HEART 2024 Tutorial
Memory-Centric Computing Systems

Processing-Near-Memory
Programming General-purpose PIM

Geraldo F. Oliveira
Dr. Juan Gomez Luna
Professor Onur Mutlu

m Ziirich SA F A R ’

Friday, June 21, 2024

UPMEM PIM

UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

H 8GB/128xDPU PIM R-DIMM Module

C P U UPMEM UPMEM UPMEM UPMEN UPMEM LIPMEN UPMEM UPMEM
PIM PiNA PiM P PIM PIM PIM PI
(x86, ARM, RV...) chip aip chip ehip ehip e chip thip

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

UPMEM DIMMs

* E19: 8 chips/DIMM (1 rank). DPUs @ 267 MHz
* P21: 16 chips/DIMM (2 ranks). DPUs (@ 350 MHz

SAFAR, www.upmem.com

http://www.upmem.com/

,560-DPU Processing-in-Memory System

Main Memory

O NET CN S e oy o
2 | | chip || chip || chip || chip || chip || chip)| chip || chip
T o e e o o e e o)
\Chlp chip || chip || chip)| chip || chip || chip Chlpj /
Host
CPUO)
/ S

PIM-enabled Memory

Main Memory

2,

ffﬁﬁﬁﬁf_\f_\f_\f_\\

- | crie) chiv |\ chip |\ chie)| chip |\ chie) chip J(chip
(oram\(oram (Bram(oram(oram (Gram\(oram (Grarm
\cmp chip || chip)| chip)| chip)\ chip |\ chip L‘hm/

y

x2

Host
CPU 1 \\
)
| —

PIM-enabled Memory

Benchmarking a New Paradigm: An Experimental Analysis of
a Real Processing-in-Memory Architecture

JUAN GOMEZ-LUNA, ETH Ziirich, Switzerland

1ZZAT EL HAJJ, American University of Beirut, Lebanon

IVAN FERNANDEZ, ETH Ziirich, Switzerland and University of Malaga, Spain
CHRISTINA GIANNOULA, ETH Zirich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Zirich, Switzerland

ONUR MUTLU, ETH Zirrich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally
‘memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a
significant overhead in terms of both latency and energy. A major reason is that this communication happens
through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound
workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data
movement bottleneck requires a paradigm where the memory system assumes an active role in computing by
integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM archi motivated by the of new 3D-
stacked memory technologies that integrate memory with a logic layer where processing elements can be
easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware
prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available
real-world PIM i The UPMEM PIM i combines traditional DRAM memory arrays with
general-purpose in-order cores, called DRAM Processing Units (DPUS), integrated in the same chip.

‘This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architec-
ture. We make two key ions. First, we conduct an experimental ch ization of the UPMEM-based
PIM system using microbenchmarks to assess various architecture limits such as compute throughput and
memory bandwidth, yielding new insights. Second, we present PrIM (Processing-In-Memory benchmarks),
a benchmark suite of 16 workloads from different application domains (e, dense/sparse linear algebra,
databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we
identify as memory-bound. We evaluate the and scaling istics of PrIM
on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-
of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM
systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM
system, programming recommendations for software designers, and suggestions and hints for hardware and
architecture designers of future PIM systems.

SAFARI https://arxiv.org/pdf/2105.03814.pdf 5

https://arxiv.org/pdf/2105.03814.pdf

Understanding a Modern PIM Architecture

Benchmarking a New Paradigm:
Experimental Analysis and
Characterization of a Real
Processing-in-Memory System

JUAN GOMEZ-LUNA', I1ZZAT EL HAJJ?, IVAN FERNANDEZ'-3, CHRISTINA GIANNOULA' 4,
GERALDO F. OLIVEIRA', AND ONUR MUTLU

'ETH Ziirich

% American University of Beirut
3Univc.arsity of Malaga

“National Technical University of Athens

Corresponding author: Juan Gémez-Luna (e-mail: juang @ethz.ch).

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

SAFARI

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

UPMEM Patent

a2 United States Patent a0y Patent No.: US 10,324,870 B2
Devaux et al. 45) Date of Patent: Jun. 18, 2019
(54) MEMORY CIRCUIT WITH INTEGRATED (56) References Cited

PROCESSOR
U.S. PATENT DOCUMENTS

(71) Applicant: UPMEM, Grenoble (FR)

5,666,485 A ™ 9/1997 Suresh GO6F 13/1605
(72) Inventors: Fabrice Devaux, La Conversion (CH); 6.463.001 Bl 102002 Williams AR
Jean-Frangois Roy, Grenoble (FR) 7,349,277 B2* 3/2008 Kinsleyccoooo...... G11C 11/406
365/193
(73) Assignee: UPMEM, Grenoble (FR) 8,438,358 B1* 5/2013 Kraipakc.ccon. GI11C 7/04
711/167
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 15/551,418 EP 0780768 Al 6/1997
JP HO3109661 A 5/1991
(22) PCT Filed: Feb. 12, 2016 WO 2010/141221 Al 12/2010
(57) ABSTRACT

A memory circuit having: a memory array including one or
more memory banks; a first processor; and a processor
control interface for receiving data processing commands
directed to the first processor from a central processor, the
processor control interface being adapted to indicate to the
central processor when the first processor has finished
accessing one or more of the memory banks of the memory
array, these memory banks becoming accessible to the
central processor.

SA FA R’ Fabrice Devaux, Jean-Frangois Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.

UPMEM PIM System Organization (I)

* FIC. 1 schematically illustrates a computing system comprising DRAM circuits
having integrated processors according to an example embodiment

DRAMO
=

100
Bt
I 3
B 1{)3 B
DDR MASTER INTERFACE

PN
‘] r 140
A
g

!
.] y -
DRAMI X 7 DRAM2 X 7 DRAM3
DDR 8.1 " |DDRS.L " |DDRS.L " |DDR 8.1
=108 =118 =128 138
13 P 13 | P
107 __ 106 917116 27 926 937 436
MA MA MA MA
; } 3 3
{ [({
104 114 124 134
Fig 1

SAFARI

Fabrice Devaux, Jean-Frangois Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.

UPMEM PIM System Organization (lI)

* Ina UPMEM-based PIM system UPMEM DIMMs coexist
with regular DDR4 DIMMs

SAFARI

Host
CcPU

Main Memory

-

p

y i

y -

DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM
ﬁ Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip

DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM

Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip

xM

PENCA A CACA A AR ER
J
&)
N

PpIM || pIM || PIm || PIM || PIM || PIM || PIM || PIM
chip || chip || chip || chip || chip || chip || chip || chip /

PIM-enabled Memory

UPMEM PIM System Organization (liI)

* AUPMEM DIMM contains 8 or 16 chips
- Thus, 1 or 2 ranks of 8 chips each

* Inside each PIM chip there are:

- 8 64MB banks per chip: Main RAM (MRAM) banks

- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per
rank

Main Memory PIM Ch ip
= ye ~\
/ Control/Status Interface <—>[DDR4 Interface]
DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM /
() < chip || chip || chip || chip)| chip || chip || chip || chip / A ‘
/
Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip \
/
/:M (— r#\\\
Host)/ DISPATCH
FETCH1 _
CPU £)/ Fercy)lap 23KB o
£ T FETCH3 IRAM v
ﬁ Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip) 4% - (READOP3 IE DRAM
- w
chip || chip || chip || chip)| chip || chip || chip || chip
‘/4xN g AW 64-KB = (D)
~ = ALU3 <P WRAM <€+ QO
PIM-enabled Memory S [7] ALU4 —;/
~ 2 MERGEL _—37
(& ([MERGE2)’; %8
- J

SAFARI 10

DRAM Processing Unit (1)

FIG. 4 schematically illustrates part of the computing system of FIG. 1in more
detail according to an example embodiment

SOC 193 A

I;DR MASTER INTERFACE

‘] r 140
//
2
DRAMO{7 DRAM! v DRAM V DRA.M3 i} -
|DDR§I]]DDMI! [pDR S.1.] . IDDRSII
lIIPI IIIPI il » | 1|p|
q07__%06 716 927926 137436
MA MA MA MA
; . , .
1 f [T
104 114 124 134
Fig1

P1

NP2 [«

SOC ™ 103

DDR

MASTER [N
INTERFACE|

DDR BUS

?l 6 412 DRAM 0
3 410 \
408k\ A
406 |
— =
REFRESH t
CONTROLLER 1424
: Dl_?AM
: s PRO(bSbOR425
- CONTROL| 420 L
4 INSTRUCTION
- A M
4265
v T, 2
P PIPELINE ;
< MEMORY 8 |]
p ARRAY
DDR CONTROL! |LOCAL MEMORY
SLAVE LI 3] -
INTERFACE N =422 i
<423 -
4&3 ¥ 418 v
G.I MEMORY =
BANK E | o
, A'
414
Fig4

SAFARI

Fabrice Devaux, Jean-Frangois Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.

