Tutorial on Memory-Centric Computing: PIM Adoption & Programmability Geraldo F. Oliveira Prof. Onur Mutlu **HEART 2024** 21 June 2024 SAFARI # Agenda - Introduction to Memory-Centric Computing Systems - Real-World Processing-Near-Memory Systems - Processing-Using-Memory Architectures for Bulk Bitwise Operations - Lunch Break - PIM Programming & Infrastructure for PIM Research - Tentatively: Hands-on Lab on Programming and Understanding a Real Processing-in-Memory Architecture # Processing in Memory: Adoption Challenges - 1. Processing near Memory - 2. Processing using Memory # Eliminating the Adoption Barriers # How to Enable Adoption of Processing in Memory # Potential Barriers to Adoption of PIM - 1. **Applications** & **software** for PIM - 2. Ease of **programming** (interfaces and compiler/HW support) - 3. **System** and **security** support: coherence, synchronization, virtual memory, isolation, communication interfaces, ... - 4. **Runtime** and **compilation** systems for adaptive scheduling, data mapping, access/sharing control, ... - 5. **Infrastructures** to assess benefits and feasibility All can be solved with change of mindset #### We Need to Revisit the Entire Stack We can get there step by step # Adoption: How to Keep It Simple? Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, "PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture" Proceedings of the <u>42nd International Symposium on</u> Computer Architecture (ISCA), Portland, OR, June 2015. [Slides (pdf)] [Lightning Session Slides (pdf)] #### PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture Junwhan Ahn Sungjoo Yoo Onur Mutlu[†] Kiyoung Choi junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr Seoul National University [†]Carnegie Mellon University SAFARI # Adoption: How to Ease **Programmability?** (I) Geraldo F. Oliveira, Alain Kohli, David Novo, Juan Gómez-Luna, Onur Mutlu, "DaPPA: A Data-Parallel Framework for Processing-in-Memory Architectures," in PACT SRC Student Competition, Vienna, Austria, October 2023. #### DaPPA: A Data-Parallel Framework for Processing-in-Memory Architectures Geraldo F. Oliveira* Alain Kohli* David Novo[‡] Juan Gómez-Luna* Onur Mutlu* *ETH Zürich [‡]LIRMM, Univ. Montpellier, CNRS # Adoption: How to Ease Programmability? (II) Jinfan Chen, Juan Gómez-Luna, Izzat El Hajj, YuXin Guo, and Onur Mutlu, "SimplePIM: A Software Framework for Productive and Efficient Processing in Memory" Proceedings of the <u>32nd International Conference on</u> <u>Parallel Architectures and Compilation Techniques</u> (**PACT**), Vienna, Austria, October 2023. # SimplePIM: A Software Framework for Productive and Efficient Processing-in-Memory Jinfan Chen¹ Juan Gómez-Luna¹ Izzat El Hajj² Yuxin Guo¹ Onur Mutlu¹ ETH Zürich ²American University of Beirut # Adoption: How to Maintain Coherence? (I) Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu, "LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory" IEEE Computer Architecture Letters (CAL), June 2016. LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory Amirali Boroumand[†], Saugata Ghose[†], Minesh Patel[†], Hasan Hassan[†], Brandon Lucia[†], Kevin Hsieh[†], Krishna T. Malladi^{*}, Hongzhong Zheng^{*}, and Onur Mutlu^{‡†} † Carnegie Mellon University * Samsung Semiconductor, Inc. § TOBB ETÜ [‡] ETH Zürich # Challenge: Coherence for Hybrid CPU-PIM Apps # Adoption: How to Maintain Coherence? (II) Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu, "CoNDA: Efficient Cache Coherence Support for Near-**Data Accelerators**" Proceedings of the <u>46th International Symposium on Computer</u> Architecture (ISCA), Phoenix, AZ, USA, June 2019. #### **CoNDA: Efficient Cache Coherence Support** for Near-Data Accelerators Amirali Boroumand[†] Saugata Ghose[†] Minesh Patel* Hasan Hassan* Brandon Lucia[†] Rachata Ausavarungnirun^{†‡} Kevin Hsieh[†] Nastaran Hajinazar^{⋄†} Krishna T. Malladi[§] Hongzhong Zheng[§] Onur Mutlu^{⋆†} > [†]Carnegie Mellon University *ETH Zürich *Simon Fraser University \$Samsung Semiconductor, Inc. ‡KMUTNB # Adoption: How to Support Synchronization? Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas, Ivan Fernandez, Juan Gómez-Luna, Lois Orosa, Nectarios Koziris, Georgios Goumas, Onur Mutlu, "SynCron: Efficient Synchronization Support for Near-Data-Processing Architectures" Proceedings of the <u>27th International Symposium on High-Performance Computer</u> <u>Architecture</u> (**HPCA**), Virtual, February-March 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Talk Video (21 minutes)] [Short Talk Video (7 minutes)] # SynCron: Efficient Synchronization Support for Near-Data-Processing Architectures Christina Giannoula^{†‡} Nandita Vijaykumar^{*‡} Nikela Papadopoulou[†] Vasileios Karakostas[†] Ivan Fernandez^{§‡} Juan Gómez-Luna[‡] Lois Orosa[‡] Nectarios Koziris[†] Georgios Goumas[†] Onur Mutlu[‡] [†]National Technical University of Athens [‡]ETH Zürich ^{*}University of Toronto [§]University of Malaga # Adoption: How to Support Virtual Memory? Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, and Onur Mutlu, "Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation" Proceedings of the 34th IEEE International Conference on Computer Design (ICCD), Phoenix, AZ, USA, October 2016. # Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation Kevin Hsieh[†] Samira Khan[‡] Nandita Vijaykumar[†] Kevin K. Chang[†] Amirali Boroumand[†] Saugata Ghose[†] Onur Mutlu^{§†} [†] Carnegie Mellon University [‡] University of Virginia [§] ETH Zürich # Adoption: Code and Data Mapping Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler, "Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems" Proceedings of the <u>43rd International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Seoul, South Korea, June 2016. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] #### Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh[‡] Eiman Ebrahimi[†] Gwangsun Kim* Niladrish Chatterjee[†] Mike O'Connor[†] Nandita Vijaykumar[‡] Onur Mutlu^{§‡} Stephen W. Keckler[†] [‡]Carnegie Mellon University [†]NVIDIA *KAIST [§]ETH Zürich # DAMOV Analysis Methodology & Workloads ## DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks GERALDO F. OLIVEIRA, ETH Zürich, Switzerland JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland LOIS OROSA, ETH Zürich, Switzerland SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA NANDITA VIJAYKUMAR, University of Toronto, Canada IVAN FERNANDEZ, University of Malaga, Spain & ETH Zürich, Switzerland MOHAMMAD SADROSADATI, Institute for Research in Fundamental Sciences (IPM), Iran & ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland Data movement between the CPU and main memory is a first-order obstacle against improving performance, scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP), where some computation is moved close to memory. Prior NDP works investigate the root causes of data movement bottlenecks using different profiling methodologies and tools. However, there is still a lack of understanding about the key metrics that can identify different data movement bottlenecks and their relation to traditional and emerging data movement mitigation mechanisms. Our goal is to methodically identify potential sources of data movement