sparse

Matrix Matrix Multiplication (SpMM)

Combination typically comprises

computational kernels (e.g., GEMMs)

GNN Aggregation Is Memory-Bandwidth-Bound In GPUs

6

Using a RTX 3090 GPU with ~900 GB/s bandwidth, we find that GNN Aggregation

• takes ~91% of the inference time

• achieves less than 2% core utilization

Roofline Analysis

Bandwidth-Bound

PIM Provides A Promising Solution for GNN Aggregation

7

• Near-bank PIM: each PIM core is tightly coupled with one (or a few) DRAM banks

• Near-bank PIM cores have significantly higher memory bandwidth than that

available on Host cores
A Near-Bank PIM System

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

Host Processor

(e.g., CPU/GPU)

Host Cores

Shared Cache

Bus

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory

Standard Memory Modules

Bus

Talk Outline

8

Background & Motivation

PyGim Design

Evaluation

PyGim Overview

9

• An efficient and easy-to-use GNN library for real PIM systems

• PyGim incorporates 4 key components:

1. Cooperative Acceleration (CoA)

2. Parallelism Fusion (PaF)

3. Lightweight Tuning

4. Handy Programming Interface

• PyGim is open source:

PyGim: github.com/CMU-SAFARI/PyGim

Deploy your GNNs effortless and enjoy the PIM benefits!

https://github.com/CMU-SAFARI/PyGim

1. Cooperative Acceleration (CoA)

10

Heterogeneous kernels are running in the best-fit underlying hardware

• Combination runs on Host cores

• Aggregation runs on PIM cores

A Near-Bank PIM System

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

Host Processor

(e.g., CPU/GPU)

Host Cores

Shared Cache

Bus

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory

Standard Memory Modules

Bus GNN

Aggregation

GNN

Combination

Challenge 1: Data Transfer Costs

11

• Minimize the overheads of passing the output data of the one step as input data

to the next step

A Near-Bank PIM System

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

Host Processor

(e.g., CPU/GPU)

Host Cores

Shared Cache

Bus

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory

Standard Memory Modules

Bus GNN

Aggregation

GNN

Combination

data

2. Parallelism Fusion (PaF)

13

• PaF (i) strives a balance between computation and data transfer costs and (ii)

efficiently covers various real-world graphs that exhibit diverse characteristics

• PaF enablers 3 levels of parallelism:

1. Across PIM Clusters: Edge- + Feature-level parallelism

PIM-Enabled Memory

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

PIM-Enabled Memory

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Across PIM Clusters

2. Parallelism Fusion (PaF)

14

• PaF (i) strives a balance between computation and data transfer costs and (ii)

efficiently covers various real-world graphs that exhibit diverse characteristics

• PaF enablers 3 levels of parallelism:

1. Across PIM Clusters: Edge- + Feature-level parallelism

2. Within PIM Cluster: Vertex-/Edge-level parallelism

PIM-Enabled Memory

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

PIM-Enabled Memory

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Across PIM Clusters

Within PIM Cluster

2. Parallelism Fusion (PaF)

15

• PaF (i) strives a balance between computation and data transfer costs and (ii)

efficiently covers various real-world graphs that exhibit diverse characteristics

• PaF enablers 3 levels of parallelism:

1. Across PIM Clusters: Edge- + Feature-level parallelism

2. Within PIM Cluster: Vertex-/Edge-level parallelism

3. Within PIM Core: Vertex-/Edge-level parallelism

PIM-Enabled Memory

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

PIM-Enabled Memory

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Across PIM Clusters

Within PIM Cluster

PIM Core

Threads

Within PIM Core

2. Parallelism Fusion (PaF)

16

• PaF (i) strives a balance between computation and data transfer costs and (ii)

efficiently covers various real-world graphs that exhibit diverse characteristics

• PaF enablers 3 levels of parallelism:

1. Across PIM Clusters: Edge- + Feature-level parallelism

2. Within PIM Cluster: Vertex-/Edge-level parallelism

3. Within PIM Core: Vertex-/Edge-level parallelism

PIM-Enabled Memory

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

PIM-Enabled Memory

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Across PIM Clusters

Within PIM Cluster

PIM Core

Threads

Within PIM Core
Reduces data transfer costs

Reduce computation costs

Across PIM Clusters: Edge- + Feature-Level Parallelism

17

• E.g., creating 4 PIM clusters with 2 sparse partitions and 2 dense partitions

Adjacency (Sparse) Matrix

Clusters

1,2

Clusters

3,4

Input Feature Matrix

C
lu

st
e
r

1
C
lu

st
e
r

3
C
lu

st
e
r

4
C
lu

st
e
r

2

Partial Results for Output
(merged by Host cores)

