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Executive Summary

* Motivation: Processing-using-DRAM can alleviate
the performance and energy bottlenecks caused by data movement

— Prior works show that existing DRAM chips can perform
three-input majority and two-input AND and OR operations

* Problem: Proof-of-concept demonstrations on
commercial off-the-shelf (COTS) DRAM chips do not provide

— functionally-complete operations (e.g.,, NAND or NOR)
— NOT operation
— AND and OR operations with more than two inputs
 Experimental Study: 256 DDR4 chips from two major manufacturers
* Key Results:
— COTS DRAM chips can perform NOT and
{2, 4, 8, 16}-input AND, NAND, OR, and NOR operations
with very high reliability (>94% success rate)

— Data pattern and temperature only slightly affect
the reliability of these operations (<1.98% decrease in success rate)

SAFARI



Background
e

Goal & Overview
o

Experimental Methodology
.

Multiple-Row Activation in Neighboring Subarrays
e

NOT Operation
e

AND, NAND, OR, and NOR Operations
o

Conclusion

SAFARI



Background
.

Goal & Overview
o

Experimental Methodology
.

Multiple-Row Activation in Neighboring Subarrays
e

NOT Operation
e

AND, NAND, OR, and NOR Operations
.

Conclusion

SAFARI



Data Movement Bottleneck

* Today’s computing systems are processor centric

« All data is processed in the processor =

/Computing Unit\ 4 )

Main Memor
(CPU, GPU, FPGA, (DRAM) /
Accelerators)

Q Channer Dooo
\_ J \_ Y,

More than 60% of the total system energy is spent on data movement!

SA FA R '1 A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS, 2018



Processing-In-Memory (PIM)

Two main approaches for Processing-In-Memory:

1 Processing-Near-Memory: PIM logic is added
near the memory arrays or to the logic layer of 3D-stacked memory

Processing-Using-Memory: uses the analog
operational principles of memory cells to perform computation

DRAM
(e.g., 3D-Stacked Memory) . DRAM Bank
Processing-
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DRAM Organization
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DRAM Open Bitline Architecture

bitline

Amplifier

bitline
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DRAM Open Bitline Architecture

Activated

DRAM Bank Not Serves as the
Activated reference for the SA
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DRAM Operation

DRAM Subarray

ACTIVATE (ACT):
Fetch the row’s content
into the sense amplifiers

Column Access (RD/WR):
Read/Write the target

Sense _
Amps. column and drive to [/0
PRECHARGE (PRE):
1/0 3 Prepare the subarray
Circuitry for a new ACTIVATE

SAFARI 10
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Our Goal

Understand the capability of COTS DRAM chips
beyond just storing data

Rigorously characterize
the reliability of this capability

SA FARI COTS: Commercial Off-The-Shelf
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The Capability of COTS DRAM Chips

We demonstrate that COTS DRAM chips:

1 Can simultaneously activate up to
48 rows in two neighboring subarrays

2 Can perform NOT operation
with up to 32 output operands

3 Can perform up to 16-input
AND, NAND, OR, and NOR operations

SAFARI 13



Background
e

Goal & Overview
.

Experimental Methodology
.

Multiple-Row Activation in Neighboring Subarrays
e

NOT Operation
e

AND, NAND, OR, and NOR Operations
.

Conclusion

SAFARI



DRAM Testing Infrastructure

* Developed from DRAM Bender [Olgun+, TCAD'23]*

* Fine-grained control over DRAM commands, timings,
and temperature

' §1200

Er—=
e

~

L
24

SAFAR] *Olgunetal, "DRAM Bender: An Extensible and Versatile FPGA-based Infrastructure
to Easily Test State-of-the-art DRAM Chips," TCAD, 2023.
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https://arxiv.org/pdf/2211.05838
https://arxiv.org/pdf/2211.05838

DRAM Chips Tested

* 256 DDR4 chips from two major DRAM manufacturers

* Covers different die revisions and chip densities

: #Modules Die  Mir. Chip Chip Speed

A e (#Chips) Rev. Date® Density Org. Rate
9(72) M N/A 4Gb X8 2666MT/s
5 (40) A N/A 4Gb X8 2133MT/s
SK Hvni 1 (16) A N/A 8Gb X8 2666MT/s
T 1 32 A 18-14  4Gb x4 2400MT/s
1(32) A 16-49 8Gb x4 2400MT/s
I (32) M 16-22 8Gb x4 2666MT/s
I (8) F 21-02 4Gb X8 2666MT/s
Samsung 2 (16) D 21-10 8Gb X8 2133MT/s
I (8) A 22-12 3Gb X3 3200MT/s

SAFARI
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Testing Methodology

* Carefully sweep:

- Row addresses: Row A and Row B
- Timing parameters: Between ACT — PRE and PRE — ACT

ACT Row A

PRE

Subarray X

ACT =

Row A

Shared Sense Amphﬁers

Subarray Y

ACT = t=——>

Row B

DRAM Bank

SAFARI

ACT Row B

Neighboring
Subarrays
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The Capability of COTS DRAM Chips

We demonstrate that COTS DRAM chips:

1 Can simultaneously activate up to
48 rows in two neighboring subarrays

SAFARI 19



Key Observation
Activating two rows in quick succession

can simultaneously activate

multiple rows in neighboring subarrays

e

1)(5
]<3ns [

Subarray X

ACT =r—>

Row A

Shared Sense Ampllflers

Subarray Y

ACT =t=——>b

Row B

SAFARI DRAM Bank

Neighboring
Subarrays



Characterization Methodology

* To understand which and how many rows are
simultaneously activated

- Sweep Row A and Row B addresses

I _________ 1 _________ 1

ACT Row A ACT Row B

<3ns

Subarray X
ACT =t Row A

Shared Sense Ampllﬁers

Subarray Y
ACT +1+—> Row B

SAFARI DRAM Bank 21



Key Results

COTS DRAM chips have two distinct sets of
activation patterns in neighboring subarrays
when two rows are activated with violated timings

