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UPMEM Processing-in-DRAM Engine (2019)
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n Processing in DRAM Engine 
n Includes standard DIMM modules, with a large 

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

CPU
(x86, ARM, RV…)

DDR
Data bus

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
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UPMEM DIMMs
• E19: 8 chips/DIMM (1 rank). DPUs @ 267 MHz
• P21: 16 chips/DIMM (2 ranks). DPUs @ 350 MHz

www.upmem.com

http://www.upmem.com/
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2,560-DPU Processing-in-Memory System

CPU 0

CPU 1

DRAM

DRAM

PIM-enabled 
memory

PIM-enabled 
memory

PIM-enabled 
memory

PIM-enabled 
memory

Host 
CPU 0

x10

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

x2

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

Main Memory

PIM-enabled Memory

Host 
CPU 1

x10

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

x2

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

Main Memory

PIM-enabled Memory

https://arxiv.org/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf
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Understanding a Modern PIM Architecture

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks


7

UPMEM Patent

Fabrice Devaux, Jean-François Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.



8

UPMEM PIM System Organization (I)
• FIG. 1 schematically illustrates a computing system comprising DRAM circuits 

having integrated processors according to an example embodiment

Fabrice Devaux, Jean-François Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.
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UPMEM PIM System Organization (II)
• In a UPMEM-based PIM system UPMEM DIMMs coexist 

with regular DDR4 DIMMs

Host 
CPU

xN

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

xM

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

Main Memory

PIM-enabled Memory



10

Host 
CPU

xN

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

xM

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

Main Memory

PIM-enabled Memory

PIM Chip

x8

Control/Status Interface DDR4 Interface

UPMEM PIM System Organization (III)
• A UPMEM DIMM contains 8 or 16 chips

- Thus, 1 or 2 ranks of 8 chips each

• Inside each PIM chip there are:
- 8 64MB banks per chip: Main RAM (MRAM) banks
- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per 

rank
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DRAM Processing Unit (I)
• FIG. 4 schematically illustrates part of the computing system of FIG. 1 in more 

detail according to an example embodiment

Fabrice Devaux, Jean-François Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.
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DRAM Processing Unit (II)
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DPU Pipeline
• In-order pipeline

- Up to 425 MHz 

• Fine-grain multithreaded
- 24 hardware threads

• 14 pipeline stages
- DISPATCH: Thread selection
- FETCH: Instruction fetch
- READOP: Register file
- FORMAT: Operand formatting
- ALU: Operation and WRAM
- MERGE: Result formatting

PIM Chip
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Fine-grained Multithreading
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Fine-Grained Multithreading (I)
• Idea: Hardware has multiple thread contexts (PC+registers). 

Each cycle, fetch engine fetches from a different thread
- By the time the fetched branch/instruction resolves, no instruction is 

fetched from the same thread
- Branch/instruction resolution latency overlapped with execution of 

other threads’ instructions

+ No logic needed for handling control and
   data dependences within a thread 
-- Single thread performance suffers 
-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough 
    threads to cover the whole pipeline
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Fine-Grained Multithreading (II)
• Idea: Switch to another thread every cycle such that no two 

instructions from a thread are in the pipeline concurrently

• Tolerates the control and data dependence latencies by 
overlapping the latency with useful work from other 
threads
• Improves pipeline utilization by taking advantage of 

multiple threads

• Thornton, “Parallel Operation in the Control Data 6600,” 
AFIPS 1964
• Smith, “A pipelined, shared resource MIMD computer,” 

ICPP 1978



17https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=16

Lecture on Fine-Grained Multithreading
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DPU Pipeline
• In-order pipeline

- Up to 425 MHz 

• Fine-grain multithreaded
- 24 hardware threads

• 14 pipeline stages
- DISPATCH: Thread selection
- FETCH: Instruction fetch
- READOP: Register file
- FORMAT: Operand formatting
- ALU: Operation and WRAM
- MERGE: Result formatting