C
lu

st
e
r

1

C
lu

st
e
r

3

C
lu

st
e
r

2

C
lu

st
e
r

4

sparse partitions (e.g., 2) dense partitions (e.g., 2)

1

2

3

4 5

8 6

7

1

2

3

4 5

8 6

7 edge-level
parallelism

1

2

3

4 5

8 6

7

1

2

3

4 5

8 6

7
Cluster 1 Cluster 2 Cluster 3 Cluster 4

feature-level
parallelism

Within a PIM Cluster: Vertex-/Edge-Level Parallelism

18

• E.g., balancing vertices or balancing edges across PIM cores within the cluster

Adjacency (Sparse) Matrix

Core 1

Balance Vertices Across PIM Cores Balance Edges Across PIM Cores

Adjacency (Sparse) Matrix

Core 2

Core 1

Core 2

PIM-Enabled Memory

DRAM Bank

PIM Core

DRAM Bank

PIM Core

DRAM Bank

PIM Core

DRAM Bank

PIM Core

Cluster 1 has 2 PIM Cores

Cluster 2

Each core

undertakes

4 vertices

Each core

undertakes

10 non-zeross

Within a PIM Core: Vertex-/Edge-Level Parallelism

19

• E.g., balancing vertices or balancing edges across threads within a PIM core

Adjacency (Sparse) Matrix

Thread 1

Balance Vertices Across Threads Balance Edges Across Threads

Adjacency (Sparse) Matrix

PIM Core

Threads

PIM Core supports

4 threads

Thread 2

Thread 3

Thread 4

Thread 1
Thread 2

Thread 3

Thread 4

Synchronization is implement with coarse-

grained and fine-grained locking schemes

Each thread

undertakes 2 vertices
Each thread

undertakes 5 non-zeros

20

• Real-world graphs exhibit diverse (non-zero point) characteristics:
• Min, max or average vertex neighboring degree, graph’s diameter…

• Typically there is no one-size-fits-all solution:
→ PaF supports a wide variety of parallelization strategies for diverse real-world graphs

• Key challenge = manually tuning the best-performing parallelization strategy

for each unique graph's characteristics poses significant challenges for

developers

Challenge 2: Programmability in Real-World Graphs

real-world graphs with diverse characteristics

regular graph power-law graph diagonal graph

21

• PyGim Tuner predicts and automatically tunes the best-performing PaF

strategy without the need for manual programmer intervention based on the:
• Graph’s characteristics (i.e., non-zero patterns)

• PIM system’s characteristics (i.e., compute capabilities, available memory bandwidth…)

3. Lightweight Tuning

PIM-Enabled Memory

DRAM Bank

PIM Core

DRAM Bank

PIM Core

DRAM Bank

PIM Core

DRAM Bank

PIM Core

Real PIM System

Real-world Graph

PyGim Tuner

PyGim PaF Strategy

tunes

22

• PyGim integrates a handy Python interface (currently integrated with PyTorch)

4. Handy Programming Interface

import torch, pygim as gyn
 class GCNConv(torch.nn.Module):
 def __init__(self, hidden_size):
 self.linear = torch.nn.Linear(feature_size, features_size)

 def forward(self, graph_pim, in_dense):
 # Execute memory-intensive operator in PIM devices
 dense_parts = col_split(in_dense)
 out_dense = gyn.pim_run_aggr(graph_pim, dense_parts)
 # Execute compute-intensive operator in Host (e.g., CPU/GPU)
 out = self.linear(out_dense)
 return out

 gyn.pim_init_devices(num_pim_devices) # Initialize PIM devices
 data = load_dataset() # Load graph
 # Tune the PaF strategy
 graph_parts, config = gyn.tune(data.graph, feature_size, device_info)
 graph_pim = gyn.load_graph_pim(graph_parts) # Partition graph to PIM
 # Create GNN model
 model = torch.nn.Sequential([Linear(in_channels, feature_size),
 GCNConv(feature_size),
 GCNConv(feature_size),
 GCNConv(feature_size),
 Linear(feature_size, out_channels)])
 model.forward(graph_pim, data.features) # GCN inference

