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Executive Summary

Motivation: Graph Neural Networks (GNNs) analyze graph-structure data in important real-world
applications such as drug discovery, social network analysis, recommendation systems...

Problem: The memory-intensive kernels of GNNs, which dominate execution time (-91%), are
significantly bottlenecked by memory bandwidth in procesor-centric systems (CPUs/GPUs)

PyGim: An efficient and easy-to-use GNN library for real PIM systems

Key Ideas & Benefits:

» Cost Effectiveness: Heteregenous GNN kernels are executed in the best-fit hardware

« High Performance: (i) Enabling three levels of parallelism with various strategies in the PIM
side and (ii) adapting best-performing parallelization strategy to the graph’s unique
characteristics

« High Programming Ease: (i) Providing a handy Python API and (ii) automatically tuning the best-
fit parallelization strategy without programmer intervention

Key Results: PyGim improves (i) performance and energy efficiency by 3.7x and 2.3x over state-
of-the-art schemes, and (ii) resource utilization on PIM system by 11.6x over PyTorch on GPUs

oithub.com/CMU-SAFARI/PyGim



https://github.com/CMU-SAFARI/PyGim

Talk Outline

Background & Motivation

{PyGi m Design }

{Evaluation }




GNNs Are Widely Used in Real-World Applications

* GNNs are state-of-the-art ML models for analyzing graph-structure data
 Applications of GNNs are:




Execution Steps of GNN Layers

* GNNs comprise a few layers (e.g., 3-5 layers)
« Each GNN layer has two execution steps:

Aggregation
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GNN Aggregation Is Memory-Bandwidth-Bound In GPUs

Using a RTX 3090 GPU with ~900 GB/s bandwidth, we find that GNN Aggregation
e takes ~91% of the inference time
e achieves less than 2% core utilization

Roofline Analysis

RTX3090

FP32: 35580.0 GFLOP/s

B Aggregation
Combination

0 . . . .
190 102 10° 101 102 10° 10
Arithmetic Intensity [FLOPs/Byte]

Performance [GFLOP/s]




PIM Provides A Promising Solution for GNN Aggregation

« Near-bank PIM: each PIM core is tightly coupled with one (or a few) DRAM banks
* Near-bank PIM cores have significantly higher memory bandwidth than that

available on Host cores
A Near-Bank PIM System
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PyGim Overview

« An efficient and easy-to-use GNN library for real PIM systems

« PyGim incorporates 4 key components:
1. Cooperative Acceleration (CoA)

2. Parallelism Fusion (PaF)
3. Lightweight Tuning
4. Handy Programming Interface

* PyGim is open source:

PyGim: github.com/CMU-SAFARI/PyGim
Deploy your GNNs effortless and enjoy the PIM benefits!
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1. Cooperative Acceleration (CoA)

Heterogeneous kernels are running in the best-fit underlying hardware
« Combination runs on Host cores
» Aggregation runs on PIM cores

A Near-Bank PIM System
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Challenge 1: Data Transfer Costs

* Minimize the overheads of passing the output data of the one step as input data
to the next step

A Near-Bank PIM System

-

e

Bus

(—
(—

Vs

Standard Memory Modules

-

-

PIM-En

GNN

Aggregation

gfed Memory

: PIM Core

: PIM Core

: PIM Core:

\ PIM‘oreJ

BRA

[ DRAM |(

M| [ =BRAM
. Bank J{

Bank |

Bank

DRAM
Bank

J

J

J

J

11



2. Parallelism Fusion (PaF)

 PaF (i) strives a balance between computation and data transfer costs and (ii)
efficiently covers various real-world graphs that exhibit diverse characteristics

« PaF enablers 3 levels of parallelism:

1. Across PIM Clusters: Edge- + Feature-level parallelism
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2. Parallelism Fusion (PaF)

 PaF (i) strives a balance between computation and data transfer costs and (ii)
efficiently covers various real-world graphs that exhibit diverse characteristics

« PaF enablers 3 levels of parallelism:
1. Across PIM Clusters: Edge- + Feature-level parallelism
2. Within PIM Cluster: Vertex-/Edge-level parallelism

4 Cluster 1 PIM-Enabled Memory Cluster 2 A 4 Cluster 3 PIM-Enabled Memory Cluster 4 A
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2. Parallelism Fusion (PaF)