Exactly the same number of rows
in each subarray
are activated

Twice as many rows in one subarray
compared to its neighbor subarray
are activated

Subarray X ———__
Up to 16 rows

Shared Sense Ampllflers

Subarray Y —
Up to 16 rows

A total of 32 rows
SAFARI

Subarray X ———__
Up to 16 rows

Shared Sense Ampllflers

Subarray Y —
Up to 32 rows

A total of 48 rows




Key Takeaway

COTS DRAM chips can simultaneously activate
up to 48 rows in two neighboring subarrays

Functionally-Complete Boolean Logic in Real DRAM Chips:
Experimental Characterization and Analysis

Ismail Emir Yiiksel Yahya Can Tugrul Ataberk Olgun F. Nisa Bostanci1  A. Giray Yaglikci
Geraldo F. Oliveira Haocong Luo  Juan Gomez-Luna Mohammad Sadrosadati  Onur Mutlu

ETH Ziirich

(More results in the paper)

https://arxiv.org/pdf/2402.18736.pdf

SAFARI 23
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The Capability of COTS DRAM Chips

We demonstrate that COTS DRAM chips:

2 Can perform NOT operation
with up to 32 output operands

SAFARI 25



Key Idea

Connect rows in neighboring subarrays
through a NOT gate by simultaneously activating rows

SI'c SIC SI'c

NOT gate

dst

SAFARI 26



NOT Operation: A Walkthrough

GND 72 Vop
Src connects
____________ src to
bitline
dst
Y2 Vpp GND

SAFARI
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NOT Operation: A Walkthrough

O
Nominal

GND GND i
) rives
sTe «--- bitline to
GND
drives
bitline to ----,_
vDD - dst
VDD GND

SAFARI 28



NOT Operation: A Walkthrough
X

Nominal <3ns

ACT src

sense
connects amplifier is
dstto --—.___ N still enabled
bitline
VDD
dst’'s bitlineis 4
still VDD ’

SAFARI 29



NOT Operation: A Walkthrough
X

ACT src PRE ACT dst

Nominal <3ns
GND negated
SI'c value of
src (VDD)
/1S written
to dst

dst

VDD

SAFARI
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Characterization Methodology

* Sweep Row A and Row B addresses

ACT Row A ACT Row B

Nominal

* Sweep DRAM chip temperature
95°C

J

50°C

Temperature

SAFARI 31



Reliability Metric
Success Rate (for a DRAM cell)

Percentage of trials where the correct output of
a tested operation is stored in the cell

Total of 10000 trials
%dst % % %%
GND : : : :

Success rate for this cell: 50%
SAFARI



Key Takeaways from In-DRAM NOT Operation

Key Takeaway 1

COTS DRAM chips can perform NOT operations
with up to 32 destination rows

Key Takeaway 2

Temperature has a small effect on
the reliability of NOT operations

SAFARI 33




Performing NOT in COTS DRAM Chips

Success Rate (%)

4 8 16 32
Number of Destination Rows

There is at least one DRAM cell that can
perform the NOT operation
with a 100% success rate

COTS DRAM chips can perform NOT operations
with up to 32 destination rows

SAFARI 34




Impact of Temperature

* Used destination cells that can perform NOT operation with
>90% success rate at 50°C

gloo- OOV VOVVOT V000 00000 909y
S 95 - Temperature

& B 50°C . .o

w || mmeo°C .o :

o 90] mmm70°C

O | mmm80°C

8 85 - I 95°C

1 2 4 8 16 32

Number of Destination Rows

from 50°C to 95°C

only 0.2% variation in average success rate

Temperature has a small effect on
the reliability of NOT operations

SAFARI

35




Background
e

Goal & Overview
o

Experimental Methodology
.

Multiple-Row Activation in Neighboring Subarrays
e

NOT Operation
-

AND, NAND, OR, and NOR Operations
e

Conclusion

SAFARI



The Capability of COTS DRAM Chips

We demonstrate that COTS DRAM chips:

3 Can perform up to 16-input
AND, NAND, OR, and NOR operations

SAFARI 37



Key Idea

Manipulate the bitline voltage to express
a wide variety of functions using
multiple-row activation in neighboring subarrays

sense amp.
compadares

Multiple Row ACT
—

SAFARI Vi 38



Two-Input AND and NAND Operations
X X

<3ns <3ns

ACT PRE ACT

AVG(Vpp,Vpp/2)
Vb A
} Reference
Yoo/ %Q_ }Subarray
(REF)

_®_} Compute
: Subarray
—

(COM)

SAFAR]| *Gaoetal, "FracDRAM: Fractional Values in Off-the-Shelf DRAM," in MICRO, 2022. 39



Two-Input AND and NAND Operations

ACT Eg: :i:

<3ns L

ACT
<3ns
) \
TVDD-‘— | X Y COM REF
"_ sense amp. O O 0 1
compares
the voltages on
the bitlines
‘GND —O— ,"
\ /
GND <~

SAFARI
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Two-Input AND and NAND Operations

ACT Eg: :i:

<3ns L

ACT
<3ns &
A
TVDD-‘— | X Y COM REF
"_ senseI amp. O O 0 1
compares y
the voltages on O 1 0 1
the b1tlmes
lGND —O— ]
\ /
Vpp/24”
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Two-Input AND and NAND Operations
X X

<3ns L

ACT

ACT
<3ns
) \
1VDD "_ i COM REF
"_ sense amp. 0 1
compares — .
the voltages on 0 1
the bitlines ‘gu— Y
lGND —(r ," 0 1
\ /
Vpp/24~
SAFARI
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Two-Input AND and NAND Operations
X X

