
2nd Workshop on

Memory-Centric Computing:

Processing-Near-Memory - Part II

Dr. Geraldo F. Oliveira

https://geraldofojunior.github.io

ICS 2025

08 June 2025

https://geraldofojunior.github.io/

Possible PNM Designs

2

◼ Fixed-function units

❑ Hardware/software co-designed PIM for efficiency

❑ E.g. from academia: Mensa for NN Edge Inference

❑ E.g. from industry: Samsung HBM-PIM, SK hynix AiM

PIM-Accelerator
1

PIM-Accelerator
N

…

◼ Reconfigurable architectures

❑ PNM cores coupled with FPGAs, CGRA

❑ E.g. from academia: NERO for Weather Prediction

❑ E.g. from industry: Samsung AxDIMM

Reconfigurable

Accelerator

◼ General-purpose programmable cores

❑ Wimpy cores (possibility of running any workload)

❑ E.g. from academia: Tesseract PIM for Graph Processing

❑ E.g. from industry: UPMEM PIM Cache

PIM Core

Samsung Function-in-Memory DRAM (2021)

3https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power

https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power

Samsung Function-in-Memory DRAM (2021)

4

Samsung Function-in-Memory DRAM (2021)

5

Samsung Function-in-Memory DRAM (2021)

6

Samsung Function-in-Memory DRAM (2021)

7

Samsung PNM Solutions for Generative AI (2023)

◼ Main target: transformer decoders used in ChatGPT, GPT-3

❑ Compute-bound step: Summarization

❑ Memory-bound step: Generation

◼ Most of the execution time is spent on the memory copy from the
host CPU memory to the CPU memory

◼ GEMV portion can be 60%-80% of total generation latency,
which is the target of PIM/PNM

8[J. H. Kim+ HC, 2023]

Solution I: Samsung’s HBM-PIM (2023)

◼ AMD MI100 GPUs fabricated with HBM-PIM

◼ Experimental setup: GPT-J (6B, 32 input tokes), single AMD
MI100-PIM GPU

◼ GPT can be accelerated by more than 2x over baseline

9[J. H. Kim+ HC, 2023]

Solution II: Samsung’s LPDDR-PIM (2023)

◼ PIM for on-device generative AI

❑ Datacenter costs and power consumption are increasing due to the
growing demand for cloud AI

◼ LPDDR-PIM improves battery life by preventing memory over-
provisioning just for bandwidth

◼ 4.47x performance gains and 70.6% energy reduction in GPT-2
10[J. H. Kim+ HC, 2023]

Solution III: Samsung’s CXL-PNM (2023)

◼ A CXL-based processing-near-memory solution

❑ Improves capacity, bandwidth, and power

❑ Large-scale large-language models are often capacity-bound

◼ Multiple CXL-PNM can offer 4.4x higher energy efficiency and

53% higher throughput than multiple GPUs

11[J. H. Kim+ HC, 2023]

◼ 4 Gb AiM die with 16 processing units (PUs)

12
Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep-Learning
Applications, ISSCC 2022Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various

Activation Functions for Deep-Learning Applications, ISSCC 2022

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE
International Solid-State Circuits Conference 37 of 42

Chip Implementation

An 4Gb aim die photograph with 16 processing units

PU

BK 4

PU

BK 7

PU

BK 5

PU

BK 6

PU

BK 12

PU

BK 15

PU

BK 13

PU

BK 14

PU

BK 0

PU

BK 3

PU

BK 1

PU

BK 2

PU

BK 8

PU

BK 11

PU

BK 9

PU

BK 10

AiM Die Photograph

Total 0.19mm2

MAC 0.11mm2

Activation Function (AF) 0.02mm2

Reservoir Cap. 0.05mm2

Etc. 0.01mm2

1 Process Unit (PU) Area

MAC
58%

AF
11%

Reservoir
Cap.
26%

Etc.
5%

SK hynix AiM: Chip Implementation (2022)

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

SK hynix AiM: System Organization (2022)

◼ GDDR6-based AiM architecture

13

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE
International Solid-State Circuits Conference 8 of 42

AiM Architecture

AiM Architecture with 16 processing units (PUs) for deep-learning operations

near DRAM cells and a 2KB global buffer (GB) for temporary data storage

 P U

BK 1

Cell

BK I/O

P U

BK 0

BK I/O

P U

DATA PERI

(Byte1)