DRAM Processing Unit (1)
PIM Chip

-

_

SAFARI

DPU Pipeline

* In-order pipeline

- Up to 425 MHz
* Fine-grain multithreaded

- 24 hardware threads
* 14 pipeline stages

: Thread selection
: Instruction fetch
- READOP: Register file
: Operand formatting

- ALU: Operation and WRAM
- MERGE: Result formatting

SAFARI

27 1

DISPATCH)

FETCH1

FETCH2

FETCH3

READOP1

READOP2

<>

24-KB
IRAM

To the DMA engine |

gister File

READOP3

FORMAT

ALU1

ALU2

ALU3

ALU4

ipeline(Re

MERGE1

P

—_———————)

r

MERGE2

64-KB
WRAM

Fine-grained Multithreading

Fine-Grained Multithreading (1)

* |dea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread

- By the time the fetched branch/instruction resolves, no instruction is
fetched from the same thread

- Branch/instruction resolution latency overlapped with execution of
other threads instructions

Instruction Operands

+ No logic needed for handling control and v ¥
. . Stream 3 Instruction
data dependences within a thread Instruction Fetch
. Stream 2 Instruction
- Single thread performance suffers Operand Fetch
Stream 1 Instruction
- I i Execution Phase
Extra logic for keeping thread contexts Laiecution Phase
- Does not overlap latency if not enough Execution Phase
threads to cover the whole pipeline '
Stream 4 Instruction
Result Store

SAFARI 15

Fine-Grained Multithreading (1)

* ldea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

* Tolerates the control and data dependence latencies by
overlapping the latency with useful work from other
threads

* Improves pipeline utilization by taking advantage of
multiple threads

 Thornton, “Parallel Operation in the Control Data 6600,”
AFIPS 1964

* Smith, “A pipelined, shared resource MIMD computer,”
ICPP 1978

SAFARI 16

Lecture on Fine-Grained Multithreading

Fine-Grained Multithreading

Each cycle, fetch engine fetches from a different thread.

o By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

o Branch/instruction resolution latency overlapped with execution
of other threads’ instructions

Instruction Operands

Stream 3 Instruction

+ No logic needed for handling control and [nstruction Fetch

tream 2 Instruction

data dependences within a thread —peranc Telet
-- Single thread performance suffers e
-- Extra logic for keeping thread contexts Lecutiar Thesr
-- Does not overlap latency if not enough

Stream 4 Instruction

threads to cover the whole pipeline Result Store

Onur Mutlu - Digital Design & Comp Arch - Lecture 14: Pipelined Processor Design (Spring 2021)

1,193 views * Streamed live on Apr 22, 2021 |. 42 0 SHARE ‘+ SAVE

@ ?sn;:; Ziﬁ:ﬂtg&tures ANALYTICS EDIT VIDEO
> ’

SAFAR| nhtps:/iwww.youtube.com/watch?v=6e5KZcCGBYwa&list=PL5Q2s0XY2Zi_uej3aY39YB5pfW4SJ7LIN&index=16

DPU Pipeline

* In-order pipeline

- Up to 425 MHz
* Fine-grain multithreaded

- 24 hardware threads
* 14 pipeline stages

: Thread selection
: Instruction fetch
- READOP: Register file
: Operand formatting

- ALU: Operation and WRAM
- MERGE: Result formatting

SAFARI

27 1

DISPATCH)

FETCH1

FETCH2

FETCH3

READOP1

READOP2

<>

24-KB
IRAM

To the DMA engine |

gister File

READOP3

FORMAT

ALU1

ALU2

ALU3

ALU4

ipeline(Re

MERGE1

P

—_———————)

r

MERGE2

64-KB
WRAM

DPU Instruction Set Architecture

* Specific 32-bit ISA
- Aiming at scalar, in-
order, and

multithreaded
implementation

- Allowing compilation
of 64-bit C code

- LLVM/Clang compiler

U Instruction Set Architecture — UPMEM DPU SDK 2021.2.0 Documentation

UPMEM development tools documentation

@ » Instruction Set Architecture View page source

Instruction Set Architecture

This section covers the architecture concepts required to understand and use UPMEM DPU
processor as a software developer. It is also providing an exhaustive list of the available processor
instructions.

Software developers should use this section as a reference manual to develop or debug assembly
code.

Resources overview

Thread registers

The system is composed of 24 hardware threads. Each of them owns a set of private resources:

e 24 general purpose 32-bits registers named ro through r23
o A 16-bits wide program counter, named PC. Notice that the PC value does not address an
instruction in memory, but the index of such an instruction directly. For example, a PC
equal to 1 represents the second instruction in the DPU’s program memory.
e Two persistent flags, keeping information about the previous result of an arithmetic or
logical instruction:
o ZF: last result is equal to zero

Nienlav a manii —— . o

https://sdk.upmem.com/2021.2.0/201_IS.html#

SAFARI

19

More on the UPMEM PIM Architecture

ETHzirich

2,560-DPU System (1)

« UPMEM-based PIM Main Memory

; R N
system with 20 UPMEM B UDDDDDOD

DIMMs of 16 ChipS each \LJL)LJL_JLJL_)LJU
(40 ranks) o P 2560 DPUS

;’Jj

P f
21 DIMMs ..
= | | chir chip || chip || chip chip || chip
-—
PIM PIM PIM PIM PIM PIM PIM
Dual x86 socket
AN ¥'x10

PIM-enabled Memory

coexist with regular Main Memory

DDR4 DIMMs frﬂrﬂrﬂr—wr—v—v—\m\\\
« 2 memory R ey oo
e e e\ e

controllers/socket (3 NS) 1,

channels each) cPu 1 -

S

* 2 conventional DDR4 o
DIMMs on one

channel of one
controller

PIM Course: Lecture 3: Real-world PIM: UPMEM PIM - Fall 2022

i OnurMutrlacturee £\ Subscribed v/ 518 GJ »~» Share & clip =+ Save
> 31.7K subscribers =
564 views 4 months ago Livestream - P&S Data-Centric Architectures: Fundamentally Improving Performance and Energy (Fall 2022)
Projects & Seminars, ETH Zdrich, Fall 2022
Data-Centric Architectures: Fundamentally Improving Performance and Energy
(https://safari.ethz.ch/projects_and_s...) Show more

https://youtu.be/p sLhKeobys
SAFARI https://youtu.be/7c6x5GIG6dw

https://youtu.be/p_sLhKeo6ys
https://youtu.be/7c6x5GJG6dw

Programming a
General-purpose PIM System

Accelerator Model (1)

* Integration of UPMEM DIMMs in a system follows an
accelerator model

e UPMEM DIMMs coexist with conventional DIMMs

* UPMEM DIMMs can be seen as a loosely coupled
accelerator

- Explicit data movement between the main processor (host
CPU) and the accelerator (UPMEM)