over a broad set of applications and to comprehensively compare traditional compute-centric data movement mitigation techniques (e.g., caching and prefetching) to more memory-centric techniques (e.g., NDP), thereby developing a rigorous understanding of the best techniques to mitigate each source of data movement. With this goal in mind, we perform the first large-scale characterization of a wide variety of applications, across a wide range of application domains, to identify fundamental program properties that lead to data movement to/from main memory. We develop the first systematic methodology to classify applications based on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K functions across 345 applications, we select 144 functions to form the first open-source benchmark suite (DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and (2) come from a wide range of application domains. Using NDP as a case study, we identify new insights about the different data movement bottlenecks and use these insights to determine the most suitable data movement mitigation mechanism for a particular application. We open-source DAMOV and the complete source code for our new characterization methodology at https://github.com/CMU-SAFARI/DAMOV. SAFARI https://arxiv.org/pdf/2105.03725.pdf ## **Methodology Overview** # **Methodology Overview** 265 # **Step 1: Application Profiling** Goal: Identify application functions that suffer from data movement bottlenecks Hardware Profiling Tool: Intel VTune **MemoryBound:** CPU is stalled due to load/store # **Methodology Overview** # Step 2: Locality-Based Clustering Goal: analyze application's memory characteristics #### Spatial Locality⁷ **Low spatial locality** # Step 2: Locality-Based Clustering · Goal: analyze application's memory characteristics #### Spatial Locality⁷ Low spatial locality #### Temporal Locality⁷ **Memory Trace** reuse profile(4)+= 1 Low temporal locality **High temporal locality** # **Methodology Overview** #### Step 3: Memory Bottleneck Classification (1/2) #### **Arithmetic Intensity (AI)** - floating-point/arithmetic operations per L1 cache lines accessed - → shows computational intensity per memory request #### LLC Misses-per-Kilo-Instructions (MPKI) - LLC misses per one thousand instructions - → shows memory intensity #### **Last-to-First Miss Ratio (LFMR)** - LLC misses per L1 misses - → shows if an application benefits from L2/L3 caches #### Step 3: Memory Bottleneck Classification (2/2) Goal: identify the specific sources of data movement bottlenecks - Scalability Analysis: - 1, 4, 16, 64, and 256 out-of-order/in-order host and NDP CPU cores - 3D-stacked memory as main memory # Step 3: Memory Bottleneck Analysis #### DAMOV is Open Source We open-source our benchmark suite and our toolchain #### DAMOV is Open Source We open-source our benchmark suite and our toolchain #### **Get DAMOV at:** #### https://github.com/CMU-SAFARI/DAMOV #### More on DAMOV Analysis Methodology & Workloads #### More on DAMOV Methods & Benchmarks Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata Ghose, Nandita Vijaykumar, Ivan fernandez, Mohammad Sadrosadati, and Onur Mutlu, "DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks" **IEEE Access**, 8 September 2021. Preprint in <u>arXiv</u>, 8 May 2021. [arXiv preprint] [IEEE Access version] [DAMOV Suite and Simulator Source Code] [SAFARI Live Seminar Video (2 hrs 40 mins)] [Short Talk Video (21 minutes)] # DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks GERALDO F. OLIVEIRA, ETH Zürich, Switzerland JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland LOIS OROSA, ETH