» PaF (i) strives a balance between computation and data transfer costs and (ii)

efficiently covers various real-world graphs that exhibit diverse characteristics

Within PIM Core

« PaF enablers 3 levels of parallelism:

1. Across PIM Clusters: Edge- + Feature-level parallelism
2. Within PIM Cluster: Vertex-/Edge-level parallelism
3. Within PIM Core: Vertex-/Edge-level parallelism
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2. Parallelism Fusion (PaF)

 PaF (i) strives a balance between computation and data transfer costs and (ii)
efficiently covers various real-world graphs that exhibit diverse characteristics

* PaF enablers 3 levels of parallelism: | Reduces data transfer costs |

1. Across PIM Clusters: Ed

e- + Feature-level
2. Within PIM Cluster: Vertex-/Edge-level parallelism
3. Within PIM Core: Vertex-/Edge-level parallelism

Reduce computation costs
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Across PIM Clusters: Edge- + Feature-Level Parallelism
* E.g., creating 4 PIM clusters with 2 sparse partitions and 2 dense partitions
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Within a PIM Cluster: Vertex-/Edge-Level Parallelism

« E.g., balancing vertices or balancing edges across PIM cores within the cluster
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Within a PIM Core: Vertex-/Edge-Level Parallelism

« E.g., balancing vertices or balancing edges across threads within a PIM core
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Challenge 2: Programmability in Real-World Graphs

« Real-world graphs exhibit diverse (non-zero point) characteristics:
* Min, max or average vertex neighboring degree, graph’s diameter...

 Typically there is no one-size-fits-all solution:
—> PaF supports a wide variety of parallelization strategies for diverse real-world graphs

» Key challenge = manually tuning the best-performing parallelization strategy
for each unique graph's characteristics poses significant challenges for

developers
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3. Lightweight Tuning

* PyGim Tuner predicts and automatically tunes the best-performing PaF

strategy without the need for manual programmer intervention based on the:
* Graph’s characteristics (i.e., non-zero patterns)
* PIM system’s characteristics (i.e., compute capabilities, available memory bandwidth...)
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4. Handy Programming Interface

* PyGim integrates a handy Python interface (currently integrated with PyTorch)

1
2
3
4
5
6

7
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9
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11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

import .. pygim as gyn
GCNConv (torch.nn.Module):
( , hidden size):

.linear = torch.nn.Linear(feature_size, features size)

( , graph pim, in_dense):

# Execute memory-intensive kernel in real PIM devices
dense parts = col split(in dense)

out dense = gyn.pim run aggr(graph pim, dense parts)

out = .linear(out_dense)
out

gyn.pim_init devices(num_pim_devices)
data = load dataset()
# Tune the PaF strategy

raph n.tune(data.graph, feature size, device info
graph pim = gyn.load graph pim(graph parts

# Create GNN model
model=torch.nn.Sequential([Linear(in_channels,feature size),
GCNConv(feature_size),
GCNConv(feature_size),
GCNConv(feature_size),
Linear(feature_size, out_channels)])

model.forward(graph pim, data.features)
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4. Handy Programming Interface
* PyGim integrates a handy Python interface (currently integrated with PyTorch)

1 I import .. pElm as gyn I Loading kernel from: /home/upmem@@13/

m_mul_coo_dpu
1808 DPUs are allocated in 16 ranks

Allocated 16 TASKLET(s) per DPU

2
3
4 BLNC = BLNC_NNZ
5 SYNC = True
6 BLNC_TSKLT = BLNC_TSKLT_NNZ
7 LOCK = LOCKFREEVY2
3 MERGE = BLOCK
! Com putatlon 1S performed PIM ELL;”"-.L.T'B-.U_F__%{_-HL_"_{J.ﬁL:iE
9 lout dense = gyn.pim run aggr(gn . . , val_dt = INT32
10 1NS1 d e I"eal P IM d evices ! spmm_coo_to_device_group
11 - prepare_pim finished
12 \\\\
13

| PyGim: github.com/CMU-SAFARI/PyGim sl bl L)