- Explicit kernel launch onto the UPMEM processors

* This resembles GPU computing

SAFARI 22

GPU Computing

* Computation is offloaded to the GPU
* Three steps

- CPU-GPU data transfer (1)
- GPU kernel execution (2)
- GPU-CPU data transfer (3)

https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=digitaldesign-2018-lecture22-gpuprogramming-afterlecture.pdf

CPU
cores

CPU
memory

GPU
memory

Matrix

Matrix

GPU
cores

https://www.youtube.com/watch?v=y40-tYS5WJ8A

SAFARI

23

https://www.youtube.com/watch?v=y40-tY5WJ8A
https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=digitaldesign-2018-lecture22-gpuprogramming-afterlecture.pdf

Accelerator Model (IlI)

* FIG. 6 is a flow diagram representing operations in a method of delegating a
processing task to a DRAM processor according to an example embodiment

SOC LOADS DATA TO BE PROCESSED
TO DRAM MEMORY BANK
SOC TRANSMITS DATA PROCESSING
A 602
COMMAND TO DRAM PROCESSOR(S)
l B—__603
DATA PROCESSING BY DRAM PROCESSOR(S)
f 604
DATA PROCESSIN
COMPLETE 2
5)5
, ~
MEMORY BANK ACCESSIBLE BY SOC
Fig 6

SA FA R, Fabrice Devaux, Jean-Frangois Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.

System Organization

* FIC. 1 schematically illustrates a computing system comprising DRAM circuits
having integrated processors according to an example embodiment

100

B
&

. |02

rd
tDDR MASTER INTERFACE

ANy
Ll r 140
it
-

DRA&I:/IO {7 DRA&\’/II {; DRAI\?/I?. v DRA&'B B

DDR S.1. DDR S.1 DDR S.1. DDR S.L
2108 118 =128 138
4 3 B Ips pF
907106 917116 27 926 937 936
MA MA MA MA
7 7 7 ?
z 7 ({
104 114 124 134
Fig 1

SA FA R’ Fabrice Devaux, Jean-Frangois Roy. “Memory circuit with integrated processor.” US 10,324,870 B2. 2 5

First Programming Example:
Vector Addition

Observations, Recommendations, Takeaways

GENERAL PROGRAMMING RECOMMENDATIONS

Execute on the DRAM Processing Units (DPUs)
portions of parallel code that are as long as possible.
Split the workload into independent data blocks,
which the DPUs operate on independently.

Use as many working DPUs in the system as possible.
Launch at least 11 tasklets (i.e., software threads)
per DPU.

PROGRAMMING RECOMMENDATION 1

For data movement between the DPU’s MRAM bank and the
WRAM, use large DMA transfer sizes when all the accessed

data is going to be used.

KEY OBSERVATION 7

Larger CPU-DPU and DPU-CPU
transfers between the host main
memory and the DRAM Processing

Unit’s l_/[aln_ memory (MRAM) banks_ KEY TAKEAWAY 1
result in higher sustained bandwidth.
The UPMEM PIM architecture is fundamentally compute
bound. As a result, the most suitable work- loads are

memory-bound.

SAFARI

Vector Addition (VA)

* Our first programming example

* We partition the input arrays across:
- DPUs
- Tasklets, i.e., software threads running on a DPU

SAFARI

28

UPMEM SDK Documentation

@A / User Manual

User Manual

Getting started

e The UPMEM DPU toolchain

CrrED o Notes before starting

The toolchain purpose

o

o dpu-upmem-dpurte-clang

The UPMEM DPU toolchain = Limitations
Installing the UPMEM DPU toolchain

[e]

The DPU Runtime Library
Hello World! Example o The Host Library
dpu-lldb

[e]

e |[nstalling the UPMEM DPU toolchain
Introduction

o Dependencies

Tasklet management and synchronization

Memory management = Python

Standard library functions o Installation packages

Exceptions . . .

= Installation from tar.gz binary archive
Controlling the execution of DPUs from

host applications o Functional simulator

Communication with host applications e Hello World! Example

Advanced Features of the Host API
o Purpose

Logging

o Writing and building the program

SA FAR, https://sdk.upmem.com/2023.1.0/

https://sdk.upmem.com/2023.1.0/

General Programming Recommendations

* From UPMEM programming guide®, presentations*,
and white papers*

GENERAL PROGRAMMING RECOMMENDATIONS

. Execute on the DRAM Processing Units (DPUs)
portions of parallel code that are as long as
possible.

. Split the workload into independent data

blocks, which the DPUs operate on
independently.

. Use as many working DPUs in the system as
possible.

. Launch at least 11 tasklets (i.e., software
threads) per DPU.

* https://sdk.upmem.com/2021.1.1/index.html
* F. Devaux, "The true Processing In Memory accelerator," HotChips 2019. doi: 10.1109/HOTCHIPS.2019.8875680
* UPMEM, “Introduction to UPMEM PIM. Processing-in-memory (PIM) on DRAM Accelerator,” White paper

SAFARI

30

https://sdk.upmem.com/2021.1.1/index.html

DPU Allocation

* dpu alloc () allocates a number of DPUs
- Createsadpu set

struct dpu_set_t dpu_set, dpu;
uint32_t nr_of_dpus;
DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set));

DPU_ASSERT (dpu_get_nr_dpus(dpu_set, &nr_of_dpus));
printf("Allo d %d DPU(s)\n", nr_of_dpus);

Can we allocate different DPU sets
over the course of a program?

Yes, we can. We show an example next

We deallocate a DPU set with dpu free ()

SAFARI 31

DPU Allocation: Needleman-Wunsch (NW)

* In NW we change the number of DPUs in the DPU set as
computation progresses

SAFARI

for (unsigned int blk = 1; blk <= (max_cols-1)/BL; blk++) {

unsigned nr_of_blocks = blk;

if (nr of blocks < max dpus) {
DPU_ASSERT(dpu_free(dpu_set));
DPU_ASSERT(dpu_alloc(nr_of_blocks, NULL, &dpu_set));
DPU_ASSERT (dpu_load(dpu_set, DPU_BINARY, NULL));
DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));

} else if (nr_of_dpus == max_dpus) {

} else {
DPU_ASSERT (dpu_free(dpu_set));
DPU_ASSERT(dpu_alloc(max_dpus, NULL, &dpu_set));
DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL));
DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));

32

Load DPU Binary

* dpu load () loads a programin all DPUs of a
dpu set

#ifndef DPU_BINARY
#define DPU_BINARY "./bin/dpu_code"
#endif

DPU ASSERT(dpu load(dpu set, DPU BINARY, NULL));

s it possible to launch different kernels onto different DPUs?

(Yes, it is possible. This enables: A
* Workloads with task-level parallelism
& Different programs using different DPU sets y

SAFARI 33

CPU-DPU/DPU-CPU Data Transfers

* CPU-DPU and DPU-CPU transfers
- Between host CPU’s main memory and DPUs’ MRAM banks

Main Memory

P

y =
.=
.=

DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM|[DRAM
\)‘ == | | 1P J\ Chip)| Chip |\ Chip J{ Chip)| chip |\ chip)| chip

,OQ‘ -— DRAI‘ﬂ[DRAI‘ﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ
Q\)/ —— chip || cnip || chip || cnip || chip || chip || chip || chip
%l xM
Host I
P =

b
= pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
@e=p-| (Chip || Chip || Chip)\ chip)| chip |\ chip || chip || chip
J
pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
chip || chip || chip || chip || chip)| chip || chip || chip /

xN
PIM-enabled Memory

e Serial CPU-DPU/DPU-CPU transfers:
- Asingle DPU (i.e., 1t MRAM bank)

* Parallel CPU-DPU/DPU-CPU transfers:
- Multiple DPUs (i.e., many MRAM banks)

* Broadcast CPU-DPU transfers:
- Multiple DPUs with a single buffer

SAFARI

34

Serial Transfers

* dpu_copy_tol();