DATA PERI

(Byte0)
GB GB

Cell

BK 2

Cell

BK I/O

P U

BK 3

BK I/O

P U

Cell

BK 5

Cell

BK I/O

P U

BK 4

BK I/O

P U

Cell

BK 6

Cell

BK I/O

P U

BK 7

BK I/O

P U

Cell

BK 9

Cell

BK I/O

P U

BK 8

BK I/O

P U

Cell

BK 10

Cell

BK I/O

P U

BK 11

BK I/O

P U

Cell

BK 13

Cell

BK I/O

P U

BK 12

BK I/O

P U

Cell

BK 14

Cell

BK I/O

P U

BK 15

BK I/O

P U

Cell

PERI

Global IO BUS

Local IO BUS

BK I/O

256 bits

x x x

16b

16b

+ +

x

+

+

ꭍ

16b 16b

Multiplier x 16

Adder Tree

AF

16b

16b 16b 16b

Accumulator
& AF

RDMAC

RDAF

Supplementary SRAM buffer
G B

2KB

256 b

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE
International Solid-State Circuits Conference 8 of 42

AiM Architecture

AiM Architecture with 16 processing units (PUs) for deep-learning operations

near DRAM cells and a 2KB global buffer (GB) for temporary data storage

 P U

BK 1

Cell

BK I/O

P U

BK 0

BK I/O

P U

DATA PERI

(Byte1)

DATA PERI

(Byte0)
GB GB

Cell

BK 2

Cell

BK I/O

P U

BK 3

BK I/O

P U

Cell

BK 5

Cell

BK I/O

P U

BK 4

BK I/O

P U

Cell

BK 6

Cell

BK I/O

P U

BK 7

BK I/O

P U

Cell

BK 9

Cell

BK I/O

P U

BK 8

BK I/O

P U

Cell

BK 10

Cell

BK I/O

P U

BK 11

BK I/O

P U

Cell

BK 13

Cell

BK I/O

P U

BK 12

BK I/O

P U

Cell

BK 14

Cell

BK I/O

P U

BK 15

BK I/O

P U

Cell

PERI

Global IO BUS

Local IO BUS

BK I/O

256 bits

x x x

16b

16b

+ +

x

+

+

ꭍ

16b 16b

Multiplier x 16

Adder Tree

AF

16b

16b 16b 16b

Accumulator
& AF

RDMAC

RDAF

Supplementary SRAM buffer
G B

2KB

256 b

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE
International Solid-State Circuits Conference 8 of 42

AiM Architecture

AiM Architecture with 16 processing units (PUs) for deep-learning operations

near DRAM cells and a 2KB global buffer (GB) for temporary data storage

 P U

BK 1

Cell

BK I/O

P U

BK 0

BK I/O

P U

DATA PERI

(Byte1)

DATA PERI

(Byte0)
GB GB

Cell

BK 2

Cell

BK I/O

P U

BK 3

BK I/O

P U

Cell

BK 5

Cell

BK I/O

P U

BK 4

BK I/O

P U

Cell

BK 6

Cell

BK I/O

P U

BK 7

BK I/O

P U

Cell

BK 9

Cell

BK I/O

P U

BK 8

BK I/O

P U

Cell

BK 10

Cell

BK I/O

P U

BK 11

BK I/O

P U

Cell

BK 13

Cell

BK I/O

P U

BK 12

BK I/O

P U

Cell

BK 14

Cell

BK I/O

P U

BK 15

BK I/O

P U

Cell

PERI

Global IO BUS

Local IO BUS

BK I/O

256 bits

x x x

16b

16b

+ +

x

+

+

ꭍ

16b 16b

Multiplier x 16

Adder Tree

AF

16b

16b 16b 16b

Accumulator
& AF

RDMAC

RDAF

Supplementary SRAM buffer
G B

2KB

256 b

Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep-Learning
Applications, ISSCC 2022Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various

Activation Functions for Deep-Learning Applications, ISSCC 2022

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Possible PNM Designs

14

◼ Fixed-function units

❑ Hardware/software co-designed PIM for efficiency

❑ E.g. from academia: Mensa for NN Edge Inference

❑ E.g. from industry: Samsung HBM-PIM, SK hynix AiM

PIM-Accelerator
1

PIM-Accelerator
N

…

◼ Reconfigurable architectures

❑ PNM cores coupled with FPGAs, CGRA

❑ E.g. from academia: NERO for Weather Prediction

❑ E.g. from industry: Samsung AxDIMM

Reconfigurable

Accelerator

◼ General-purpose programmable cores

❑ Wimpy cores (possibility of running any workload)

❑ E.g. from academia: Tesseract PIM for Graph Processing

❑ E.g. from industry: UPMEM PIM Cache

PIM Core

FPGA-based Processing Near Memory

◼ Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-
Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for
Weather Prediction Modeling"
Proceedings of the 30th International Conference on Field-Programmable Logic
and Applications (FPL), Gothenburg, Sweden, September 2020.