<3ns <3ns

ACT PRE ACT

) \
'l COM REF

0 1

sense amp.
compares
the voltages on
the bitlines

I

Y.
;O.
.1.
0
|

0 1
0 1
1 0

SAFARI 43



Two-Input AND and NAND Operations
X X

<3ns <3ns

ACT PRE ACT

AVG(Vpp,Vpp/2) Vpp=1 &GND O
Vbp A
v /;&- }Reference Y COM REF
bb ‘Q Subarray ‘ '
(REF) LU
Ay 1 0 1
® Compute | |
}Subarray 0 0 1
;®' (COM) 1 1 0
AVG(X,Y)

' AND Iy NAND )

SAFAR]| *Gaoetal, "FracDRAM: Fractional Values in Off-the-Shelf DRAM," in MICRO, 2022. 44



Many-Input AND, NAND, OR, and NOR Operations

We can express AND, NAND, OR, and NOR operations

by carefully manipulating the reference voltage

Functionally-Complete Boolean Logic in Real DRAM Chips:
Experimental Characterization and Analysis

Ismail Emir Yiiksel Yahya Can Tugrul Ataberk Olgun F. Nisa Bostanc1  A. Giray Yaglhkei
Geraldo F. Oliveira Haocong Luo  Juan Gomez-Luna Mohammad Sadrosadati  Onur Mutlu

ETH Ziirich

(More details in the paper)

https://arxiv.org/pdf/2402.18736.pdf
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Characterization Methodology

* Sweep Row A and Row B addresses

I _________ 1 _________ 1

ACT Row A ACT Row B

<3ns

Subarray X
ACT =t Row A

Shared Sense Amphﬁers

Subarray Y
ACT +—> Row B

SAFARI DRAM Bank 46



Key Takeaways from In-DRAM Operations

Key Takeaway 1

COTS DRAM chips can perform
{2, 4, 8, 16}-input AND, NAND, OR, and NOR operations

Key Takeaway 2

COTS DRAM chips can perform

AND, NAND, OR, and NOR operations
with very high reliability

Key Takeaway 3

Data pattern slightly affects
the reliability of AND, NAND, OR, and NOR operations

SAFARI 47



Performing AND, NAND, OR, and NOR

100+

§

) % i

+J

©

= 75

N ' Operation

8 N AND

) N NAND

8 [OR
50- [ NOR

2 4 8 16

Number of Input Operands

COTS DRAM chips can perform
{2, 4, 8, 16}-input AND, NAND, OR, and NOR operations

SAFARI 48




Performing AND, NAND, OR, and NOR

100+ o 0%§

>

)

+J

©

= 75 , _

N Operation

Y I AND

) N NAND

A I OR
50- [ NOR

2 4 8 16

Number of Input Operands

COTS DRAM chips can perform
16-input AND, NAND, OR, and NOR operations
with very high success rate (>94%)

SAFARI

49




Impact of Data Pattern

—~ 100

>

Q

d

o

s 15

n

Q

8 Data Pattern
S ¢ I All 1s/0s
n 50 NOR I Random

4 8 16
Number of Input Operands

1.98% variation in average success rate

across all number of input operands

SAFARI
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Impact of Data Pattern

PR PE
]

~
wul

NAND

100

T 77
| |

Success Rate (%)
un
(@]

T

~]
(9]

¢ Data Pattern

I All 1s/0s

So- TR NOR ] ==
2 4 8 16 2 4 8 16

Number of Input Operands

Impact of data pattern is consistent

across all tested operations

SAFARI
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Impact of Data Pattern

1007 T-} Fo- PN - T‘} =P
] ¢ ’
! !

1 AND NAND
100 A ﬁ -?-qii- -?-? ﬁ ﬁ 'Tqif' '5?_'?
[ : =0
¢ ¢ I All 1s/0s
OR . ' NOR . I Random

2 4 8 16 2 4 8 16
Number of Input Operands

~
un

Success Rate (%)
un
(@]

~
o

9y
o

Data pattern slightly affects
the reliability of AND, NAND, OR, and NOR operations
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More in the Paper

* Detailed hypotheses & key ideas to perform

— NOT operation
— Many-input AND, NAND, OR, and NOR operations

* How the reliability of bitwise operations are affected by
— The location of activated rows
— Temperature (for AND, NAND, OR, and NOR)

— DRAM speed rate
— Chip density and die revision

* Discussion on the limitations of COTS DRAM chips

SAFARI
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Available on arXiv

Functionally-Complete Boolean Logic in Real DRAM Chips:
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Processing-using-DRAM (PuD) is an emerging paradigm
that leverages the analog operational properties of DRAM cir-
cuitry to enable massively parallel in-DRAM computation. PuD
has the potential to significantly reduce or eliminate costly
data movement between processing elements and main memory.
A common approach for PuD architectures is to make use of
bulk bitwise computation (e.g., AND, OR, NOT). Prior works
experimentally demonstrate three-input MAJ (i.e., MAJ3) and
two-input AND and OR operations in commercial off-the-shelf
(COTS) DRAM chips. Yet, demonstrations on COTS DRAM
chips do not provide a functionally complete set of operations
(e.g., NAND or AND and NOT).

We experimentally demonstrate that COTS DRAM chips are
capable of performing 1) functionally-complete Boolean opera-
tions: NOT, NAND, and NOR and 2 ) many-input (i.e., more than
two-input) AND and OR operations. We present an extensive

systems and applications [12, 13]. Processing-using-DRAM
(PuD) [29-32] is a promising paradigm that can alleviate the
data movement bottleneck. PuD uses the analog operational
properties of the DRAM circuitry to enable massively parallel
in-DRAM computation. Many prior works [29—-53] demonstrate
that PuD can greatly reduce or eliminate data movement.