* dpu copy fromf();

» We transfer (part of) a buffer to/from each DPU in the
dpu set

* DPU MRAM HEAP POINTER NAME: Start of the
MRAM range that can be freely accessed by applications
- We do not allocate MRAM explicitly

DPU_FOREACH (dpu_set, dpu) {
DPU_ASSERT (dpu_copy_to(dpu, DPU_MRAM_HEAP_POINTER_NAME 0, oufferA + input_size_dpu_ es x 1 input_size_dpu_: es x sizeof(T)))
DPU_ASSERT (dpu_copy_to(dpu, DPU_MRAM_HEAP_POINTER_NAME input_size_dpu_8bytes * i
it+;

}

SAFARI 35

Parallel Transfers

* We push different buffers to/from a DPU set in one
transfer

- All buffers need to be of the same size
* First, prepare (dpu prepare xfer),
then, push (dpu push xfer)

e Direction:
- DPU XFER TO DPU
- DPU XFER FROM DPU

DPU_FOREACH(dpu_set, dpu, i) {
DPU_ASSERT (dpu_prepare_xfer(dpu, bufferA + input_size_dpu_8bytes * i))

b
DPU_ASSERT (dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU DPU_MRAM_HEAP_POINTER_NAME, 0, input_size es * sizeof(T) DPU_XFER_DEFAULT));

DPU_FOREACH(dpu_set, dpu, i) {
DPU_ASSERT (dpu_prepare_xfer(dpu, bufferB + input_size_dpu_8bytes x 1i))
}
DPU_ASSERT (dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU DPU_MRAM_HEAP_POINTER_NAME, input_size_dpu_8bytes x sizeo input_size es * sizeof(T) DPU_XFER_DEFAULT));

SAFARI 36

Broadcast Transfers

* dpu broadcast to();
- Only CPU to DPU

* We transfer the same buffer to all DPUs in the dpu set

DPU_ASSERT (dpu_broadcast_to(dpu_set, DPU_MRAM_HEAP_POINTER_NAME, 0, bufferA, input_size_dpu * si f(T), DPU_XFER_DEFAULT));

SAFARI 37

Different Types of Transfers in a Program

* An example benchmark that uses both parallel and serial
transfers

* Select (SEL)
- Remove even values

Select (remove)

mput 2|13 fofol1|afafofofa]r], ="
transfers

DPU 0 DPU 1 DPU 2
Predicate: True if it is even

oupa [T =]] son
transfers

DPUO DPU 1 DPU 2

SAFARI 38

Inter-DPU Communication

* There is no direct communication channel between DPUs

Main Memory

P
y =
y =

y =

DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM|[DRAM
\)‘ == | | 1P J\ Chip)| Chip |\ Chip J{ Chip)| chip |\ chip)| chip

,OQ - = DRAI‘ﬂ[DRAI‘ﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ
Q\>/ fpm— Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip
S/ M
Host I
P _

~ I -
pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
@e=p-| (Chip || Chip || Chip)\ chip)| chip |\ chip || chip || chip
J
pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
chip || chip || chip || chip || chip)| chip || chip || chip

PIM-enabled Memory

* Inter-DPU communication takes place via the host CPU using CPU-DPU
and DPU-CPU transfers

* Example communication patterns:

- Merging of partial results to obtain the final result
* Only DPU-CPU transfers

- Redistribution of intermediate results for further computation
* DPU-CPU transfers and CPU-DPU transfers

SAFARI 39

N

How Fast are these Data Transfers?

* With a microbenchmark, we obtain the sustained
bandwidth of all types of CPU-DPU and DPU-CPU transfers

* Two experiments:

- 1 DPU: variable CPU-DPU and DPU-CPU transfer size (8 bytes to
32 MB)

- 1rank: 32 MB CPU-DPU and DPU-CPU transfers to/from a set of
1to 64 MRAM banks within the same rank
* Preliminary experiments with more than one rank
- Channel-level parallelism

DDR4 bandwidth bounds the maximum transfer bandwidth

The cost of the transfers can be amortized,
if enough computation is run on the DPUs

.

SAFARI

40

CPU-DPU/DPU-CPU Transfers: 1 DPU

* Data transfer size varies between 8 bytes and 32 MB

1.0000

--CPU-DPU
1| -@=-DPU-CPU

Sustained CPU-DPU
Bandwidth
(GB/s, log scale)
o o o
o o =
o = o
5 8 8

00001 T ! ! ! ! ! ! ! ! ! ! !

1

Data transfer size (bytes)

KEY OBSERVATION 7
Larger CPU-DPU and DPU-CPU transfers between the host main

memory and the DRAM Processing Unit's Main memory (MRAM)
banks result in higher sustained bandwidth.

SAFARI

41

CPU-DPU/DPU-CPU Transfers: 1 Rank (1)

* CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)
 The number of DPUs varies between 1 and 64

== CPU-DPU (serial) —@— DPU-CPU (serial)
16.00 4 =B CPU-DPU (parallel) =Q= DPU-CPU (parallel) 16.88
o] ' =—f— CPU-DPU (broadcast) !
% < 8.00 —66.68
[G - |
5 S5 8 400 - - 4.74
a2 7 2.00
© —_ i
5 'g - 1.00 =
.% 2 > 0.50 - =Q— 0.27
2 9 025 - —a —
v 013 4 Q=@ o O—==0 0, @012
0.06 | | | | . |
< (o) <
— (o)

KEY OBSERVATION 8

The sustained bandwidth of parallel CPU-DPU and DPU-CPU
transfers between the host main memory and the DRAM Processing
Unit’s Main memory (MRAM) banks increases with the number of
DRAM Processing Units inside a rank.

SAFARI 42

CPU-DPU/DPU-CPU Transfers: 1 Rank (1)

* CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)
 The number of DPUs varies between 1 and 64

16.00 -
8.00 4
4.00 -
2.00 -
1.00 -
0.50
0.25
0.13

Sustained CPU-DPU
Bandwidth
(GB/s, log scale)

0.06

=iyl KEY OBSERVATION 9

== CPU-DPU (broadcast)

The sustained bandwidth of
parallel CPU-DPU transfers is
higher than the sustained
bandwidth of parallel DPU-CPU
transfers due to different

implementations of CPU-DPU and
DPU-CPU transfers in the UPMEM
runtime library.

The sustained bandwidth of broadcast CPU-DPU transfers (i.e., the same
buffer is copied to multiple MRAM banks) is higher than that of parallel

CPU-DPU transfers (i.e., different buffers are copied to different MRAM
banks) due to higher temporal locality in the CPU cache hierarchy.

SAFARI

43

“Transposing” Library

The library feeds DPUs with correct data

Eight 64-bit “horizontal” words

are turned into 8 vertical words, DRAM chip
feeding 8 different DRAM chips have 8-bit
This way DPUs see full 64-bit data bus

words, not chunk of them

Word 0

Word 1 The transformation, a 8x8

Word 2 . W W W W W W W W matrix transposition, is

Library o o o o o o o o donebythe libraryinside

Word 3 .
— r | F ||| r|r|r a 64-byte cache line, thus

Word 4 d d d d d d d d veryefficiently.

Word 5 0 1 2 3 4 5 6 7

Word 6

Word 7

Copyright UPMEM® 2019 mem

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 04,2020 at 13:55:41 UTC from IEEE Xplore. Restrictions apply.