PIM Chip

24-KB 
IRAM

D
M

A
 E

n
g

in
e

64-MB 
DRAM 
Bank

(MRAM)64-KB 
WRAM

x8

Control/Status Interface DDR4 Interface

DISPATCH
FETCH1
FETCH2
FETCH3

READOP1
READOP2
READOP3
FORMAT

ALU1
ALU2
ALU3
ALU4

MERGE1
MERGE2

Re
gi

st
er

 F
ile

P
ip

el
in

e

64 bitsTo the DMA engine



19

DPU Instruction Set Architecture
• Specific 32-bit ISA

- Aiming at scalar, in-
order, and 
multithreaded 
implementation

- Allowing compilation 
of 64-bit C code

- LLVM/Clang compiler

https://sdk.upmem.com/2021.2.0/201_IS.html#
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More on the UPMEM PIM Architecture

https://youtu.be/p_sLhKeo6ys
https://youtu.be/7c6x5GJG6dw

https://youtu.be/p_sLhKeo6ys
https://youtu.be/7c6x5GJG6dw


Programming a 
General-purpose PIM System
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Accelerator Model (I)
• Integration of UPMEM DIMMs in a system follows an 

accelerator model

• UPMEM DIMMs coexist with conventional DIMMs

• UPMEM DIMMs can be seen as a loosely coupled 
accelerator
- Explicit data movement between the main processor (host 

CPU) and the accelerator (UPMEM)
- Explicit kernel launch onto the UPMEM processors

• This resembles GPU computing



23

GPU Computing
• Computation is offloaded to the GPU
• Three steps

- CPU-GPU data transfer (1)
- GPU kernel execution (2)
- GPU-CPU data transfer (3)

CPU 
memory

CPU 
cores Matrix

GPU 
memory

GPU 
coresMatrix

1

3

2

https://www.youtube.com/watch?v=y40-tY5WJ8A
https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=digitaldesign-2018-lecture22-gpuprogramming-afterlecture.pdf

https://www.youtube.com/watch?v=y40-tY5WJ8A
https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=digitaldesign-2018-lecture22-gpuprogramming-afterlecture.pdf


24

Accelerator Model (II)
• FIG. 6 is a flow diagram representing operations in a method of delegating a 

processing task to a DRAM processor according to an example embodiment

Fabrice Devaux, Jean-François Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.
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System Organization
• FIG. 1 schematically illustrates a computing system comprising DRAM circuits 

having integrated processors according to an example embodiment

Fabrice Devaux, Jean-François Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.



First Programming Example: 
Vector Addition
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Observations, Recommendations, Takeaways
GENERAL	PROGRAMMING	RECOMMENDATIONS
1. Execute	on	the	DRAM	Processing	Units	(DPUs)	

portions	of	parallel	code	that	are	as	long	as	possible.	
2. Split	the	workload	into	independent	data	blocks,	

which	the	DPUs	operate	on	independently.	
3. Use	as	many	working	DPUs	in	the	system	as	possible.
4. Launch	at	least	11	tasklets	(i.e.,	software	threads)	

per	DPU.	

PROGRAMMING	RECOMMENDATION	1
For	data	movement	between	the	DPU’s	MRAM	bank	and	the	
WRAM,	use	large	DMA	transfer	sizes	when	all	the	accessed	
data	is	going	to	be	used.	

KEY	OBSERVATION	7

Larger	CPU-DPU	and	DPU-CPU	
transfers	between	the	host	main	
memory	and	the	DRAM	Processing	
Unit’s	Main	memory	(MRAM)	banks	
result	in	higher	sustained	bandwidth.	 KEY	TAKEAWAY	1

The	UPMEM	PIM	architecture	is	fundamentally	compute	
bound.	As	a	result,	the	most	suitable	work-	loads	are	
memory-bound.
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Vector Addition (VA)
• Our first programming example
• We partition the input arrays across:

- DPUs
- Tasklets, i.e., software threads running on a DPU

A[0] A[1] A[N-1]

B[0] B[1] B[N-1]

C[0] C[1] C[N-1]

DPU 0 DPU 1 DPU 2 DPU 3

Tasklet 
0

Tasklet 
1

Tasklet 
0

Tasklet 
1

Tasklet 
0

Tasklet 
1

Tasklet 
0

Tasklet 
1
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UPMEM SDK Documentation

https://sdk.upmem.com/2023.1.0/

https://sdk.upmem.com/2023.1.0/
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General Programming Recommendations

• From UPMEM programming guide✻, presentations★, 
and white papers☆

✻ https://sdk.upmem.com/2021.1.1/index.html
★ F. Devaux, "The true Processing In Memory accelerator," HotChips 2019. doi: 10.1109/HOTCHIPS.2019.8875680
☆ UPMEM, “Introduction to UPMEM PIM. Processing-in-memory (PIM) on DRAM Accelerator,” White paper

GENERAL	PROGRAMMING	RECOMMENDATIONS
1. Execute	on	the	DRAM	Processing	Units	(DPUs)	

portions	of	parallel	code	that	are	as	long	as	
possible.	