A widely used approach for PuD is to perform bulk bitwise
operations, i.e., bitwise operations on large bit vectors. To per-
form bulk bitwise operations using DRAM, prior works pro-
pose modifications to the DRAM circuitry [29-31,33,35, 36,
43,44,46,48-58]. Recent works [38,41,42,45] experimentally
demonstrate the feasibility of executing data copy & initializa-
tion [42,45], i.e., the RowClone operation [49], and a subset
of bitwise operations, i.e., three-input bitwise majority (MAJ3)
and two-input AND and OR operations in unmodified commer-
cial off-the-shelf (COTS) DRAM chips by operating beyond

https://arxiv.org/pdf/2402.18736.pdf

SAFARI
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Conclusion

* We experimentally demonstrate that commercial off-the-shelf (COTS)
DRAM chips can perform:

— Functionally-complete Boolean operations: NOT, NAND, and NOR

— Up to 16-input AND, NAND, OR, and NOR operations

* We characterize the success rate of these operations on
256 COTS DDR4 chips from two major manufacturers
* We highlight two key results:
— We can perform NOT and
{2, 4, 8, 16}-input AND, NAND, OR, and NOR operations
on COTS DRAM chips with very high success rates (>94%)

— Data pattern and temperature only slightly affect
the reliability of these operations

We believe these empirical results demonstrate
the promising potential of using DRAM as a computation substrate

SAFARI 56
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Executive Summary

( Motivation:

* Processing-Using-DRAM (PUD) alleviates data movement bottlenecks

* Commercial off-the-shelf (COTS) DRAM chips can perform
three-input majority (MAJ3) and in-DRAM copy operations

\

 Goal: To experimentally analyze and understand
* The computational capability of COTS DRAM chips beyond that of prior works
* The robustness of such capability under various operating conditions

\

Experimental Study: 120 DDR4 chips from two major manufacturers

* COTS DRAM chips can perform MAJ5, MAJ7, and MAJ9 operations
and copy one DRAM row to up to 31 different rows at once

drastically increases robustness (>30% higher success rate)

* Operating conditions (temperature, voltage, and data pattern)
affect the robustness of in-DRAM operations (by up to 11.52% success rate)

» Storing multiple redundant copies of MAJ’s input operands (i.e., input replication)

SAFARI https://github.com/CMU-SAFARI/SiMRA-DRAM
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Leveraging Simultaneous Many-Row Activation

1 Perform MAJX (where X>3) operations

2 Increase the robustness of MAJX operations

3 Copy one row’s content to multiple rows

SAFARI
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Leveraging Simultaneous Many-Row Activation

3 Copy one row’s content to multiple rows

SAFARI
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In-DRAM Multiple Row Copy (Multi-RowCopy)

Simultaneously activate many rows to
copy one row’s content to multiple destination rows

RowClone Multi-RowCopy

SAFARI [Seshadri+ MICRO’13]
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Robustness of Multi-RowCopy

Success Rate (%)
ul
o

1 3 7 15 31
Number of Destination Rows

Average: >99.98%

COTS DRAM chips can copy one row’s content
to up to 31 rows with a very high success rate

SAFARI
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Available on arXiv

Ismail Emir Yiiksel' Yahya Can Tugrul'>
A. Giray Yaghke¢1'  Ataberk Olgun'

Juan Gémez-Luna'

VETH Ziirich

We experimentally analyze the computational capability of
commercial off-the-shelf (COTS) DRAM chips and the robust-
ness of these capabilities under various timing delays between
DRAM commands, data patterns, temperature, and voltage
levels. We extensively characterize 120 COTS DDR4 chips
Srom two major manufacturers. We highlight four key results of
our study. First, COTS DRAM chips are capable of 1) simulta-
neously activating up to 32 rows (i.e., simultaneous many-row
activation), 2) executing a majority of X (MAJX) operation where
X>3 (i.e., MAJ5, MAJ7, and MAJ9 operations), and 3) copying
a DRAM row (concurrently) to up to 31 other DRAM rows,
which we call Multi-RowCopy. Second, storing multiple copies
of MAJX's input operands on all simultaneously activated rows
drastically increases the success rate (i.e., the percentage of
DRAM cells that correctly perform the computation) of the
MAJX operation. For example, MAJ3 with 32-row activation (i.e.,

Code Dataset
Reproducible Reproducible

Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips:
Experimental Characterization and Analysis

F. Nisa Bostanci'  Geraldo F. Oliveira'
Melina Soysal' Haocong Luo!

Mohammad Sadrosadati' ~ Onur Mutlu!
2TOBB University of Economics and Technology

A subset of PIM proposals devise mechanisms that en-
able PUM using DRAM cells for computation, including data
copy and initialization [67.72.77.78.89. 104, 127], Boolean
logic_[56.64-66.68.70,72.76,79. 122, 127-129], majority-
based arithmetic [64,66.69.72.91. 127, 130, 131], and lookup
table based operations [82. 106. 107. 132]. We refer to DRAM-
based PUM as Processing-Using-DRAM (PUD) and the com-
putation performed using DRAM cells as PUD operations.

PUD benefits from the bulk data parallelism in DRAM de-
vices to perform bulk bitwise PUD operations. Prior works show
that bulk bitwise operations are used in a wide variety of impor-
tant applications, including databases and web search [64.67.
79.130. 133-140], data analytics [64. 141-144], graph process-
ing [56. 80.94. 130. 145], genome analysis [60.99. 146-149],
cryptography [150. 151], set operations [56.64], and hyper-
dimensional computing [152—154].

https://arxiv.org/pdf/2405.06081

SAFARI
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Our Work is Open Source and Artifact Evaluated