SA FA RI F. Devaux, "The true Processing In Memory accelerator," HotChips 2019. doi: 10.1109/HOTCHIPS.2019.8875680

Microbenchmark: CPU-DPU

* CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)

H CMU-SAFARI / prim-benchmarks ®Unwatch ~ 2 Y7 star 1 % Fork O

<> Code () Issues {1 Pull requests (*) Actions ("] Projects) Wiki) Security |~ Insights 51 Settings

¥ main + prim-benchmarks / Microbenchmarks / CPU-DPU / Go to file Add file ~
Juan Gomez Luna PrIM -- first commit 3de4bs9 7 days ago XY History
dpu PrIM -- first commit 7 days ago
host PrIM -- first commit 7 days ago
support PrIM -- first commit 7 days ago
Makefile PrIM -- first commit 7 days ago
run.sh PrIM -- first commit 7 days ago

SAFARI 45

DPU Kernel Launch

* dpu launch () launches a kernel ona dpu set

- DPU SYNCHRONOUS suspends the application until the
kernel finishes

- DPU ASYNCHRONOUS returns the control to the application
 dpu sync ordpu status tocheckkernel completion

printf("Run pro

DPU_ASSERT (dpu_launch(dpu_set, DPU_SYNCHRONOUS));

What does the asynchronous execution enable?

Some ideas: h
* Task-level parallelism: concurrent execution of different kernels on
different DPU sets
(Concurrent heterogeneous computation on CPU and DPUs y

SAFARI 46

How to Pass Parameters to the Kernel?

* We can use serial and parallel transfers

* We pass them directly to the scratchpad memory of the

DPU
- Working RAM (WRAM): 64KB per DPU

* This is useful for input parameters and some results

~_host dpu_arguments_t DPU_INPUT_ARGUMENTS;
__host dpu_results_t DPU_RESULTS[NR_TASKLETS];

#ifdef SERIAL

DPU_FOREACH (dpu_set, dpu) {
DPU_ASSERT (dpu_copy_to(dpu, |"DPU_INPUT_ARGUMENTS", @, (const void x)&input_arguments[i], sizeof(input_arguments[0])));

i++;
¥
#else
DPU_FOREACH(dpu_set, dpu, i) {
DPU_ASSERT (dpu_prepare_xfer(dpu, &input_arguments[i]));
¥
DPU_ASSERT (dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, "DPU_INPUT ARGUMENTS",| 0, sizeof(input_arguments[@]), DPU_XFER_DEFAULT));

#endif

SAFARI 47

Recall: Vector Addition (VA)

* Our first programming example

* We partition the input arrays across:
- DPUs
- Tasklets, i.e., software threads running on a DPU

SAFARI

48

Programming a DPU Kernel (1)

* Vector addition

int main kernell() { Tasklet ID

unsigned int tasklet id = me() Size of vector tile processed by a DPU
uint32 t input_size dpu_bytes = DPU_INPUT_ARGUMENTS.size;
uint32_t input_size_dpu_bytes_transfer = DPU_INPUT_ARGUMENTS.transfer_size;

uint32 t base tasklet = tasklet id << BLOCK SIZE LOG2; MRAM addresses of arrays A and B
uint32_t mram_base_addr_A = (uint32_t)DPU_MRAM_HEAP_POINTER;
uint32_t mram_base_addr_B = (uint32_t) (DPU_MRAM_HEAP_POINTER + input_size_dpu_bytes_transfer);

T *xcache_A
T *cache_B

(T %) mem_alloc(BLOCK_SIZE); .
(T %) mem_alloc(Lock size); VRAM allocation

for(unsigned int byte_index = base_tasklet; byte_index < input_size_dpu_bytes; byte_index += BLOCK_SIZE * NR_TASKLETS){

uint32_t 1_size_bytes = (byte_index + BLOCK_SIZE >= input_size_dpu_bytes) ? (input_size_dpu_bytes - byte_index) : BLOCK_SIZE;

mram_ptr void constx)(mram_base_addr_A + byte_index), cache_A, 1_size_bytes); MRAM-WRAM DMA
mram_ptr void constx)(mram_base_addr_B + byte_index), cache_B, 1_size_bytes);|{ransfers

mram_read (
mram_read (

(|
(_

vector_addition(cache_B, cache_A, 1_size_bytes >> DIV); | \/ector addition (see next slide)

mram_write(cache_B, (__mram_ptr void«)(mram_base_addr_B + byte_index), 1_size_bytes); | \WRAM-MRAM DMA transfer
}

return 0;

SAFARI

Programming a DPU Kernel (I1)

* Vector addition

static void vector_addition(T xbufferB, T xbufferA, unsigned int 1_size) {

for (unsigned int i = 0; i < 1_size; i++){
bufferB[i] += bufferAl[i];
}

SAFARI

50

Intra-DPU Synchronization

Synchronization Primitives

e A taskletis the software abstraction of a hardware
thread

* Each tasklet can have its
- Tasklets can also share data in WRAM by sharing pointers

* Tasklets within the same DPU can synchronize
- Mutual exclusion

* mutex lock(); mutex unlock();

- Handshakes
* handshake wait for(); handshake notify();

- Barriers

* barrier walt();

- Semaphores
* sem give(); sem take();

SAFARI

Parallel Reduction (1)

* Tasklets in a DPU can work together on a parallel
reduction

TasAlet 3

SAFARI

53

Parallel Reduction (II)

* Each tasklet computes a local sum

Al0]

Tdsklet O

TastIet 1

Tasklet 2

Tasklet 3

A[N-1]

Local
Sum

Local
Sum

Sum

Local
Sum

Local
Sum

SAFARI

Parallel Reduction (llI)

* Each tasklet computes a local sum

for(unsigned int byte_index = base_tasklet; byte_index < input_size_dpu_bytes; byte_index += BLOCK_SIZE x NR_TASKLETS){
uint32_t 1_size_bytes = (byte_index + BLOCK_SIZE >= input_size_dpu_bytes) ? (input_size_dpu_bytes - byte_index) : BLOCK_SIZE;
mram_read((__mram_ptr void constx)(mram_base_addr_A + byte_index), cache_A, 1_size_bytes);

1_count += reduction(cache_A, 1_size_ bytes >> DIV); | Accumulate in a local sum
I

message [tasklet_id] = 1_count; | CopvVv local sum into WRAM

SAFARI 55

Final Reduction

* A single tasklet can perform the final reduction

for(unsigned int byte_index = base_tasklet; byte_index < input_size_dpu_bytes; byte_index += BLOCK_SIZE x NR_TASKLETS){
uint32_t 1_size_bytes = (byte_index + BLOCK_SIZE >= input_size_dpu_bytes) ? (input_size_dpu_bytes - byte_index) : BLOCK_SIZE;
mram_read((__mram_ptr void constx)(mram_base_addr_A + byte_index), cache_A, 1_size_bytes);

1_count += reduction(cache_A, 1_size_bytes >> DIV); | Accumulate in a local sum
}

message [tasklet_id] = 1_count; CoEi local sum into WRAM

barrier_wait(&my_barrier);| Barrier synchronization

if(tasklet_id == 0){
#pragma unroll
for (unsigned int each_tasklet = 1; each_tasklet < NR_TASKLETS; each_tasklet++){
message[0] += message[each_taskletl; Sequential accumulation
}

result—->t_count = messagel0];

SAFARI 56

Vector Reduction: Naive Mapping

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

8+9

iterations

e
\

|
i

SAFARI

57

Using Barriers: Tree-Based Reduction

* Multiple tasklets can perform a tree-based reduction
- After every iteration tasklets synchronize with a barrier
- Half of the tasklets retire at the end of an iteration

barrier_wait(&my_barrier);

#pragma unroll
for (unsigned int offset = 1; offset < NR_TASKLETS; offset <<= 1){

if((tasklet_id & (2xoffset - 1)) == 0){

message [tasklet _id] += messageltasklet id + offset]; “offset” tasklets working
}

barrier_wait(&my_barrier); Barrier synchronization
+

A handshake-based tree-based reduction is also possible.
We can compare single-tasklet, barrier-based,
and handshake-based versions*

*Goémez-Luna et al., “Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture,”
SA FA R ’ https://arxiv.org/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf

Tree-Based Reduction on UPMEM PIM (1)