Zürich, Switzerland SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA NANDITA VIJAYKUMAR, University of Toronto, Canada IVAN FERNANDEZ, University of Malaga, Spain & ETH Zürich, Switzerland MOHAMMAD SADROSADATI, ETH Zürich, Switzerland # Challenge and Opportunity for Future Fundamentally **Energy-Efficient** (Data-Centric) Computing Architectures # Challenge and Opportunity for Future Fundamentally High-Performance (Data-Centric) Computing Architectures # Challenge and Opportunity for Future # Computing Architectures with Minimal Data Movement # Concluding Remarks - We must design systems to be balanced, high-performance, energy-efficient (all at the same time) → intelligent systems - Data-centric, data-driven, data-aware - Enable computation capability inside and close to memory - This can - Lead to orders-of-magnitude improvements - Enable new applications & computing platforms - Enable better understanding of nature - Future of truly memory-centric computing is bright - We need to do research & design across the computing stack # Fundamentally Better Architectures # **Data-centric** **Data-driven** **Data-aware** #### We Need to Revisit the Entire Stack We can get there step by step # We Need to Exploit Good Principles - Data-centric system design - All components intelligent - Better (cross-layer) communication, better interfaces - Better-than-worst-case design - Heterogeneity - Flexibility, adaptability # Open minds # PIM Review and Open Problems # A Modern Primer on Processing in Memory Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d SAFARI Research Group ^aETH Zürich ^bCarnegie Mellon University ^cUniversity of Illinois at Urbana-Champaign ^dKing Mongkut's University of Technology North Bangkok Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory" Invited Book Chapter in Emerging Computing: From Devices to Systems Looking Beyond Moore and Von Neumann, Springer, to be published in 2021. # Special Research Sessions & Courses (I) Special Session at ISVLSI 2022: 9 cutting-edge talks # Special Research Sessions & Courses (II) Special Session at ISVLSI 2022: 9 cutting-edge talks # Processing-in-Memory Course (Fall 2022) Short weekly lectures https://safari.ethz.ch/projects and seminars/fall2022/ doku.php?id=processing in memory https://youtube.com/playlist?list=PL5Q2soXY2Zi8KzG2CQYRNQOVD0GOBrnKy Onur Mutlu Lectures + 367 views + 1 month and ## PIM Course (Fall 2022) ### Fall 2022 Edition: https://safari.ethz.ch/projects and seminars/fall2022 /doku.php?id=processing in memory ### Spring 2022 Edition: https://safari.ethz.ch/projects and seminars/spring2 022/doku.php?id=processing in memory ### Youtube Livestream (Fall 2022): https://www.youtube.com/watch?v=QLL0wQ9I4Dw& list=PL5Q2soXY2Zi8KzG2CQYRNQOVD0GOBrnKy ### Youtube Livestream (Spring 2022): https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX ### Project course - Taken by Bachelor's/Master's students - Processing-in-Memory lectures - Hands-on research exploration - Many research readings https://www.youtube.com/onurmutlulectures ### Spring 2022 Meetings/Schedule | | Week | Date | Livestream | Meeting | Learning
Materials | Assignments | |--|------|---------------|-------------------|---|--|-------------| | | W1 | 10.03
Thu. | You Tobe Live | M1: P&S PIM Course Presentation (PDF) (PPT) | Required Materials
Recommended
Materials | HW 0 Out | | | W2 | 15.03
Tue. | | Hands-on Project Proposals | | | | | | 17.03
Thu. | You Tube Premiere | M2: Real-world PIM: UPMEM PIM (PDF) (PPT) | | | | | W3 | 24.03
Thu. | You to Live | M3: Real-world PIM:
Microbenchmarking of UPMEM
PIM
@ (PDF) @ (PPT) | | | | | W4 | 31.03