Code Dataset
Reproducible Reproducible

SAFARY SlMRA-DRAM Public 9 Edit Pins + & Watch 4 va Fork 0 - Starred 6 v
¥ main ~ ¥ 1Branch 0 Tags Q, Go tofile t Add file ~ About 3
Source code & scripts for experimental
&, unrealismail Update README.md asTabfa - last month ) 5 Commits characterization and demonstration of 1)
simultaneous many-row activation, 2) up
[ DRAM-Bender initial comit last month to nine-input majority operations and 3)
M0 analysis initial comit last month copying one row's content to up 31 rows
in real DDR4 DRAM chips. Described in
0 experimental_data initial comit last month our DSN'24 paper by Yuksel et al. at
https://arxiv.org/abs/2405.06081
9 LICENSE initial comit last month
OJ Readme
[ README.md Update README.md last month & View license
A Activity
[0 README 3B License 7 = B Custom properties
Yy 6stars
Simultaneous Many-Row Activation in Off-the-Shelf o
DRAM Chips: Experimental Characterization and Analysis Report repository

https://github.com/CMU-SAFARI/SiMRA-DRAM
SAFARI
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Experimental Methodology

We test all banks in each DRAM chip
We test three neighboring subarray pairs in each bank

We test all possible combinations of

- —J 10000000
0000000) - -

\ , ) r ) r \
N (0O00000) | )
N oooococoo I I C )

O e —————————————————

DRAM Chip DRAM Bank

Aued
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Performing NOT in COTS DRAM Chips

Success Rate (%)

1 2 4 8 16 32
Number of Destination Rows

The average success of the NOT operation with
four destination row: 98.37%
thirty-two destination rows: 7.95%

As the number of destination rows increases,
more DRAM cells produce incorrect results.
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The Coverage of Multiple-Row Activation

N
o

W
o

=
o

Coverage (%)
N
o

o

1:1 2:2 4:4 8:8 16:16 1:2 2:4 4:8 8:16 16:32
Nrr = Npg, 2 X Ngr=Npg,
Ngrr: Ngp

Figure 5: Coverage of each Ngr:Ng,_ activation type across tested R
and R, row pairs.
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NOT vs. Activation Trend

~ 100~ —— T ——
> 1 0 ' ¢
o 751 ' b 0
s’
= _
= 50{ | | I ' :
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8 25: ¢ A\ . O
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) 0
1:1 2:2 4:4 8:8 16:16 1:2 2:4 4:8 8:16 16:32
Ngrr = NpL 2 X Nrr = Ng,
Nge : NgrL

Figure 8: Success rate of the NOT operation vs. Ngr:NgL activation
type.
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Impact of Location in NOT Op.

« (Categorize the distance between activated rows (source and destination rows) and
the sense amplifiers into three regions: Far, Middle, and Close

Source Subarray

Far 100U
* : 1 C l =
Middle © 81.92 75.13 8
Close Y o 80

S5 3 85.02
Sense Amp. S = pe)
= Q
) O —t
Close ] 7 (D
Middle O . X

r - | Close Middle Far

ar Destination

Destination Subarray

The distance between activated rows and the sense
amplifiers significantly affects the reliability
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The eftect of DRAM Speed Rate on NOT

—

= 100 n
Y 75- ' '
m -
501 y
a ; 0
0
Y 2] Speed Rate (MT/s)
U:); 0- 2133 I 2400 I 2666
1 2 4 8 16 32

SAFARI

Number of Destination Rows

Figure 11: Success rate of the NOT operation for different DRAM
speed rates.
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Chip Density & Die Revision (NOT)

—_— ] ] '@, + L
S el [ 3
| I
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o 257 ! | I
) - I . 1
37 0 SK Hynix Samsung
4Gb A-die 4Gb M-die 8Gb A-die 8Gb M-die 8Gb A-die 8Gb D-die 4Gb F-die

Die Revision

Figure 12: Success rate of the NOT operation for different chip
density and die revision combinations for two major manufactur-
ers.
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Performing AND, NAND, OR, and NOR

100- T_ T = I ¢ v T T
X
< | o [e T
Q O O H
S o \ 1
75, 1 ,
v Operation
V il l ' I AND
O - ' m NAND
L% ¢ [T10R
50 [ NOR
2 4 8 16

Number of Input Operands

The reliability distributions are very similar between
1) AND-NAND and 2) OR - NOR operations.
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Impact of Temperature

1001m T I
m XX HHH %ﬁﬁ%

§ 75
Q
©
£ 50- AND NAND
& 100 EE. ol E aln)
Q
O ' t444
5 Temperature
751 [ 50°C
I 60°C
| EEEAK XEEE) B 70°C
I 80°C
50 OR [ 95°C
2 4 8 16 2 4 8 16

Number of Input Operands

Temperature has a small effect on
the reliability of AND, NAND, OR, and NOR operations
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Boolean Operations vs. Number of 1s

4-input 16-input
100 TV T I e i i s St Sl Sty el ey el ey
= ‘ T >
~ 50 ' ° : pa
o O
©
@ 0 -
7. 100 y TTT L TTTTTT'?“?“?‘—O-—O-—O-—o——o——o—
O ) o
O 50 J | : Q
m { ]
0 ' + ¢ 1
0 12 34 0123456717 8 910111213141516

Number of Logic-1s

Figure 16: Success rates of AND and OR operations based on the
number of logic-1s in the input operands.
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The Effect of the Location

SAFARI
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DRAM Speed Rate vs. Bitwise Ops.