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Create GNN model
model=torch.nn.Sequential([Linear(in_channels,feature_size),
 GCNConv(feature_size),
 GCNConv(feature_size),
 GCNConv(feature_size),
 Linear(feature_size, out_channels)])

import … pygim as gyn

out_dense = gyn.pim_run_aggr(graph_pim, dense_parts)

Execute memory-intensive kernel in real PIM devices

graph_pim= gyn.tune(data.graph, feature_size, device_info)
Tune the PaF strategy

23

• PyGim integrates a handy Python interface (currently integrated with PyTorch)

4. Handy Programming Interface

import torch, pygim as gyn
 class GCNConv(torch.nn.Module):
 def __init__(self, hidden_size):
 self.linear = torch.nn.Linear(feature_size, features_size)

 def forward(self, graph_pim, in_dense):
 # Execute memory-intensive operator in PIM devices
 dense_parts = col_split(in_dense)
 out_dense = gyn.pim_run_aggr(graph_pim, dense_parts)
 # Execute compute-intensive operator in Host (e.g., CPU/GPU)
 out = self.linear(out_dense)
 return out

 gyn.pim_init_devices(num_pim_devices) # Initialize PIM devices
 data = load_dataset() # Load graph
 # Tune the PaF strategy
 graph_parts, config = gyn.tune(data.graph, feature_size, device_info)
 graph_pim = gyn.load_graph_pim(graph_parts) # Partition graph to PIM
 # Create GNN model
 model = torch.nn.Sequential([Linear(in_channels, feature_size),
 GCNConv(feature_size),
 GCNConv(feature_size),
 GCNConv(feature_size),
 Linear(feature_size, out_channels)])
 model.forward(graph_pim, data.features) # GCN inference

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Create GNN model
model=torch.nn.Sequential([Linear(in_channels,feature_size),
 GCNConv(feature_size),
 GCNConv(feature_size),
 GCNConv(feature_size),
 Linear(feature_size, out_channels)])

import … pygim as gyn

out_dense = gyn.pim_run_aggr(graph_pim, dense_parts)

Execute memory-intensive kernel in real PIM devices

graph_pim= gyn.tune(data.graph, feature_size, device_info)
Tune the PaF strategy

UPMEM PIM

fast-forwarded

Memory
small cores

PyGim: github.com/CMU-SAFARI/PyGim

Deploy your GNNs effortless and enjoy the PIM benefits!

Computation is performed

inside real PIM devices!

https://github.com/CMU-SAFARI/PyGim

Talk Outline

24

Background & Motivation

PyGim Design

Evaluation

Evaluation Methodology

25

• UPMEM PIM server: 16 PIM DIMMs with 1992 PIM Cores (24 threads per core) in total

• Graph models: GCN, GIN SAGE

• Datasets: obn-proteins, reddit, amazonProducts

• Comparison points:

• PyTorch running on host CPU

• SparseP [Sigmetrics’22] (2×) running SpMM as multiple SpMV kernels on PIM cores

• GraNDe [IEEE Trans. Comput.’23]: optimizes GNN aggregation on near-rank PIM systems

UPMEM PIM System

PIM-Enabled MemoryPIM-Enabled Memory124 GB PIM-Enabled Memory

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

Host CPU

(2-socket Intel Xeon)

Host Cores

Shared Cache

Bus

PIM-Enabled MemoryPIM-Enabled Memory
128 GB Main MemoryBus

26

Performance Evaluation in GNN Inference

0

0.5

1

1.5

2

2.5

3

3.5

4

GIN GCN SAGE GIN GCN SAGE GIN GCN SAGE

Sp
e
e
d
u
p

INT32

PyTorch (CPU) SparseP1 SparseP2 GraNDe PyGim_CSR PyGim_COO

ogbn-proteins reddit amazonProducts

PyGim significantly outperforms PyTorch (CPU)

and prior PIM-based schemes by 3.1× and 4.4× respectively

27

Energy Efficiency Evaluation in GNN Inference

0

2000

4000

6000

8000

10000

12000

14000

GIN GCN SAGE GIN GCN SAGE GIN GCN SAGE

E
n
e
rg

y
C
o
n
su

m
p
ti

o
n
 (

J
)