* Single-thread vs. Barrier-based vs. Handshake-based
on 1 DPU

16000 : |
& : | L 13760
—g 12000 - ! : !
© 1 1 1
5 8000 1 : | 4996 !
ERE] ! ! 12499 2654
o 000 288 528 304 ! 576 1776 768 1 1072 I 1392
& 0 — - || = || || . ._
[NN]
Sl E|8|Z|E|8|g|g|8|5|8|38
=2 = = >
= & < = & < = & < = & <
%) < T wn < T n < I [%5) < I
(aa] o o o
TREE TREE TREE TREE
2 4 8 16

Reduction version (single tasklet, with barriers, with handshakes)
#Tasklets

High cost of intra-DPU synchronization

(especially, barrier synchronization)
when there is small amount of computation

SA FARI Gomez-Luna et al. "Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory 59
Architecture." arXiv preprint arXiv:2105.03814 (2021). https://arxiv.org/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf

Tree-Based Reduction on UPMEM PIM (lI)

* Single-thread vs. Barrier-based vs. Handshake-based
on 1 DPU

2K elements

" 1.2E+05 T T I
8 1.0E+05 {98200 98416 98265, : :
S 8.0E+04 - ' i :
2 6.06404 - ! 50849 52011 51060 ! !
2 4.0E+04 i 129196 32681 20412 1 53795 39036 54334
3 2.0E+04 : : !
X 0.0E+00
g & a g i) A g] a g] a
o =2 o = o =2 o =2
z |l |z |zl | 2|28 2|2 E | =
%) < T %) <T T %) << T %) << T
o [aa] [aa] [a4]
TREE TREE TREE TREE M I
2M elements
2 4 8 16 ., 1.2E+08 r ; .
& 1.0E408 {2-9E+07 9-9E+07 9.9E407, ! !
Reduction version (single tasklet, with barriers, with handshakes) 3 8.0E+07 - ! ! !
#Tasklets — 6.0E+07 - 15.0E+07 5.0E+07 5.0E+07, |
2 4.0E+07 ' 12.5E+07 2.5E+07 2.5E+o7:1 TEOT LTSI
3 2.0E+07 - ! ! = : :
% 0.0E+00
=2 =2 =2 =2
= sl 2| || 2|l 2|2|<
%) << T %) < u wn < T %) < T
[a4] o o [2a]
TREE TREE TREE TREE
2 4 8 16

Reduction version (single tasklet, with barriers, with handshakes)
#Tasklets

Cost of intra-DPU synchronization

gets amortized when there is large amount of computation

SA FAR Gomez-Luna et al. "Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory 60
Architecture." arXiv preprint arXiv:2105.03814 (2021). https://arxiv.org/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf

Parallel Reduction on GPU

¢

om .
.

(&) (<)

Thread

kW (m) (n) p—
Codelets and Variants Code Versions Mierarchy

Over 85 different versions possible!

HetSys Course: Lecture 6: Parallel Patterns: Reduction (Spring 2023)

- Onur Mutlu Lectures
@ £\ Subscribed \/ h4 OF /> Share X Clip =+ Save

I 32.6K subscribers
197 views 2 weeks ago Livestream - Programming Heterogeneous Computing Systems with GPUs and other Accelerators (Spring 2023)

Project & Seminar, ETH Ziirich, Spring 2023
Programming Heterogeneous Computing Systems with GPUs and other Accelerators (https://safari.ethz.ch/projects_and_s...)

SA FARI https://youtu.be/tImcVOAMfp4

https://youtu.be/tJmcV9AMfp4

Prefix-Sum (Scan)

Input

Output (Exclusive Scan) ggzggitzlil iens ias)
out[i] = out[i-1] + in[i-17;

0|13 |6 |10(11|12(13(14|14|15|17|20|22 |24

out[0] = in[0];
for(int 1=1; i<n; 1i++)
out[i] = out[i-1] + in[i];

Output (Inclusive Scan)

1 (3610|1112 |13|14|14|15(17 (2022|224 |26

SAFARI

Hierarchical (Inclusive) Scan: 1 DPU

Input Tasklet 0 Tasklet 1 Tasklet 2 Tasklet 3

Per-tasklet (Inclusive) Scan

1 /3|6 (10)1 |2 (3|40 (|13 |6Q2|4|6])|8

Output (Inclusive Scan)
1|3 |6 (10|11 (12|13 meEm 14| 15|17 QAR 22 |24 | 26 | 28

SAFARI

Per-DPU (Inclusive) Scan (1)

* Each tasklet computes scan locally

mram_read((const __mram_ptr voidx)(mram_base_addr_A + byte_index), cache_A, BLOCK_SIZE);

T 1_count

scan(cache_B, cache_A); Per-tasklet scan

T p_count

handshake_sync(1_count, tasklet_id);

add(cache_B, p_count);

mram_write(cache_B, (__mram_ptr voidx)(mram_base_addr_B + byte_index), BLOCK_SIZE);
L

static T scan(T xoutput, T xinput){
output[@] = input[0];
#pragma unroll
for(unsigned int j = 1; j < REGS; j++) {
output[j] = output[j - 11 + inputl[j];
1
return output[REGS - 1];
}

SAFARI 64

Per-DPU (Inclusive) Scan (lI)

* Each tasklet communicates with adjacent tasklets

mram_read((const __mram_ptr voidx)(mram_base_addr_A + byte_index), cache_A, BLOCK_SIZE);

T 1_count

T p_count

scan(cache_B, cache_A);

Per-tasklet scan

handshake_sync(1_count, tasklet_id); Handshake-based synchronization

add(cache_B, p_count);

mram_write(cache_B, (__mram_ptr v

SAFARI

static T handshake_sync(T 1_count, unsigned int tasklet_id){
T p_count;

if(tasklet_id !'= 0){
handshake_wait_for(tasklet_id - 1);
p_count = message[tasklet_id];

Is

else
p_count = 0;

if(tasklet_id < NR_TASKLETS - 1){
message [tasklet_id + 1] = p_count + 1_count;
handshake_notify();

+

return p_count;

Per-DPU (Inclusive) Scan (lII)

e Each tasklet adds an offset to each own element

mram_read((const __mram_ptr voidx)(mram_base_addr_A + byte_index), cache_A, BLOCK_SIZE);

T 1_count = scan(cache_B, cache_A); Per-tasklet scan
T p_count = handshake_sync(1_count, tasklet_id); Handshake-based synchronization
add(cache_B, p_count); Per-tasklet add

mram_write(cache_B, (__mram_ptr voidx)(mram_base_addr_B + byte_index), BLOCK_SIZE);

static void add(T xoutput, T p_count){
#pragma unroll
for(unsigned int j = 0; j < REGS; j++) {
output[j] += p_count;

by

SAFARI

Scan-Scan-Add (SSA)

Input

DPU 0 DPU 1

1

IR 11 12 13 14

14 15 17 20 22 24 26 28

SAFARI

6/

SSA: Memory Accesses

 Scan

- First kernel reads input array (N elements) and writes array

with per-DPU prefix sums (N elements)

 Scan

- Second kernel reads and writes N/ PER_DPU_SIZE elements

* Add

- Third kernel reads array with per-DPU prefix sums (N

elements) and writes output (N elements)

Input DPU O

DPU 1 DPU 2

DPU 3

* 4N elements are read/written IBEE

IBEE DBBE

2]2]2]2

Per-DPU (Inclus

E \eﬂ\ \3“0\1\3ﬂ2\4u/6ﬂ

~

10468

Scan Partial Sums BN RPIRPL:]
N Add

K —

13610

H%\?\? o1]3]s

2468

Output (Inclus

Scan),
..n 11 12 13 14 14 15 7 20 22 24 26 28‘

10, ‘ 14

d-ZD

SAFARI

68

Reduce-Scan-Scan (RSS)