100'[% "t'él? o1 hl &, T
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Figure 20: Success rates of AND, NAND, OR, and NOR operations
for three DRAM speed rates.
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Chip Density&Die Revision vs. Bitwise Ops.
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DRAM Cell Operation

wordline

capacitor

—

enable

bitline

1. ACTIVATE (ACT)

access
transistor

2. PRECHARGE (PRE)

r

SAFARI

L

\_

~\

@—» NOT Gate

J

bitline
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DRAM Cell Operation - ACTIVATE

dli .- deviation
raise @ woraline . ¥ in bitline
wordline ‘ /Y Vpp + 6 voltage
capacitor {)ltlme
I _:_ access - 4 connects
cenglddasgs - transistor |1 T E‘?:}_to
e itline
ehar Fge | to-- ~

blt enable

enable sense amp
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DRAM Cell Operation - PRECHARGE

wordline

lower @ . Precharge bitline
wordline ‘ /¥ for next access
capacitor bitline

-

access
transistor

N
2 enable

Disable P
Sense Amp

bitline
Y2 Upp
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Simultaneous Many-Row Activation

in Off-the-Shelf DRAM Chips

Experimental Characterization and Analysis

Code Dataset
Reproducible Reproducible
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Executive Summary

( Motivation:

* Processing-Using-DRAM (PUD) alleviates data movement bottlenecks

* Commercial off-the-shelf (COTS) DRAM chips can perform
three-input majority (MAJ3) and in-DRAM copy operations

\

 Goal: To experimentally analyze and understand
* The computational capability of COTS DRAM chips beyond that of prior works
* The robustness of such capability under various operating conditions

\

Experimental Study: 120 DDR4 chips from two major manufacturers

* COTS DRAM chips can perform MAJ5, MAJ7, and MAJ9 operations
and copy one DRAM row to up to 31 different rows at once

drastically increases robustness (>30% higher success rate)

* Operating conditions (temperature, voltage, and data pattern)
affect the robustness of in-DRAM operations (by up to 11.52% success rate)

» Storing multiple redundant copies of MAJ’s input operands (i.e., input replication)

SAFARI https://github.com/CMU-SAFARI/SiMRA-DRAM
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Motivation & Background
e

Goal
o

Experimental Methodology
e

Simultaneous Many-Row Activation
e

MAJX Operation
e

Multi-RowCopy Operation
e

Conclusion

SAFARI 87




Outline

Motivation & Background
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Data Movement Bottleneck

* Today’s computing systems are processor centric

* All data is processed in the processor = at great system cost

/ Computing Unit\ (Main Memory\
(CPU, GPU, FPGA, (DRAM)
Accelerators)
Memory
a Channel . . . .

\_ J _ Y

More than 60% of the total system energy is spent on data movement’

SA FA Rl TA. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS, 2018 89



Processing-In-Memory (PIM)

Two main approaches for Processing-In-Memory:

1 Processing-Near-Memory: PIM logic is added near the memory arrays
or to the logic layer of 3D-stacked memory

Processing-Using-Memory: uses the analog operational principles of
memory cells to perform computation

DRAM
(e.g., 3D-Stacked Memory) DRAM Bank
Processing-
DRAM Vault Using-DRAM
/|
Vault B
Controller {ﬂigg 3
" rracesaing. P
PHY ! Near-Vault | {_m 3
. a
BN I s oy |

1 Processing-Near-Bank

SAFARI



Processing-In-Memory (PIM)

Two main approaches for Processing-In-Memory:

Processing-Using-Memory: uses the analog operational principles of
memory cells to perform computation

Processing-
Using-DRAM

1
i el ity niionlls il il

NRE S

SAFARI
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DRAM Organization

DRAM Module

DRAM
Chip

\—/

\——/

DRAM Chip

SAFARI

DRAM Bank

1apo2a(g Moy

DRAM Cell

Sense Amps.

DRAM Subarray
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DRAM Operation

Sense
Amplifiers

SAFARI

DRAM Subarray

HO-Or
€€
HOC)-
OO

7

| DTDJ

|/O Circuitry

ACTIVATE (ACT):
Fetch the row’s content
into the sense amplifiers

Column Access (RD/WR):

Read/Write the target
column and drive to I/0O

PRECHARGE (PRE):
Prepare the bank
for a new ACTIVATE

93



In-DRAM Row-Copy (RowClone)

Copying the source (src) row’s content to
the destination (dst) row

SAFARI

[Seshadri+ MICRO’13]
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In-DRAM Row-Copy (RowClone)

[ ACT src ]

Fetch src’s content
into the sense amplifiers

SAFARI

[Seshadri+ MICRO’13]

Assert the src’s
wordline

_____



In-DRAM Row-Copy (RowClone)

| AcTsrc |jmm——p{ AcTast |

Bitlines are still at src

~
-~
-
---.

-y
-——_______

SAFARI

[Seshadri+ MICRO’13]

src’s content

is copied to dst

Y

’/

-
———’



In-DRAM Majority-of-Three (MAJ3)

Performing a MAJ3 operation
using three rows as input operands

MAJ3(a, b,b) =b

SAFARI [Seshadri+ MICRO’17]



In-DRAM Majority-of-Three (MAJ3)

[ Activate three rows simultaneously ]

‘1 Assert three rows’

\
1
L\ wordlines
'\

Three rows perturb
bitlines simultaneously

_______

~
Seeo
......

v Sense amplifiers sample
the output of majority

SAFARI [Seshadri+ MICRO’17, Gao+ MICRO’19] 98



Outline
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Our Goal

Experimentally understand
the computational capability of COTS DRAM chips

Experimentally analyze

the robustness of such capability
under various operating conditions

SAFARI 100



Outline

Experimental Methodology
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DRAM Testing Infrastructure (l)

DRAM Bender DDR3/4 Testing Infrastructure

4 |
=
M

N )!
| (a) Temperature

controller
i P— -‘

https://github.com/CMU-SAFARI/DRAM-Bender

About 3

@ O CMU-SAFARI /| DRAM-Bender . .
DRAM Bender is the first open

source DRAM testing infrastructure
<> Code Issues Pull requests
© @ n . @ that can be used to easily and

comprehensively test state-of-the-
DRAM-Bender art DDR4 modules of different form
factors. Five prototypes are
available on different FPGA boards.