2. Split	the	workload	into	independent	data	
blocks,	which	the	DPUs	operate	on	
independently.	

3. Use	as	many	working	DPUs	in	the	system	as	
possible.

4. Launch	at	least	11	tasklets	(i.e.,	software	
threads)	per	DPU.	

https://sdk.upmem.com/2021.1.1/index.html
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DPU Allocation
• dpu_alloc() allocates a number of DPUs

- Creates a dpu_set

Can we allocate different DPU sets 
over the course of a program?

Yes, we can. We show an example next

We deallocate a DPU set with dpu_free()
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DPU Allocation: Needleman-Wunsch (NW)

• In NW we change the number of DPUs in the DPU set as 
computation progresses
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Load DPU Binary
• dpu_load() loads a program in all DPUs of a 
dpu_set

Is it possible to launch different kernels onto different DPUs?

Yes, it is possible. This enables:
• Workloads with task-level parallelism
• Different programs using different DPU sets
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CPU-DPU/DPU-CPU Data Transfers
• CPU-DPU and DPU-CPU transfers

- Between host CPU’s main memory and DPUs’ MRAM banks

• Serial CPU-DPU/DPU-CPU transfers: 
- A single DPU (i.e., 1 MRAM bank)

• Parallel CPU-DPU/DPU-CPU transfers: 
- Multiple DPUs (i.e., many MRAM banks)

• Broadcast CPU-DPU transfers: 
- Multiple DPUs with a single buffer
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Serial Transfers
• dpu_copy_to(); 
• dpu_copy_from();
• We transfer (part of) a buffer to/from each DPU in the 
dpu_set

• DPU_MRAM_HEAP_POINTER_NAME: Start of the 
MRAM range that can be freely accessed by applications
- We do not allocate MRAM explicitly

Offset within MRAM Pointer to main memory Transfer size
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Parallel Transfers
• We push different buffers to/from a DPU set in one 

transfer
- All buffers need to be of the same size

• First, prepare (dpu_prepare_xfer); 
   then, push (dpu_push_xfer)
• Direction:

- DPU_XFER_TO_DPU
- DPU_XFER_FROM_DPU

Pointer to main memory

Offset within MRAM Transfer size

Direction
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Broadcast Transfers
• dpu_broadcast_to(); 

- Only CPU to DPU

• We transfer the same buffer to all DPUs in the dpu_set

Pointer to main memory Transfer size
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Different Types of Transfers in a Program

• An example benchmark that uses both parallel and serial 
transfers
• Select (SEL)

- Remove even values

DPU 0 DPU 1 DPU 2

DPU 0 DPU 1 DPU 2

Parallel 
transfers

Serial 
transfers
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Inter-DPU Communication
• There is no direct communication channel between DPUs

• Inter-DPU communication takes place via the host CPU using CPU-DPU 
and DPU-CPU transfers

• Example communication patterns:
- Merging of partial results to obtain the final result

• Only DPU-CPU transfers
- Redistribution of intermediate results for further computation

• DPU-CPU transfers and CPU-DPU transfers
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How Fast are these Data Transfers? 
• With a microbenchmark, we obtain the sustained 

bandwidth of all types of CPU-DPU and DPU-CPU transfers
• Two experiments:

- 1 DPU: variable CPU-DPU and DPU-CPU transfer size (8 bytes to 
32 MB) 

- 1 rank: 32 MB CPU-DPU and DPU-CPU transfers to/from a set of    
1 to 64 MRAM banks within the same rank