Iteration 080G2:
16

1 Deploy your GNNs effortless and enjoy the PIM benefits! b Iteration 0003:

Iteration @004:
18 teration @005:
19 | # Create GNN model

20 | model=torch.nn.Sequential([Linear(in_channels,feature size),

21 GCNConv (feature_size),

# Execute memory-intensive kern

22 GCNConv(feature_size),
23 GCNConv (feature_size), small cores
24 Linear (feature size, out channels)]) Memory
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Evaluation Methodology

« UPMEM PIM server: 16 PIM DIMMs with 7992 PIM Cores (24 threads per core) in total
* Graph models: GCN, GIN SAGE
» Datasets: obn-proteins, reddit, amazonProducts
« Comparison points:
* PyTorch running on host CPU

 SparseP [Sigmetrics’22] (2x) running SpMM as multiple SpMV kernels on PIM cores
« GraNDe [IEEE Trans. Comput.’23]: optimizes GNN aggregation on near-rank PIM systems
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Performance Evaluation in GNN Inference
INT32
OPyTorch (CPU) O SparseP1 m SparseP2 B GraNDe B PyGim_CSR  mPyGim_COO

3.5

a1 B0 Bl B0 BN DD Sl S B
PyGim significantly outperforms PyTorch (CPU)

and prior PIM-based schemes by 3.1x and 4.4x respectively
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Energy Efficiency Evaluation in GNN Inference
INT 32
OPyTorch (CPU) O SparseP1 @ SparseP2 ® GraNDe B PyGim_CSR  mPyGim_COO
14000 |
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|
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PyGim improves energy efficiency by 2.7x and 3.3x compared to

PyTorch (CPU) and prior PIM-based schemes respectively
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Characteristics of CPU, PIM and GPU Systems

System Total Freq. INT32 Peak FP32 Peak | Memory Total Technology
Cores Performance | Performance | Capacity | Bandwidth Node

CPU Intel
Xeon 4215

UPMEM PIM

GPU GTX
1080 Ti

GPU RTX
2080 Ti

GPU RTX
3090

28x86 5 5GHz  0.64TOPS  1.28 TFLOPS
cores
1992 PIM
cores
3284 CUDA 4 48 GHz  13.25TOPS  13.25 TFLOPS
cores
4392 CUDA 4 35GHz  16.94TOPS  (16.94 TFLOPS
cores
10496
b e 1.40GHz | 17.79TOPS ||35.58 TFLOPS

Comparing latest GPU vs PIM:

128 GB 23.1 GB/s

11 6B [ 359.9 GB/s

11 GB 558.1 GB/s

24 GB L936.2 GB/SJ

GPU RTX 3090 provides ~150x greater compute throughput
PIMs provide only ~1.5x larger memory bandwidth

14nm

350 MHz [115.93 GOPS] 24.85 GFLOPS 124.5 GB [ 1.39 TB/s ] at least 20nm

16nm
12nm

8nm
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Resource Utilization in GNN Aggregation

Dataset & data type/ OGBN RDT AMZ OGBN RDT AMZ
Software library INT32 | INT32 | INT32 | FP32 | FP32 | FP32

pytorch_sparse - Intel MKL (CPU Intel Xeon 4215) 0.74%  0.63%  0.67% 0.26% 0.22% 0.20%

pytorch_sparse - CUDA (GPU GTX 1080 Ti) 2.15% 0.62% 0.71%  2.02% ]0.62%) 0.71%
pytorch_sparse - CUDA (GPU RTX 2080 Ti) 1.45% 0.71%  1.45% |0.67%| 0.71%
pytorch_sparse - CUDA (GPU RTX 3090) 3.03% 1.56% 1.32% 1.58% |0.78%) 0.67%
PyGim (UPMEM PIM) 14.09% 13.86% 12.32% 8.21% 9.13% 8.84%

Although memory bandwidth and compute throughput have improved across GPU
generations, resource utilization in GNN aggregation remains similarly low (less than ~3%)

PyGim running on a real PIM system achieves significantly higher resource utilization than
the state-of-the-art PyTorch library running on high-end GPUs (at least a 9% increase)
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More in the Paper

PyGim: An Efficient Graph Neural Network Library for Real

AnalySiS Within a PIM core Processing-In-Memory Architectures

CHRISTINA GIANNOULA, University of Toronto, Canada, ETH Ziirich, Switzerland, Vector Institute,
Canada, and CentML, Canada
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PyG-i m t u n -i n g e ff-i C-i e n Cy GENNADY PEKHIMENKO, University of Toronto, Canada, Vector Institute, Canada, and CentML,
Canada