SA FA R’ Olgun et al., "DRAM Bender: An Extensible and Versatile FPGA-based Infrastructure to Easily Test State-of-the-art DRAM Chips," TCAD, 2023. 1 02


https://github.com/CMU-SAFARI/DRAM-Bender
https://arxiv.org/pdf/2211.05838

DRAM Testing Infrastructure (ll)

Fine-grained control over DRAM commands, timings,
temperature, and voltage

TTi PLO68-P
| Power Supply

444444

D Xilinx Alveo U200
FPGA Board
(with DRAM Bender)

SAFARI

PCl-e Connection E=
to the Host Machine

0o

DRAM
Module

/]

Heater
Pads

FT200

Temperature |- -

Controller |©

. N
S
S N

A
L SO “ .
. TSR
S A L N
= R RS

Olgun et al., "DRAM Bender: An Extensible and Versatile FPGA-based Infrastructure to Easily Test State-of-the-art DRAM Chips," TCAD, 2023. 1 03



https://arxiv.org/pdf/2211.05838

DRAM Chips Tested

* 120 DDR4 chips from two major DRAM manufacturers

* Covers different die revisions and chip densities

DRAM Mifr. #Modules #Chips Die Rev. Density Org. Subarray Size

SK Hynix 7 56 M 4Gb x8 512 or 640
(Mfr. H) 5 40 A 4Gb X8 512
Micron 4 16 E 16Gb x16 1024
(Mfr. M) 2 8 B 16Gb x16 1024

SAFARI 104



Testing Methodology (l)

e Carefully sweep

* Row addresses: Row A and Row B (>3M row pairs)
* Timing parameters: Between ACT > PRE and PRE > ACT

PRE
Subarray X
ACT  mtip- Row A
ACT =——1p Row B
SAFARI DRAM Bank
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Testing Methodology (ll)

Temperature Wordline Voltage
50°C =—» 90°C 2.5V =—» 2.1V

SAFARI 106



Robusthess Metric: Success Rate

Percentage of DRAM cells that produce
correct output of a tested operation in all test trials

Total of 10,000 trials

) G55

Success rate for this example: 66.67% (2/3)

SAFARI 107



Outline

Simultaneous Many-Row Activation

SAFARI 108



Key Observation

Activating two rows in quick succession
can simultaneously activate
many rows in a subarray

[ACTROWA% PRE ]%P[ACTROWB]

SAFARI

Subarray X 1
ACT ety Row A

ACT =———1p Row B

DRAM Bank
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Hypothesis: Row Decoder Circuitry

Simultaneous many-row activation is possible
due to the hierarchical DRAM row decoder design

DRAM Subarray

Row Address Wordline

| > Decoder :> _O-O-O_

Row Address (RA) _-" 7
I | | | | | -~

b g Stage 1

Decoder
Stage 2
Decoder
Stage 3

Decoder

Stage 4
Decoder
SAFARI Decoder 110




Row Decoder: A Tree Example

* We can visualize the hierarchical row decoder circuitry as a tree

Decoder
Output

)O—» Wordline A

—>

I

I

Wordline B

SeEis orior

c
e
e

Stage 1
Decoder @
- Stage 5
SAFARI Decoder 111




Activating a Single Row

36ns
| AcTRowA |——=>{ PrE | 1. Decode
Row A address
: O Wordline A
~ .{ B 2. As.sert.
A F N corresponding signals
O @
‘ H || — 3. Follow
4 . asserted nodes path
' .< - from root to leaf
CHAG
SINIPIO
11 — Wordline B 4. Assert wordline

SAFARI 112



Activating Many Rows: A Walkthrough

Back-to-back ACT commands with violated timings
asserts many more signals in the row decoder

3% 19Rs
[ ACT Row A ]W’[ PRE ’_g_"qns ACT Row B ]
1. Keep the previously

Wordline A [ asserted signals active

2. Decode Row B &
assert corresponding signals

newly asserted nodes’ path

) 4. Simultaneously
Wordline B activate many rows

|
|
[ 3. Follow ]
|

113
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Hypothesis: Row Decoder Circuitry

Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips:
Experimental Characterization and Analysis

[smail Emir Yiiksel' Yahya Can Tugrul'®> F. Nisa Bostanc1' Geraldo E. Oliveira!
A. Giray Yaglikct! Ataberk Olgun! Melina Soysal! Haocong Luo!
Juan Gémez-Luna! Mohammad Sadrosadati’ ~ Onur Mutlu!

VETH Ziirich >TOBB University of Economics and Technology

(More discussions & hypotheses in the paper)

https://arxiv.org/pdf/2405.06081

SAFARI
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Characterization Methodology (l)

If rows are activated, WR command overwrites
all of the activated rows’ content

[ACTRowA]LP[ PRE ]LP[ACTROWB]&}[ WR |

Subarray X
ACT ety Row A
ACT —r Row B
' |
DRAM Bank

SAFARI
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Characterization Methodology (ll)

» Carefully sweep
* Row addresses: Row A and Row B
* Timing parameters: Between ACT - PRE and PRE > ACT
* Temperature (°C): 50, 60, 70, 80, and 90
* Wordline Voltage (V): 2.5, 2.4, 2.3, 2.2, and 2.1

r
All rows in Subarray X .
(Rapthaiihtiant i Sy Temperature Wordline Voltage

Subarray X

pcr—p[  RowA ||
]
ACT —H Row B |

DRAM Bank
SAFARI 116
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Key Takeaways from Simultaneous Many-Row ACT

Key Takeaway 1

COTS DRAM chips are capable of simultaneously activating
2,4,8,16, and 32 rows

Key Takeaway 2

Simultaneous many-row activation is highly resilient to
temperature and wordline voltage changes

SAFARI 117



Robustness of Simultaneous Many-Row Activation

e AR SR SR AE

Success
Rate (%)

Percentage of cells
overwritten with
WR command

2 4 8 16 32

Number of Simultaneously
Activated Rows

Average: 99.99% Average: 99.85%

COTS DRAM chips can simultaneously activate
2,4, 8,16, and 32 rows in the same subarray

SAFARI 118




Also in the Paper: Impact of Temperature & Voltage

Temperature

Increasing temperature up to 90°C
has a small effect on the success rate of
simultaneous many-row activation