• Preliminary experiments with more than one rank
- Channel-level parallelism

DDR4 bandwidth bounds the maximum transfer bandwidth

The cost of the transfers can be amortized, 
if enough computation is run on the DPUs
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CPU-DPU/DPU-CPU Transfers: 1 DPU
• Data transfer size varies between 8 bytes and 32 MB
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KEY	OBSERVATION	7
Larger	CPU-DPU	and	DPU-CPU	transfers	between	the	host	main	
memory	and	the	DRAM	Processing	Unit’s	Main	memory	(MRAM)	
banks	result	in	higher	sustained	bandwidth.	
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CPU-DPU/DPU-CPU Transfers: 1 Rank (I)
• CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)
• The number of DPUs varies between 1 and 64
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KEY	OBSERVATION	8
The	sustained	bandwidth	of	parallel	CPU-DPU	and	DPU-CPU	
transfers	between	the	host	main	memory	and	the	DRAM	Processing	
Unit’s	Main	memory	(MRAM)	banks	increases	with	the	number	of	
DRAM	Processing	Units	inside	a	rank.
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CPU-DPU/DPU-CPU Transfers: 1 Rank (II)
• CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)
• The number of DPUs varies between 1 and 64
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KEY	OBSERVATION	9
The	sustained	bandwidth	of	
parallel	CPU-DPU	transfers	is	
higher	than	the	sustained	
bandwidth	of	parallel	DPU-CPU	
transfers	due	to	different	
implementations	of	CPU-DPU	and	
DPU-CPU	transfers	in	the	UPMEM	
runtime	library.	

The	sustained	bandwidth	of	broadcast	CPU-DPU	transfers	(i.e.,	the	same	
buffer	is	copied	to	multiple	MRAM	banks)	is	higher	than	that	of	parallel	
CPU-DPU	transfers	(i.e.,	different	buffers	are	copied	to	different	MRAM	
banks)	due	to	higher	temporal	locality	in	the	CPU	cache	hierarchy.	
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“Transposing” Library

F. Devaux, "The true Processing In Memory accelerator," HotChips 2019. doi: 10.1109/HOTCHIPS.2019.8875680
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Microbenchmark: CPU-DPU
• CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)
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DPU Kernel Launch
• dpu_launch() launches a kernel on a dpu_set

- DPU_SYNCHRONOUS suspends the application until the 
kernel finishes

- DPU_ASYNCHRONOUS returns the control to the application
• dpu_sync or dpu_status to check kernel completion

What does the asynchronous execution enable?

Some ideas:
• Task-level parallelism: concurrent execution of different kernels on 

different DPU sets
• Concurrent heterogeneous computation on CPU and DPUs
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How to Pass Parameters to the Kernel?
• We can use serial and parallel transfers
• We pass them directly to the scratchpad memory of the 

DPU 
- Working RAM (WRAM): 64KB per DPU

• This is useful for input parameters and some results
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Recall: Vector Addition (VA)
• Our first programming example
• We partition the input arrays across:

- DPUs
- Tasklets, i.e., software threads running on a DPU

A[0] A[1] A[N-1]

B[0] B[1] B[N-1]

C[0] C[1] C[N-1]

DPU 0 DPU 1 DPU 2 DPU 3

Tasklet 
0

Tasklet 
1

Tasklet 
0

Tasklet 
1

Tasklet 
0

Tasklet 
1

Tasklet 
0

Tasklet 
1
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• Vector addition

Programming a DPU Kernel (I)

Tasklet ID
Size of vector tile processed by a DPU

MRAM addresses of arrays A and B

WRAM allocation

MRAM-WRAM DMA 
transfers

Vector addition (see next slide)

WRAM-MRAM DMA transfer
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Programming a DPU Kernel (II)
• Vector addition



Intra-DPU Synchronization
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Synchronization Primitives
• A tasklet is the software abstraction of a hardware 

thread
• Each tasklet can have its own memory space in WRAM

- Tasklets can also share data in WRAM by sharing pointers

• Tasklets within the same DPU can synchronize
- Mutual exclusion

• mutex_lock(); mutex_unlock();
- Handshakes

• handshake_wait_for(); handshake_notify();
- Barriers

• barrier_wait();
- Semaphores

• sem_give(); sem_take();
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Parallel Reduction (I)
• Tasklets in a DPU can work together on a parallel 

reduction

A[0] A[1] A[N-1]

Sum

Tasklet 0 Tasklet 1 Tasklet 2 Tasklet 3
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A[0] A[1] A[N-1]

Local 
Sum

Local 
Sum

Local 
Sum

Local 
Sum

Sum

Parallel Reduction (II)
• Each tasklet computes a local sum

Tasklet 0 Tasklet 1 Tasklet 2 Tasklet 3
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Parallel Reduction (III)
• Each tasklet computes a local sum