INT32

PyTorch (CPU) SparseP1 SparseP2 GraNDe PyGim_CSR PyGim_COO

ogbn-proteins reddit amazonProducts

PyGim improves energy efficiency by 2.7× and 3.3× compared to

PyTorch (CPU) and prior PIM-based schemes respectively

28

Characteristics of CPU, PIM and GPU Systems
System Total

Cores

Freq. INT32 Peak

Performance

FP32 Peak

Performance

Memory

Capacity

Total

Bandwidth

Technology

Node

CPU Intel

Xeon 4215

2×8 x86

cores
2.5 GHz 0.64 TOPS 1.28 TFLOPS 128 GB 23.1 GB/s 14nm

UPMEM PIM
1992 PIM

cores
350 MHz 115.93 GOPS 24.85 GFLOPS 124.5 GB 1.39 TB/s at least 20nm

GPU GTX

1080 Ti

3584 CUDA

cores
1.48 GHz 13.25 TOPS 13.25 TFLOPS 11 GB 359.9 GB/s 16nm

GPU RTX

2080 Ti

4352 CUDA

cores
1.35 GHz 16.94 TOPS 16.94 TFLOPS 11 GB 558.1 GB/s 12nm

GPU RTX

3090

10496

CUDA cores
1.40 GHz 17.79 TOPS 35.58 TFLOPS 24 GB 936.2 GB/s 8nm

Across last GPU generations:

• memory bandwidth has tripled (~3×)

• (last two generations) compute throughput has been doubled (~2×)

Comparing latest GPU vs PIM:

• GPU RTX 3090 provides ~150× greater compute throughput

• PIMs provide only ~1.5× larger memory bandwidth

29

Resource Utilization in GNN Aggregation

Dataset & data type/

Software library

OGBN

INT32

RDT

INT32

AMZ

INT32

OGBN

FP32

RDT

FP32

AMZ

FP32

pytorch_sparse – Intel MKL (CPU Intel Xeon 4215) 0.74% 0.63% 0.67% 0.26% 0.22% 0.20%

pytorch_sparse – CUDA (GPU GTX 1080 Ti) 2.15% 0.62% 0.71% 2.02% 0.62% 0.71%

pytorch_sparse – CUDA (GPU RTX 2080 Ti) 1.45% 0.68% 0.71% 1.45% 0.67% 0.71%

pytorch_sparse – CUDA (GPU RTX 3090) 3.03% 1.56% 1.32% 1.58% 0.78% 0.67%

PyGim (UPMEM PIM) 14.09% 13.86% 12.32% 8.21% 9.13% 8.84%

Although memory bandwidth and compute throughput have improved across GPU

generations, resource utilization in GNN aggregation remains similarly low (less than ~3%)

PyGim running on a real PIM system achieves significantly higher resource utilization than

the state-of-the-art PyTorch library running on high-end GPUs (at least a 9× increase)

30

More in the Paper

• Analysis within a PIM core

• Analysis within a PIM cluster

• Analysis across PIM clusters

• PyGim tuning efficiency

• Scalability analysis

• Analysis on different data types

• Analysis on different compression formats

• Performance evaluation in GNN training

• Recommendations

https://arxiv.org/pdf/2402.16731

https://arxiv.org/pdf/2402.16731

31

PyGim is Open Source

github.com/CMU-SAFARI/PyGim

PyGim

https://github.com/CMU-SAFARI/PyGim

32

Conclusion

We present PyGim, a handy ML library that significantly improves performance, energy efficiency and

cost effectiveness in GNNs through real PIM devices

Key Ideas & Benefits: PyGim runs heterogeneous kernels in the best-fit underlying hardware and

balances computation and data transfer costs via configurable parallelization strategies for diverse real-

world graphs. PyGim automatically tunes the best-fit strategy, enhancing both efficiency and ease of

use without programmer intervention

Key Results: PyGim improves (i) performance and energy efficiency by 3.7× and 2.3× over state-of-the-

art schemes, and (ii) resource utilization on PIM system by 11.6× over PyTorch on GPUs

github.com/CMU-SAFARI/PyGim
PyGim

https://github.com/CMU-SAFARI/PyGim

PyGim: An Efficient Graph Neural Network Library
for Real Processing-In-Memory Architectures

Christina Giannoula
https://cgiannoula.github.io/

Thank you!

https://cgiannoula.github.io/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