Thu. | You Tobe Live | M4: Real-world PIM: Samsung HBM-PIM (PDF) (PPT) | | | | | W5 | 07.04
Thu. | You Tube Live | M5: How to Evaluate Data Movement Bottlenecks (PDF) (PPT) | | | | | W6 | 14.04
Thu. | You Tube Live | M6: Real-world PIM: SK Hynix AiM (PDF) (PPT) | | | | | W7 | 21.04
Thu. | You Premiere | M7: Programming PIM Architectures (PDF) (PPT) | | | | | W8 | 28.04
Thu. | You the Premiere | M8: Benchmarking and Workload
Suitability on PIM
(PDF) (PPT) | | | | | W9 | 05.05
Thu. | You Premiere | M9: Real-world PIM: Samsung AXDIMM (PDF) III (PPT) | | | | | W10 | 12.05
Thu. | You Premiere | M10: Real-world PIM: Alibaba HB-PNM (PDF) (PPT) | | | | | W11 | 19.05
Thu. | You to Live | M11: SpMV on a Real PIM Architecture (PDF) (PPT) | | | | | W12 | 26.05
Thu. | You to Live | M12: End-to-End Framework for
Processing-using-Memory
(PDF) (PPT) | | | | | W13 | 02.06
Thu. | You tobe Live | M13: Bit-Serial SIMD Processing using DRAM (PDF) (PPT) | | | | | W14 | 09.06
Thu. | You to Live | M14: Analyzing and Mitigating ML
Inference Bottlenecks | | | | | W15 | 15.06
Thu. | You to Live | M15: In-Memory HTAP Databases with HW/SW Co-design (PDF) (PPT) | | | | | W16 | 23.06
Thu. | You tobe Live | M16: In-Storage Processing for Genome Analysis (PDF) (PPT) | | | | | W17 | 18.07
Mon. | You Premiere | M17: How to Enable the Adoption of PIM? | | | | | W18 | 09.08
Tue. | You Premiere | SS1: ISVLSI 2022 Special Session
on PIM
(PDF & PPT) | | | # Processing-in-Memory Course (Spring 2023) Short weekly lectures https://www.youtube.com/playlist?list=PL5Q2soXY2Zi EObuoAZVSq o6UySWQHvZ https://safari.ethz.ch/projects and seminars/spring2023/doku.php?id =processing in memory ### Real PIM Tutorials [ISCA'23, ASPLOS'23, HPCA'23] June, March, Feb: Lectures + Hands-on labs + Invited talks https://events.safari.ethz.ch/isca-pim-tutorial/ ### Real PIM Tutorial [ISCA 2023] ### June 18: Lectures + Hands-on labs + Invited talks ### **Tutorial Materials** | Time | Speaker | Title | Materials | |---------------------|--|--|----------------------------------| | 8:55am-
9:00am | Dr. Juan Gómez Luna | Welcome & Agenda | ▶(PDF) P (PPT) | | 9:00am-
10:20am | Prof. Onur Mutlu | Memory-Centric Computing | ▶(PDF) P (PPT) | | 10:20am-
11:00am | Dr. Juan Gómez Luna | Processing-Near-Memory: Real PNM Architectures / Programming General-purpose PIM | ▶(PDF) P (PPT) | | 11:20am-
11:50am | Prof. Izzat El Hajj | High-throughput Sequence Alignment using Real Processing-in-Memory Systems | ▶(PDF) P (PPT) | | 11:50am-
12:30pm | Dr. Christina Giannoula | SparseP: Towards Efficient Sparse Matrix Vector Multiplication for Real Processing-In-Memory Systems | ▶(PDF) P (PPT) | | 2:00pm-
2:45pm | Dr. Sukhan Lee | Introducing Real-world HBM-PIM Powered System for Memory-bound Applications | (PDF) (PPT) | | 2:45pm-
3:30pm | Dr. Juan Gómez Luna /
Ataberk Olgun | Processing-Using-Memory: Exploiting the Analog Operational
Properties of Memory Components / PUM Prototypes: PiDRAM | → (PDF) P (PPT) → (PDF) P (PPT) | | 4:00pm-
4:40pm | Dr. Juan Gómez Luna | Accelerating Modern Workloads on a General-purpose PIM System | ▶(PDF) P (PPT) | | 4:40pm-
5:20pm | Dr. Juan Gómez Luna | Adoption Issues: How to Enable PIM? | ▶(PDF) P (PPT) | | 5:20pm-
5:30pm | Dr. Juan Gómez Luna | Hands-on Lab: Programming and Understanding a Real Processing-in-