15

https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://www.fpl2020.org/
https://www.fpl2020.org/
https://www.fpl2020.org/

Heterogeneous System: CPU+FPGA

POWER9 AC922 DDR4-based AD9V3

board

CAPI2

Source: AlphaData
Source: IBM

 2. DDR4-based board
AD9V3
 Xilinx Virtex Ultrascale+ XCVU3P-
2

We evaluate two POWER9+FPGA systems:

1. HBM-based board AD9H7
Xilinx Virtex Ultrascale+ XCVU37P-2

16

NERO Design Flow

17

Horizontal DiffusionVertical Advection

NERO Performance Analysis

NERO is 4.2x and 8.3x faster than
a complete POWER9 socket

18

Possible PNM Designs

19

◼ Fixed-function units

❑ Hardware/software co-designed PIM for efficiency

❑ E.g. from academia: Mensa for NN Edge Inference

❑ E.g. from industry: Samsung HBM-PIM, SK hynix AiM

PIM-Accelerator
1

PIM-Accelerator
N

…

◼ Reconfigurable architectures

❑ PNM cores coupled with FPGAs, CGRA

❑ E.g. from academia: NERO for Weather Prediction

❑ E.g. from industry: Samsung AxDIMM

Reconfigurable

Accelerator

◼ General-purpose programmable cores

❑ Wimpy cores (possibility of running any workload)

❑ E.g. from academia: Tesseract PIM for Graph Processing

❑ E.g. from industry: UPMEM PIM Cache

PIM Core

Samsung AxDIMM (2021)

20https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications

https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications

Samsung AxDIMM (2021)

◼ DIMM-based PIM

❑ DLRM recommendation system

21

Baseline System

AxDIMM System

[Ke+, IEEE Micro’2021]

AxDIMM Design: Hardware Architecture

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

 S
la

v
e

 P
H

Y

H
o
s
t

Rank-0.NMP

In
p
u

t
I/

F

O
u
tp

u
t
I/

FNon-Acceleration Mode

CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
a

n
k
-1

R
a

n
k
-0

M
IG

 (
P

H
Y

)

Acceleration Mode

N
M

P
-I

n
s
t

S
u

m
W

R
 /

 R
D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architectur e of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that servesasa
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on theAxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to thehost through thestandard memory interface.

To support the interaction with thehost, oneDDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interfacewith thetwo internal ranks,
one AxDIMM can theoretically provide 2⇥memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in thesame
way asanormal DDR4 DRAM DIMM. All accesses from the
host bypassthe logic of theRank-NMP modules. In theaccel-
eration mode, NMP-instructions are issued by thehost to per-
form the embedding lookup and pooling operation inside the
Rank-NMPmodulesand all theregular DRAM accesses from
the host areblocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
a

n
k
-0

D
D

R
4
 S

la
v
e
 P

H
Y

In
p

u
t
I/
F

O
u
tp

u
t
I/
F

M
IG

 (
P

H
Y

)
M

IG

Rank-0.NMP

Rank-1.NMP

WR

Emb Table
Mode

Change

WR

Inst

SLS

Execute

RD

Status Reg

RD

Psum
Host

Rank-

NMP

1
Emb Table

Data

CONF REG

INST BUF

Acc Mode

Enable

Write Inst

2

Set SLS

ExeReg

DEC

Decode Inst

CMDGEN

RD Emb

RD Psumt

Accumulate Psumt+1

DRAM CMD

ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM

Rank-0

AxDIMM

Rank-1

Embedding

Table

INST BUF

CONF REG

PSUM BUF

Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read

StatusReg

DDR WR
DDR WR
DDR RD

R
a

n
k
-0

R
a
n
k
-1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following themecha-
nism of memory-mapped I/O (MMIO). Thememory-mapped
configuration registers (CONF REG) are set by the host to
choosebetween thetwo execution modeof aRank-NMPmod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load theembedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by thehost in

4

FPGA board with standard DIMM interface:

It serves as a real-system
near-memory processing implementation

22[Ke+, IEEE Micro’2021]

AxDIMM Design: Hardware Architecture

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

 S
la

v
e

 P
H

Y

H
o
s
t

Rank-0.NMP

In
p
u

t
I/

F

O
u
tp

u
t
I/

FNon-Acceleration Mode

CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
a

n
k
-1

R
a

n
k
-0

M
IG

 (
P

H
Y

)

Acceleration Mode

N
M

P
-I

n
s
t

S
u

m
W

R
 /

 R
D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architectur e of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that servesasa
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on theAxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to thehost through thestandard memory interface.