Input DPU 0 DPU 1 DPU 2 DPU 3

Y 4

' +10 | | 414 | | 20! | Add

INNERCEN I 11 12 13 14 14 15 17 20 22 24 26 28

SAFARI 69

RSS: Memory Accesses

* Reduce
- First kernel reads input array (N elements) and writes per-
DPU reduction (N / PER_DPU_SIZE elements)
* Scan
- Second kernel reads and writes N/ PER_DPU_SIZE elements

 Scan

- Third kernel reads input array (N elements) and scan partial
sums (N / PER_DPU_SIZE elements), and writes output (N
elementS) Input DPU O DPU 1 DPU 2 DPU 3

IBEE BB DBBD BBBE

Pe r‘-DPURd ctio

* 3N elements are read/written I Bl - I - -

1

1 10 4 6 8

1
‘\ Scan Partial Sums BN RPIRPL:]
Per-DPU Scan & -

——

t]3]6fof1]2]3] 9\}\?|§ 2\4‘|6\8

i i i H
Output (Inclusive Scan}, +10 i 1 d-ZD v Add

..n 11 12 13 14 14 15 7 20 2 24 26 28 |
SAFARI 70

SCAN-SSA vs. SCAN-RSS on UPMEM PIM
* SCAN-SSA vs. SCAN-RSS on 1 DPU

1.4 6
1 Inter-DPU
= 1.2 1 o DPU Scan — — 5 —
£ 1 4|mDPU Add/Reduction] | £ —]
o — | v 4 A
£ 0.8 A _ £
= — =3
S 0.6 - — S
5 52 A
S 0.4 - S
% z
" 11l E ﬂ l N
0 4 . 0 -
SSA RSS | SSA RSS | SSA RSS SSA RSS | SSA RSS
2048 4096 8192 16384 65536
Scan version Scan version
Array size Array size

The cost of intra-DPU synchronization in RSS (in Reduce step)
may be noticeable for small arrays.

For large arrays, RSS is faster than SSA,
since it saves memory accesses

SA FARI Gomez-Luna et al. "Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory 7']
Architecture." arXiv preprint arXiv:2105.03814 (2021). https://arxiv.org/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf

Parallel Prefix-Sum (Scan) on GPU

Work E t‘ﬂ(‘,icnct\'

= Recall: Kogge-Stone
a log(N) steps
o O(N*log(N)) operations
=« Brent-Kung
a2 Reduction step:
= log(N) steps
s 14+2+4+ .. +N/2=N-1operations
a Post-Reduction step:
s log(N)-1 steps ‘
o (2-1) + (4-1) + ... + (N/2-1) = (N-2) - (log(N)-1) | * fe*| * :
a Total: \J \J \]
s 2*log(N)-1 steps % Xl.lc-x ILCJ.'\ X ki!
s (N-1) + (N-2) - (log(N)-1) = 2*N - log(N) = 2 = O(N) operations

s Brent-Kung takes more steps but is more work-efficient

HetSys Course: Lecture 10: Parallel Patterns: Prefix Sum (Scan) (Fall 2022)

Onur Mutlu Lectures

LI 32.6K subscribers

£\ Subscribed y15 op /> Share & Clip =+ Save

302 views 4 months ago Livestream - P&S Programming Heterogeneous Computing Systems with GPUs and other Accelerators (Fall 2022)
Project & Seminar, ETH Ziirich, Fall 2022
Programming Heterogeneous Computing Systems with GPUs and other Accelerators (https://safari.ethz.ch/projects_and_s...)

SA FARI https://youtu.be/SG0gvcbf2eo

https://youtu.be/SG0gvcbf2eo

UPMEM SDK Documentation

@A / User Manual

User Manual

Getting started

e The UPMEM DPU toolchain

CrrED o Notes before starting

The toolchain purpose

o

o dpu-upmem-dpurte-clang

The UPMEM DPU toolchain = Limitations
Installing the UPMEM DPU toolchain

[e]

The DPU Runtime Library
Hello World! Example o The Host Library
dpu-lldb

[e]

e |[nstalling the UPMEM DPU toolchain
Introduction

o Dependencies

Tasklet management and synchronization

Memory management = Python

Standard library functions o Installation packages

Exceptions . . .

= Installation from tar.gz binary archive
Controlling the execution of DPUs from

host applications o Functional simulator

Communication with host applications e Hello World! Example

Advanced Features of the Host API
o Purpose

Logging

o Writing and building the program

SA FAR, https://sdk.upmem.com/2023.1.0/

https://sdk.upmem.com/2023.1.0/

Programming UPMEM PIM (1)

“Transposing’ Library

The library feeds DPUs with correct data

Eight 64-bit "horizontal” words
are turned into B vertical words, DRAM chip
feeding 8 different DRAM chips , . . have 8-bit

This way DPUs see full 64-bit data bus
words, not chunk of them

Word 0

Word 1 The transformation, a 8x8
Word 2 I W W W W W\ matrix transposition, is
done by the library inside
a 64-byte cache line, thus
Word 4 very efficiently.

Word 5§
Word 6
Word 7

Word 3

At e S | T D St = S—— o4

PIM Course: Lecture 9: Programming PIM Architectures - Fall 2022

Onur Mutlu Lectures

> 32.6K subscribers

£\ Subscribed fy 10 GJ /> Share 3¢ Clip =+ Save

424 views 4 months ago Livestream - P&S Data-Centric Architectures: Fundamentally Improving Performance and Energy (Fall 2022)
Projects & Seminars, ETH Ziirich, Fall 2022
Data-Centric Architectures: Fundamentally Improving Performance and Energy

SA FA R l https://youtu.be/zF70xuhesME

74

https://youtu.be/zF70xuhesME

Programming UPMEM PIM (II)

Computer Architecture
Lecture 10: Programming

a Real-world PIM Architecture

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zirich
Fall 2022
28 October 2022

Livestream - Computer Architecture - ETH Zirich (Fall 2022)

Computer Architecture - Lecture 10: Real Processing in Memory Systems: UPMEM Case Study (Fall 2022)

- Onur Mutlu Lectures et N

518 G »~» Share

I 29.4K subscribers

830 views Streamed live on Oct 28, 2022
Computer Architecture, ETH Ziirich, Fall 2022 (https://safari.ethz.ch/architecture/f...)

Lecture 10: Real Processing in Memory Systems: UPMEM Case Study

SAFARI https://youtu.be/pHEHdLsnNdk

Juan GomezL... -

& clip =+ Save

75

https://youtu.be/pHEHdLsnNdk

Real PIM Tutorial: Hands-on Lab

HEART 2024 TuTORIAL: MEMORY-CENTRIC COMPUTING SYSTEMS.
JUNE 21, 2024 1t

Programming and Understanding
a Real Processing-in-Memory Architecture

INsTRUCTORS: GERALDO F. OLIVEIRA, PROF. ONUR MUTLU

1. Introduction

In this lab, you will work hands-on with a real processing-in-memory (PIM) architecture. You will program
the UPMEM PIM architecture [1, 2, 3,12] for several workloads and will experiment with them. Your main
goals are (1) to become familiar with the UPMEM PIM system organization (as an example of real-world
memory-centric computing system), (2) to understand the UPMEM programming model and write your own
code, and (3) to understand the microarchitecture and instruction set architecture (ISA) of UPMEM’s PIM core
(called DRAM Processing Unit, DPU).

As we introduced in this tutorial, the UPMEM PIM architecture is composed of multiple DPUs (up to 2,560),
each of which has access to its own DRAM bank (called Main RAM, MRAM) and its own scratchpad memory
(called Working RAM, WRAM). You can find a full description of the UPMEM PIM system in [3,4].