Accumulate in a local sum

Copy local sum into WRAM
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Final Reduction
• A single tasklet can perform the final reduction

Accumulate in a local sum

Copy local sum into WRAM

Sequential accumulation

Barrier synchronization
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Vector Reduction: Naïve Mapping

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3it
er
at
io
ns

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

Slide credit: Hwu & Kirk

…
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Using Barriers: Tree-Based Reduction
• Multiple tasklets can perform a tree-based reduction

- After every iteration tasklets synchronize with a barrier
- Half of the tasklets retire at the end of an iteration

“offset” tasklets working

Barrier synchronization

A handshake-based tree-based reduction is also possible.
We can compare single-tasklet, barrier-based, 

and handshake-based versions*

*Gómez-Luna et al., “Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture,” 
https://arxiv.org/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf
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Tree-Based Reduction on UPMEM PIM (I)
• Single-thread vs. Barrier-based vs. Handshake-based 

on 1 DPU

Gómez-Luna et al. "Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory 
Architecture." arXiv preprint arXiv:2105.03814 (2021). https://arxiv.org/pdf/2105.03814.pdf

High cost of intra-DPU synchronization 
(especially, barrier synchronization) 

when there is small amount of computation 
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https://arxiv.org/pdf/2105.03814.pdf
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Tree-Based Reduction on UPMEM PIM (II)
• Single-thread vs. Barrier-based vs. Handshake-based 

on 1 DPU

Gómez-Luna et al. "Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory 
Architecture." arXiv preprint arXiv:2105.03814 (2021). https://arxiv.org/pdf/2105.03814.pdf

Cost of intra-DPU synchronization 
gets amortized when there is large amount of computation
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Parallel Reduction on GPU

https://youtu.be/tJmcV9AMfp4

https://youtu.be/tJmcV9AMfp4
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Prefix-Sum (Scan)

Output (Exclusive Scan)

1 3 6 10 11 12 13 14 14 15 17 20 22 240 26

Output (Inclusive Scan)

3 6 10 11 12 13 14 14 15 17 20 22 24 261 28

2 3 4 1 1 1 1 0 1 2 3 2 2 21 2

Input

out[0] = 0; // Identity value
for(int i=1; i<n; i++)
    out[i] = out[i-1] + in[i-1];

out[0] = in[0];
for(int i=1; i<n; i++)
    out[i] = out[i-1] + in[i];
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Hierarchical (Inclusive) Scan: 1 DPU

Per-tasklet (Inclusive) Scan

3 6 10 1 2 3 4 0 1 3 6 2 4 61 8

3 6 10 11 12 13 14 14 15 17 20 22 24 261 2814 20

2 3 4 1 1 1 1 0 1 2 3 2 2 21 2

Input Tasklet 0 Tasklet 1 Tasklet 2 Tasklet 3

Output (Inclusive Scan)
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Per-DPU (Inclusive) Scan (I)
• Each tasklet computes scan locally

Per-tasklet scan
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Per-DPU (Inclusive) Scan (II)
• Each tasklet communicates with adjacent tasklets

Per-tasklet scan

Handshake-based synchronization
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Per-DPU (Inclusive) Scan (III)
• Each tasklet adds an offset to each own element 

Per-tasklet scan

Handshake-based synchronization

Per-tasklet add
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Scan-Scan-Add (SSA)

Per-DPU (Inclusive) Scan

3 6 10 1 2 3 4 0 1 3 6 2 4 61 8

2 3 4 1 1 1 1 0 1 2 3 2 2 21 2

10 4 6 8

10 4 6 8

10 14 20 28Scan Partial Sums

Output (Inclusive Scan)
3 6 10 11 12 13 14 14 15 17 20 22 24 261 28

Add

11 12 13 14 14 15 17 20 22 24 26 28

3 6 10 1 2 3 4 0 1 3 6 2 4 61 8

Input DPU 0 DPU 1 DPU 2 DPU 3

DPU kernel termination
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SSA: Memory Accesses
• Scan

- First kernel reads input array (N elements) and writes array 
with per-DPU prefix sums (N elements)

• Scan
- Second kernel reads and writes N / PER_DPU_SIZE elements 

• Add
- Third kernel reads array with per-DPU prefix sums (N 

elements) and writes output (N elements)