To support the interaction with thehost, oneDDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interfacewith thetwo internal ranks,
one AxDIMM can theoretically provide 2⇥memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in thesame
way asanormal DDR4 DRAM DIMM. All accesses from the
host bypassthe logic of theRank-NMP modules. In theaccel-
eration mode, NMP-instructions are issued by thehost to per-
form the embedding lookup and pooling operation inside the
Rank-NMPmodulesand all theregular DRAM accesses from
the host areblocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
a

n
k
-0

D
D

R
4
 S

la
v
e
 P

H
Y

In
p

u
t
I/
F

O
u
tp

u
t
I/
F

M
IG

 (
P

H
Y

)
M

IG

Rank-0.NMP

Rank-1.NMP

WR

Emb Table
Mode

Change

WR

Inst

SLS

Execute

RD

Status Reg

RD

Psum
Host

Rank-

NMP

1
Emb Table

Data

CONF REG

INST BUF

Acc Mode

Enable

Write Inst

2

Set SLS

ExeReg

DEC

Decode Inst

CMDGEN

RD Emb

RD Psumt

Accumulate Psumt+1

DRAM CMD

ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM

Rank-0

AxDIMM

Rank-1

Embedding

Table

INST BUF

CONF REG

PSUM BUF

Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read

StatusReg

DDR WR
DDR WR
DDR RD

R
a

n
k
-0

R
a
n
k
-1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following themecha-
nism of memory-mapped I/O (MMIO). Thememory-mapped
configuration registers (CONF REG) are set by the host to
choosebetween thetwo execution modeof aRank-NMPmod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load theembedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by thehost in

4

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4
 S

la
v
e

 P
H

Y

H
o
s
t

Rank-0.NMP

In
p

u
t

I/
F

O
u

tp
u
t

I/
FNon-Acceleration Mode

CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
a
n
k
-1

R
a
n
k
-0

M
IG

 (
P

H
Y

)

Acceleration Mode

N
M

P
-I

n
s
t

S
u

m
W

R
 /

 R
D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architectur e of
Rank-NMP module, (c) NMP-Instruction format.

3.1 HardwareArchitecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that servesasa
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on theAxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to thehost through thestandard memory interface.

To support the interaction with thehost, oneDDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interfacewith thetwo internal ranks,
one AxDIMM can theoretically provide 2⇥memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in thesame
way asanormal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of theRank-NMPmodules. In theaccel-
eration mode, NMP-instructions are issued by thehost to per-
form the embedding lookup and pooling operation inside the
Rank-NMPmodulesand all theregular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
a
n

k
-0

D
D

R
4

 S
la

v
e
 P

H
Y

In
p
u
t
I/
F

O
u
tp

u
t
I/
F

M
IG

 (
P

H
Y

)
M

IG

Rank-0.NMP

Rank-1.NMP

WR

Emb Table
Mode

Change

WR

Inst
SLS

Execute

RD

Status Reg
RD

Psum
Host

Rank-

NMP

1
Emb Table

Data

CONF REG

INST BUF

Acc Mode

Enable

Write Inst

2

Set SLS

ExeReg

DEC

Decode Inst

CMDGEN

RD Emb

RD Psumt

Accumulate Psumt+1

DRAM CMD

ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM

Rank-0

AxDIMM

Rank-1

Embedding

Table

INST BUF

CONF REG

PSUM BUF

Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read

StatusReg

DDR WR
DDR WR
DDR RD

R
a
n
k
-0

R
a
n

k
-1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

TheRank-NMP module isoperates following themecha-
nism of memory-mapped I/O (MMIO). Thememory-mapped
configuration registers (CONF REG) are set by the host to
choosebetween thetwo execution modeof aRank-NMPmod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
theDRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load theembedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. Theadder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by thehost in

4

Two execution modes:

(1) non-acceleration mode
(2) acceleration mode (blocking)

23[Ke+, IEEE Micro’2021]

Sparse Length Sum with AxDIMM (IEEE Micro 2021)