Memory Architecture | → (Handout) → (PDF) P (PPT) | https://www.youtube.com/ live/GIb5EgSrWk0 https://events.safari.ethz.ch/ isca-pim-tutorial/ ### Real PIM Tutorial [ASPLOS 2023] ### March 26: Lectures + Hands-on labs + Invited talks ### ASPLOS 2023 Tutorial: Real-world Processing-in-Memory Systems for Modern Workloads P (PPT) Onur Mutlu Lectures 32.1K subscribers https://www.youtube.com/ watch?v=oYCaLcT0Kmo https://events.safari.ethz.ch/ asplos-pim-tutorial/ ### Real PIM Tutorial [HPCA 2023] ### February 26: Lectures + Hands-on labs + Invited Talks | Time | Speaker | Title | Materials | | | |---------------------|----------------------------|---|-----------|--|--| | 8:00am-
8:40am | Prof. Onur Mutlu | Memory-Centric Computing | P (PDF) | | | | 8:40am-
10:00am | Dr. Juan Gómez
Luna | Processing-Near-Memory: Real PNM Architectures Programming General-purpose PIM | P (PDF) | | | | 10:20am-
11:00am | Dr. Dimin Niu | A 3D Logic-to-DRAM Hybrid Bonding Process-Near-Memory Chip for Recommendation System | | | | | 11:00am-
11:40am | Dr. Christina
Giannoula | SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-
In-Memory Architectures | P (PDF) | | | | 1:30pm-
2:10pm | Dr. Juan Gómez
Luna | Processing-Using-Memory: Exploiting the Analog Operational Properties of Memory Components | P (PDF) | | | | 2:10pm-
2:50pm | Dr. Manuel Le
Gallo | Deep Learning Inference Using Computational Phase-Change Memory | | | | | 2:50pm-
3:30pm | Dr. Juan Gómez
Luna | PIM Adoption Issues: How to Enable PIM Adoption? | P (PDF) | | | | 3:40pm-
5:40pm | Dr. Juan Gómez
Luna | Hands-on Lab: Programming and Understanding a Real Processing-in-Memory Architecture | | | | https://www.youtube.com/watch?v=f5-nT1tbz5w https://events.safari.ethz.ch/ real-pim-tutorial/ ### Real PIM Tutorial [MICRO 2023] ### October 29: Lectures + Hands-on labs + Invited talks # https://www.youtube.com/live/ohUooNSIxOI https://events.safari.ethz.ch/micro -pim-tutorial ### Agenda (Tentative, October 29, 2023) ### Lectures - 1. Introduction: PIM as a paradigm to overcome the data movement bottleneck. - 2. PIM taxonomy: PNM (processing near memory) and PUM (processing using memory). - 3. General-purpose PNM: UPMEM PIM. - 4. PNM for neural networks: Samsung HBM-PIM, SK Hynix AiM. - 5. PNM for recommender systems: Samsung AxDIMM, Alibaba PNM. - 6. PUM prototypes: PiDRAM, SRAM-based PUM, Flash-based PUM. - 7. Other approaches: Neuroblade, Mythic. - 8. Adoption issues: How to enable PIM? - Hands-on labs: Programming a real PIM system. ### This PIM Tutorial at HEART 2024 # HEART 2024 Memory-Centric Computing Systems Tutorial Friday, June 21, Porto, Portugal Organizers: Geraldo F. Oliveira, Dr. Mohammad Sadrosadati, Ataberk Olgun, Professor Onur Mutlu Program: https://events.safari.ethz.ch/heart24-memorycentric-tutorial/ International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies Overview of PIM | PIM taxonomy PIM in memory & storage Real-world PNM systems PUM for bulk bitwise operations Programming techniques & tools Infrastructures for PIM Research Research challenges & opportunities # Upcoming PIM Tutorial at ISCA 2024 ### ISCA 2024 Memory-Centric Computing Systems Tutorial Saturday, June 29, Buenos Aires, Argentina Organizers: Geraldo F. Oliveira, Dr. Mohammad Sadrosadati, Ataberk Olgun, Professor Onur Mutlu Program: https://events.safari.ethz.ch/isca24-memorycentric-tutorial/ Overview of PIM | PIM taxonomy PIM in memory & storage Real-world PNM systems PUM for bulk bitwise operations Programming techniques & tools Infrastructures for PIM Research Research challenges & opportunities # Referenced Papers, Talks, Artifacts All are available at https://people.inf.ethz.ch/omutlu/projects.htm https://www.youtube.com/onurmutlulectures https://github.com/CMU-SAFARI/ # Open Source Tools: SAFARI GitHub # Tutorial on Memory-Centric Computing: PIM Adoption & Programmability Geraldo F. Oliveira Prof. Onur Mutlu **HEART 2024** 21 June 2024