2. Lab Resources

You can download the necessary materials for this lab from here: https://events.safari.ethz.ch/
heart24-memorycentric-tutorial/lib/exe/fetch.php?media=template.zip

2.1. Source Code
The source code that we provide contains templates for tasks 1 (Section[d) and 2 (Section [§). For the rest of
tasks, you can use the same template as for task 2. You can find the templates in the folder template. Look for
//@e to find the places where you need to insert code. Do NOT modify any files or folders unless explicitly
specified in the list below.
« taskl
- Makefile
- host
» app.c: Host CPU code (modifiable).
- dpu
+ task.c: DPU kernel code. It is empty in this template because it is not needed for task 1.
- support
+ common. h: Common definitions. Note that T is int64_t for this task.
+ params. h: Functions to read input parameters from command line.
+ timer.h: Timing functions.
task2
- Makefile
- host
» app.c: Host CPU code (modifiable).
- dpu
» task.c: DPU kernel code (modifiable).

- support

.

+ common. h: Common definitions. Note that there are definitions for different data types and
size of transfers between MRAM and WRAM.

SAFARI

Template Files

T3 template

* Contain templates for o
taSk 1 and taSk) Dockerfile

= start_docker.bat

start_docker.sh

* Task 2’s template can be B

—_—

N dpu

used for the remaining e
tasks -

¢ app.c
v [support
common.h
params.h
timer.h
Makefile
v B task2
v B8 dpu
¢ task.c
v O3 host
¢ app.c
v 7 support
common.h
cyclecount.h
params.h
timer.h

Makefile

SAFARI

Task 1: CPU-DPU and DPU-CPU Transfers

* Use serial, parallel, and broadcast transfers

Your tasks are as follows:

1. Write a host program that exercises all types of data transfers between the host main memory and one
or multiple MRAM banks. Concretely, there are three types of data transfers [2]: (1) serial, (2) parallel,
and (3) broadcast. Serial and parallel transfers move data from main memory to the MRAM banks or
vice versa. Broadcast transfers can only happen from the main memory to the MRAM banks.

2. Evaluate all different types of data transfers for data transfers of size (1) 1MB, (2) 24MB, (3) 48MB per
DPU. Use different numbers of DPUs between 1 and 64.

Serial Transfers Parallel Transfers Broadcast Transfers

*dpu_copy._to(); * We push different buffers to/from a DPU set in one *dpu _broadcast_to();

« dpu_copy_from(); transfer - Only CPU to DPU

* We transfer (part of) a buffer toffrom each DPU in the - Allbuffers need to be of the same size * We transfer the same buffer to all DPUs in the dpu_set.
dpu_set * First, prepare (dpu_prepare_xfer);

+ DPU_MRAM HEAP POINTER NAME: Start of the then, push (dpu_push_xfer)
MRAM range that can be freely accessed by applications « Direction: oL SSERdp.brecias to(aps, v s o, [t tecnl [ope_sla spy« senr] o e DEFAULT))5

- We do not allocate MRAM explicitly - DPU_XFER_TO_DPU
- DPU_XFER FROM DPU

inter to main memory

Offset within MRAM Pointer to main memory Transfer size

Offset within MRAM

SAFARI 73 SAFARI 74 SAFARI 75

SAFARI 78

Task 2: AXPY

Your tasks are as follows:
1. Write a DPU kernel that executes the AXPY operation (y = y + alpha X x) [5] on every element of
a vector. You have to (1) transfer two input vectors, Y and X, to the MRAM bank/s, (2) perform the
AXPY operation with a variable number of tasklets, (3) write the results to the output vector, Y, and (4)
transfer the output vector back to the host main memory.

* VAis a good reference code for this task

Programming a DPU Kernel (1)

* Vector addition

Jasklet ID
Size of vector tile processed by a DPU

es = DPU_INPUT_ARGUMENTS.size;
es_transfer = DPU_INPUT_ARGUMENTS. transfer_size;

tasklet = tas BLOCK SIZE L0G2; MRAM addresses of arrays A and B
DPU_MRAM_HEAP_POINTER;
(DPU_MRAM_HEAP_POINTER + input_size_dpu_bytes_transfer);

T *cache_A = (T %) m c(BLOCK_SIZE); a
T xcache_B = (T) n c(sLock_stze);| WRAM allocation

int byte_index = base_tasklet; byte_index < input_size_dpu_bytes; byte_index += BLOCK_SIZE * NR_TASKLETS){
2_t 1_size_bytes = (byte_index + BLOCK_SIZE >= input_size_dpu_bytes) ? (input_size_dpu_bytes - byte_index) : BLOCK_SIZE;

mram_ptr void constk)(mram_base_addr_A + byte_index), cache A, _size bytes); | MRAM-WRAM DMA
stx) (mran_base_addr_B + byte_index), cache_B, 1_size_bytes); |transfers

d((__mram_ptr void
_A, 1size bytes >> DIV); | Vector addition (see next slide)

WRAM-MRAM DMA transfer

ache_B, (__mram_ptr voidx)(mram_base_addr_B + byte_index), l_size_bytes);

"SAFARI 87

SAFARI

79

Task 3: Operations and Datatypes

Your tasks are as follows:

1. Modify your AXPY DPU kernel to make it a vector addition (y = y+ z) and to support other operations
besides addition (i.e., subtraction, multiplication, division).

2. Evaluate the performance of your new kernel for different operations (addition, subtraction, multipli-
cation, division) and data types (char, short, int, long long int, float, double).

* You will observe significant variations in arithmetic
throughput for different operations and datatypes

SAFARI 80

Task 4: Vector Reduction

Your tasks are as follows:

1. Your vector reduction DPU kernel should have four different versions: (1) final reduction with a single
tasklet, (2) final tree-based reduction with barriers, (3) final tree-based reduction with handshakes, (4)

final reduction with mutexes.

* Performance differences due to the final reduction step

Final Reduction

* Asingle tasklet can perform the final reduction

int byte_index = base_tasklet; byte_index < input_size_dpu_bytes; byte_index += BLOCK_SIZE * NR_TASKLETS){

size_bytes = (byte_index + BLOCK_SIZE >= input_size_dpu_bytes) ? (input_size_dpu_bytes - byte_index) : BLOCK_SIZE;

nstk) (mram_base_addr_A + byte_index), cache_A, 1_size_bytes);

count += reduction(cache_A, 1 size bytes >> DIV); | Accumulate in a local sum

message [tasklet_id] = 1_count; | Copy local sum into WRAM

int each_tasklet = 1; each_tasklet < NR_TASKLETS; each_tasklet++){
+= message [each_tasklet] ;| Sequential accumulation

result->t_count = messagel[0];
}

SAFARI

94

SAFARI 81

Real PIM Tutorial: Hands-on Lab

HEART 2024 TuTtoRIAL: MEMORY-CENTRIC COMPUTING SYSTEMS.
JUNE 21, 2024 711

References
[1] UPMEM. UPMEM Software Development Kit (SDK). https: //sdk.upmem. com, 2023.
[2] UPMEM. UPMEM User Manual. https://sdk.upmem.com/2023.1.0/, 2023.

[3] Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F. Oliveira, and Onur
Mutlu. Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory
Architecture. arXiv:2105.03814 [cs.AR], 2021.

[4] Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F. Oliveira, and Onur
Mutlu. Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-
in-Memory System. IEEE Access, 2022.

[5] Docker Inc. Docker. https://www.docker.com, 2023.

[6] Wikipedia. Basic Linear Algebra Subprograms. Level 1. https://en.wikipedia.org/wiki/Basic.
Linear_Algebra_Subprograms#lLevel_1, 2023.

[7] Wikipedia. Grayscale. https://en.wikipedia.org/wiki/Grayscale, 2023.

[8] LLVM. llvm-objdump - LLVM’s Object File Dumper. |https://11vm.org/docs/CommandGuide/
11vm-obidump.html, 2023.

[9] Compiler Explorer. Compiler Explorer for DPU. https://dpu.dev, 2023.

SAFARI

82

HEART 2024 Tutorial
Memory-Centric Computing Systems

Processing-Near-Memory
Programming General-purpose PIM

Geraldo F. Oliveira
Dr. Juan Gomez Luna
Professor Onur Mutlu

m Ziirich SA F A R ’

Friday, June 21, 2024