24https://doi.org/10.1109/MM.2021.3097700

https://doi.org/10.1109/MM.2021.3097700

Sparse Length Sum with AxDIMM (AICAS 2022)

25https://doi.org/10.1109/AICAS54282.2022.9869896

https://doi.org/10.1109/AICAS54282.2022.9869896

Database Operations with AxDIMM (DaMoN 2022)

26https://doi.org/10.1145/3533737.3535093

https://doi.org/10.1145/3533737.3535093

Longer Lecture on AxDIMM

27https://youtu.be/SXdzQZAKG-Y

https://youtu.be/SXdzQZAKG-Y
https://youtu.be/SXdzQZAKG-Y
https://youtu.be/SXdzQZAKG-Y

Another Longer Lecture on AxDIMM

28https://youtu.be/2FMQg786GKs

https://youtu.be/2FMQg786GKs

Processing-in-Memory Landscape Today

29

[UPMEM 2019][Samsung 2021][SK Hynix 2022]

[Samsung 2021]

This does not include many experimental chips and startups

[Alibaba 2022]

Possible PNM Designs

30

◼ Fixed-function units

❑ Hardware/software co-designed PIM for efficiency

❑ E.g. from academia: Mensa for NN Edge Inference

❑ E.g. from industry: Samsung HBM-PIM, SK hynix AiM

PIM-Accelerator
1

PIM-Accelerator
N

…

◼ Reconfigurable architectures

❑ PNM cores coupled with FPGAs, CGRA

❑ E.g. from academia: NERO for Weather Prediction

❑ E.g. from industry: Samsung AxDIMM

Reconfigurable

Accelerator

◼ General-purpose programmable cores

❑ Wimpy cores (possibility of running any workload)

❑ E.g. from academia: Tesseract PIM for Graph Processing

❑ E.g. from industry: UPMEM PIM Cache

PIM Core

Research Tools PNM: DAMOV-SIM
◼ Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata Ghose, Nandita

Vijaykumar, Ivan fernandez, Mohammad Sadrosadati, and Onur Mutlu,

"DAMOV: A New Methodology and Benchmark Suite for Evaluating Data
Movement Bottlenecks"
IEEE Access, 8 September 2021.

Preprint in arXiv, 8 May 2021.
[arXiv preprint]

[IEEE Access version]
[DAMOV Suite and Simulator Source Code]
[SAFARI Live Seminar Video (2 hrs 40 mins)]

[Short Talk Video (21 minutes)]

31

https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://doi.org/10.1109/ACCESS.2021.3110993
https://arxiv.org/abs/2105.03725
https://arxiv.org/pdf/2105.03725.pdf
https://doi.org/10.1109/ACCESS.2021.3110993
https://github.com/CMU-SAFARI/DAMOV
https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=156
https://www.youtube.com/watch?v=HkMYuYMuZOg&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=161

Step 3: Memory Bottleneck Classification (2/2)

• Goal: identify the specific sources of data movement
bottlenecks

DAMOV-SIM Simulator

Cores

Scalability Analysis

Integrated ZSim and Ramulator

• Scalability Analysis:
− 1, 4, 16, 64, and 256 out-of-order/in-order host and NDP CPU cores
− 3D-stacked memory as main memory

Configuration 2: NDP System

Off-chip link

DRAM
CPU

CPU
CPU

L
2

L
1 L3

L
2

L
1

L
2

L
1 L2L1CPU

Configuration 1: Host CPU System

Off-chip link

272DAMOV-SIM: https://github.com/CMU-SAFARI/DAMOV

…

Logic Layer

CPU
CPU

CPU

L
1

L
1

L
1L1CPU

DRAMDRAMDRAMDRAM

DRAMDRAMDRAM

https://github.com/CMU-SAFARI/DAMOV
https://github.com/CMU-SAFARI/DAMOV
https://github.com/CMU-SAFARI/DAMOV

DAMOV is Open Source

• We open-source our benchmark suite and our toolchain

DAMOV-SIM

DAMOV
Benchmarks

DAMOV is Open Source

• We open-source our benchmark suite and our toolchain

DAMOV-SIM

DAMOV
Benchmarks

Get DAMOV at:

https://github.com/CMU-SAFARI/DAMOV

https://github.com/CMU-SAFARI/DAMOV
https://github.com/CMU-SAFARI/DAMOV
https://github.com/CMU-SAFARI/DAMOV

More on DAMOV Analysis Methodology & Workloads

https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=3

https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=3
https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=3
https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=3

More on DAMOV Methods & Benchmarks
◼ Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata Ghose, Nandita

Vijaykumar, Ivan fernandez, Mohammad Sadrosadati, and Onur Mutlu,

"DAMOV: A New Methodology and Benchmark Suite for Evaluating Data
Movement Bottlenecks"
IEEE Access, 8 September 2021.