• 4N elements are read/written
Per-DPU (Inclusive) Scan

3 6 10 1 2 3 4 0 1 3 6 2 4 61 8

2 3 4 1 1 1 1 0 1 2 3 2 2 21 2

10 4 6 8

10 4 6 8

10 14 20 28Scan Partial Sums

Output (Inclusive Scan)
3 6 10 11 12 13 14 14 15 17 20 22 24 261 28

Add

11 12 13 14 14 15 17 20 22 24 26 28

3 6 10 1 2 3 4 0 1 3 6 2 4 61 8

Input DPU 0 DPU 1 DPU 2 DPU 3

DPU kernel termination
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Reduce-Scan-Scan (RSS)

2 3 4 1 1 1 1 0 1 2 3 2 2 21 2

Input

Per-DPU Reduction

10 4 6 810 4 6 8

10 14 20 28

10 4 6 8

Scan Partial Sums

Output (Inclusive Scan)
3 6 10 11 12 13 14 14 15 17 20 22 24 261 28

2 3 4 1 1 1 1 0 1 2 3 2 2 21 2

11 12 13 14 14 15 17 20 22 24 26 28

DPU kernel termination

Add

3 6 10 1 2 3 4 0 1 3 6 2 4 61 8

Per-DPU Scan

DPU 0 DPU 1 DPU 2 DPU 3
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RSS: Memory Accesses
• Reduce

- First kernel reads input array (N elements) and writes per-
DPU reduction (N / PER_DPU_SIZE elements)

• Scan
- Second kernel reads and writes N / PER_DPU_SIZE elements 

• Scan
- Third kernel reads input array (N elements) and scan partial 

sums (N / PER_DPU_SIZE elements), and writes output (N 
elements)

• 3N elements are read/written
2 3 4 1 1 1 1 0 1 2 3 2 2 21 2

Input

Per-DPU Reduction

10 4 6 810 4 6 8

10 14 20 28

10 4 6 8

Scan Partial Sums

Output (Inclusive Scan)
3 6 10 11 12 13 14 14 15 17 20 22 24 261 28

2 3 4 1 1 1 1 0 1 2 3 2 2 21 2

11 12 13 14 14 15 17 20 22 24 26 28

DPU kernel termination

Add

3 6 10 1 2 3 4 0 1 3 6 2 4 61 8

Per-DPU Scan

DPU 0 DPU 1 DPU 2 DPU 3
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SCAN-SSA vs. SCAN-RSS on UPMEM PIM
• SCAN-SSA vs. SCAN-RSS on 1 DPU

Gómez-Luna et al. "Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory 
Architecture." arXiv preprint arXiv:2105.03814 (2021). https://arxiv.org/pdf/2105.03814.pdf
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The cost of intra-DPU synchronization in RSS (in Reduce step) 
may be noticeable for small arrays. 

For large arrays, RSS is faster than SSA, 
since it saves memory accesses

https://arxiv.org/pdf/2105.03814.pdf
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Parallel Prefix-Sum (Scan) on GPU

https://youtu.be/SG0gvcbf2eo

https://youtu.be/SG0gvcbf2eo
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UPMEM SDK Documentation

https://sdk.upmem.com/2023.1.0/

https://sdk.upmem.com/2023.1.0/


7474https://youtu.be/zF70xuhesME

Programming UPMEM PIM (I)

https://youtu.be/zF70xuhesME


7575https://youtu.be/pHEHdLsnNdk

Programming UPMEM PIM (II)

https://youtu.be/pHEHdLsnNdk
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Real PIM Tutorial: Hands-on Lab
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Template Files
• Contain templates for 

task 1 and task 2
• Task 2’s template can be 

used for the remaining 
tasks
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Task 1: CPU-DPU and DPU-CPU Transfers
• Use serial, parallel, and broadcast transfers
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Task 2: AXPY

• VA is a good reference code for this task
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Task 3: Operations and Datatypes

• You will observe significant variations in arithmetic 
throughput for different operations and datatypes
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Task 4: Vector Reduction

• Performance differences due to the final reduction step
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Real PIM Tutorial: Hands-on Lab



Geraldo F. Oliveira
Dr. Juan Gómez Luna
Professor Onur Mutlu

Processing-Near-Memory
Programming General-purpose PIM

HEART 2024 Tutorial
Memory-Centric Computing Systems

Friday, June 21, 2024