Graph Neural Networks (GNNs) are emerging models to analyze graph-structure data. The GNN execution
involves both compute-intensive and memory-intensive kernels. The memory-intensive kernels dominate
ol o N execution time, because they are significantly bottlenecked by data movement between memory and processors.
Processing-In-Memory (PIM) systems can alleviate this data movement bottleneck by placing simple processors

SC a l a b.l l ] ty a n a lyS] S near or inside memory arrays. To this end, we investigate the potential of PIM systems to alleviate the data
movement bottleneck in GNNs, and introduce PyGim, an efficient and easy-to-use GNN library for real PIM

systems. We propose intelligent parallelization techniques for memory-intensive kernels of GNNs tailored
for real PIM systems, and develop an easy-to-use Python API for them. PyGim employs a cooperative GNN
hd by execution, in which the compute- and memory-intensive kernels are executed in processor-centric and

A n a lyS] S O n d ] ffe re n t d at a ty p eS memory-centric computing systems, respectively, to fully exploit the hardware capabilities. PyGim integrates
a lightweight tuner that configures the parallelization strategy of the memory-intensive kernel of GNNs to

provide high system performance, while also enabling high programming ease. We extensively evaluate PyGim
on a real-world PIM system that has 16 PIM DIMMs with 1992 PIM cores connected to a Host CPU. In GNN
. . . inference, we demonstrate that it outperforms prior state-of-the-art PIM works by on average 4.38x (up to
A n a l S'I S O n d 'I ffe re n t C O m reS S'I O n fo rm at S 7.20x), and the state-of-the-art PyTorch implementation running on Host (on Intel Xeon CPU) by on average
y p 3.04x (up to 3.44x). PyGim improves energy efliciency by 2.86x (up to 3.68x) and 1.55x (up to 1.75X) over prior

PIM and PyTorch Host schemes, respectively. In memory-intensive kernel of GNNs, PyGim provides 11.6x

higher resource utilization in PIM system than that of PyTorch library (optimized CUDA implementation)
in GPU systems. Our work provides useful recommendations for software, system and hardware designers.
PyGim is publicly and freely available at https://github.com/CMU-SAFARI/PyGim to facilitate the widespread

Performance evaluation in GNN training

Key Words: machine learning, graph neural networks, sparse matrix-matrix multiplication, library, mul-
ticore, processing-in-memory, near-data processing, memory systems, data movement bottleneck, DRAM,
benchmarking, real-system characterization, workload characterization
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PyGim 1s Open Source

E] o CMU-SAFARI / PyGim [Q Type (7] to search
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(3 build.sh first commit 4 months ago
D inference.py first commit 4 months ago
D spmm_test.py first commit 4 months ago
00 README s =

PyGim: An Efficient Graph Neural Network Library for
Real Processing-In-Memory Architectures

About b

PyGim is the first runtime framework to
efficiently execute Graph Neural
Networks (GNNs) on real Processing-in-
Memory systems. It provides a high-
level Python interface, currently
integrated with PyTorch, and supports
various GNN models and real-world
input graphs. Described by
SIGMETRICS'25 by Giannoula et al.
(https://arxiv.org/pdf/2402.16731)

& arxiv.org/pdf/2402.16731
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5 watching
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1 fork

Report repository

github.com/CMU-SAFARI/PyGim
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Conclusion

We present PyGim, a handy ML library that significantly improves performance, energy efficiency and
cost effectiveness in GNNs through real PIM devices

Key Ideas & Benefits: PyGim runs heterogeneous kernels in the best-fit underlying hardware and
balances computation and data transfer costs via configurable parallelization strategies for diverse real-
world graphs. PyGim automatically tunes the best-fit strategy, enhancing both efficiency and ease of

use without programmer intervention

Key Results: PyGim improves (i) performance and energy efficiency by 3.7x and 2.3x over state-of-the-
art schemes, and (ii) resource utilization on PIM system by 11.6x over PyTorch on GPUs

L ]

M) github.com/CMU-SAFARI/PyGim
PyGim 32
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PyGim: An Efficient Graph Neural Network Library
for Real Processing-In-Memory Architectures

Christina Giannoula
https://cgiannoula.github.io/

Thank you!
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