Preprint in arXiv, 8 May 2021.
[arXiv preprint]

[IEEE Access version]
[DAMOV Suite and Simulator Source Code]
[SAFARI Live Seminar Video (2 hrs 40 mins)]

[Short Talk Video (21 minutes)]

36

https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://doi.org/10.1109/ACCESS.2021.3110993
https://arxiv.org/abs/2105.03725
https://arxiv.org/pdf/2105.03725.pdf
https://doi.org/10.1109/ACCESS.2021.3110993
https://github.com/CMU-SAFARI/DAMOV
https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=156
https://www.youtube.com/watch?v=HkMYuYMuZOg&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=161

Research Tools PNM: Samsung HBM-PIM

37

https://github.com/SAITPublic/PIMSimulator

https://github.com/SAITPublic/PIMSimulator

Research Tools PNM: UPMEM PIM (I)

38

https://github.com/VIA-Research/uPIMulator

https://github.com/VIA-Research/uPIMulator
https://github.com/VIA-Research/uPIMulator
https://github.com/VIA-Research/uPIMulator

Research Tools PNM: UPMEM PIM (II)

39

https://ieeexplore.ieee.org/document/10476411/

https://ieeexplore.ieee.org/document/10476411/

2nd Workshop on

Memory-Centric Computing:

Processing-Near-Memory - Part I

Dr. Geraldo F. Oliveira

https://geraldofojunior.github.io

ICS 2025

08 June 2025

https://geraldofojunior.github.io/

	Slide 1: 2nd Workshop on Memory-Centric Computing: Processing-Near-Memory - Part II
	Slide 2: Possible PNM Designs
	Slide 3: Samsung Function-in-Memory DRAM (2021)
	Slide 4: Samsung Function-in-Memory DRAM (2021)
	Slide 5: Samsung Function-in-Memory DRAM (2021)
	Slide 6: Samsung Function-in-Memory DRAM (2021)
	Slide 7: Samsung Function-in-Memory DRAM (2021)
	Slide 8: Samsung PNM Solutions for Generative AI (2023)
	Slide 9: Solution I: Samsung’s HBM-PIM (2023)
	Slide 10: Solution II: Samsung’s LPDDR-PIM (2023)
	Slide 11: Solution III: Samsung’s CXL-PNM (2023)
	Slide 12: SK hynix AiM: Chip Implementation (2022)
	Slide 13: SK hynix AiM: System Organization (2022)
	Slide 14: Possible PNM Designs
	Slide 15: FPGA-based Processing Near Memory
	Slide 16: Heterogeneous System: CPU+FPGA
	Slide 17: NERO Design Flow
	Slide 18: NERO Performance Analysis
	Slide 19: Possible PNM Designs
	Slide 20: Samsung AxDIMM (2021)
	Slide 21: Samsung AxDIMM (2021)
	Slide 22: AxDIMM Design: Hardware Architecture
	Slide 23: AxDIMM Design: Hardware Architecture
	Slide 24: Sparse Length Sum with AxDIMM (IEEE Micro 2021)
	Slide 25: Sparse Length Sum with AxDIMM (AICAS 2022)
	Slide 26: Database Operations with AxDIMM (DaMoN 2022)
	Slide 27: Longer Lecture on AxDIMM
	Slide 28: Another Longer Lecture on AxDIMM
	Slide 29: Processing-in-Memory Landscape Today
	Slide 30: Possible PNM Designs
	Slide 31: Research Tools PNM: DAMOV-SIM
	Slide 32: Step 3: Memory Bottleneck Classification (2/2)
	Slide 33: DAMOV is Open Source
	Slide 34: DAMOV is Open Source
	Slide 35: More on DAMOV Analysis Methodology & Workloads
	Slide 36: More on DAMOV Methods & Benchmarks
	Slide 37: Research Tools PNM: Samsung HBM-PIM
	Slide 38: Research Tools PNM: UPMEM PIM (I)
	Slide 39: Research Tools PNM: UPMEM PIM (II)
	Slide 40: 2nd Workshop on Memory-Centric Computing: Processing-Near-Memory - Part I