50°C = 90°C

Wordline Voltage

Reducing the wordline voltage
only slightly affects the success rate of
simultaneous many-row activation

2.5V =P 2.1V

SAFARI 119



Leveraging Simultaneous Many-Row Activation

1 Perform MAJX (where X>3) operations

2 Increase the robustness of MAJX operations

3 Copy one row’s content to multiple rows

SAFARI 120



Outline

MAJX Operation
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Leveraging Simultaneous Many-Row Activation

1 Perform MAJX (where X>3) operations

SAFARI 122



In-DRAM Majority-of-X (MAJX)

Simultaneously activate many rows to perform
MAJX (where X>3) operations

MAJ5(a, b,b,b,a)=b MAJ7(a,b,b,a,a,b,b)=b

SAFARI 123



MAJXin Real DRAM Chips

* For MAJX, we need to activate X rows simultaneously
* We can only simultaneously activate 2, 4, 8, 16, and 32 rows
* Question
* How do we perform MAJX while
simultaneously activating more than X rows?
* Answer
* Making some rows neutral during the MAJX operation
using the Frac operation*

a
b MAJ5
—
MAJS o) — w/ 8-row activation
w/ 5-row activation b
3x
a b Neutral
Rows

SAFARI *[Gao+MICRO22] 124



Leveraging Simultaneous Many-Row Activation

2 Increase the robustness of MAJX operations

SAFARI 125



Improving the Robustness (Input Replication)

Storing multiple copies of MAJX input operands
can increase the robustness of MAJX operations

MAJ3(a,b,b)=b MAJ6(a, b, b, a,b,b)=b

Correct
result

_

126

Incorrect
result

S
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Characterization Methodology

» Carefully sweep
* Row addresses: Row A and Row B
* Timing parameters: Between ACT - PRE and PRE > ACT
* Temperature (°C): 50, 60, 70, 80, and 90
* Wordline Voltage (V): 2.5, 2.4, 2.3, 2.2, and 2.1

r
All rows in Subarray X .
(Rapthaiihtiant i Sy Temperature Wordline Voltage

Subarray X

ACT —|b| Row A [
1]
ACT —H Row B |

DRAM Bank
SAFARI 127
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Key Takeaways from MAJX Operation

COTS DRAM chips are capable of performing
MAJ5, MAJ7, and MAJ9 operations

Key Takeaway 2

Storing multiple copies of MAJX’s input operands
significantly increases the MAJX’s success rate

Key Takeaway 3

Voltage and temperature slightly affect the success rate,
whereas data pattern affects significantly

SAFARI




Robustness of MAJX Operations

[ Data Pattern: CJ0x00/0xFF ]

MAJ3 MAJ5 MAJ7 MAJO

< 100]

4 8 16 32 8 16 32 8 16 32 16 32
Number of Simultaneously Activated Rows

%

Ul
o

Success Rate (

o

COTS DRAM chips are capable of performing
MAJ5, MAJ7, and MAJ9 operations

SAFARI 129




Impact of Input Replication

[ Data Pattern: TJ0x00/0xFF

)

MA)3 MA|J5 MA]J7 MAJ9
S 100+ 13.11%
a mcrese
rU [ ]
o
s 50-
n
Q
8 30.81% 56.27% 35.15%
u?) 04 increase increase increase

4 8 16

Number of Simultaneously Activated Rows

32

8

16 32

8

16 32

16 32

Similar trend in success rate increase in all tested MAJX operations

Final average success rate MAJ3 (MAJ5): 99.68% (93.49%)

Storing multiple copies of MAJ’s input operands increases
the success rate of MAJ3, MAJS, MAJ7, and MAJ9 operations

SAFARI




Impact of Data Pattern

[ Data Pattern: EJ0x00/0xFF CJ0xAA/0x55 CJ0xCC/0x33 J0x66/0x99 |:|Random]
MA)3 MAJ5 MA)7 MA)9

T T T
¢ I i 10 1.

4 8 16 32 8 16 32 8 16 32 16 32
Number of Simultaneously Activated Rows

11.52% decrease in success rate on average (up to 32.56%) across all tested MAJX operations

Data pattern significantly affects
the success rate of the MAJX operation

SAFARI 131




Also in the Paper: Impact of Temperature & Voltage

Temperature

Temperature slightly affects
the success rate of the MAJX operation

50°C = 90°C

Wordline Voltage

Wordline voltage has a small effect on
the success rate of the MAJX operation

2.5V =P 2.1V

SAFARI 132



Outline

Multi-RowCopy Operation
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Leveraging Simultaneous Many-Row Activation

3 Copy one row’s content to multiple rows

SAFARI 134



In-DRAM Multiple Row Copy (Multi-RowCopy)

Simultaneously activate many rows to
copy one row’s content to multiple destination rows

RowClone Multi-RowCopy

SAFARI [Seshadri+ MICRO’13] 135



Characterization Methodology (ll)

» Carefully sweep
* Row addresses: Row A and Row B
* Timing parameters: Between ACT - PRE and PRE > ACT
* Temperature (°C): 50, 60, 70, 80, and 90
* Wordline Voltage (V): 2.5, 2.4, 2.3, 2.2, and 2.1

r
All rows in Subarray X .
(Rapthaiihtiant i Sy Temperature Wordline Voltage

Subarray X

pcr—p[  RowA ||
]
ACT —H Row B |

DRAM Bank
SAFARI 136

50°C == 90°C 2.5V =p 2.1V



Key Takeaways from Multi-RowCopy

Key Takeaway 1

COTS DRAM chips are capable of copying one row’s data
to1, 3,7,15, and 31 other rows at very high success rates

Key Takeaway 2

Multi-RowCopy in COTS DRAM chips is highly resilient to changes in
data pattern, temperature, and wordline voltage

SAFARI 137



Robustness of Multi-RowCopy

Success Rate (%)
ul
o

1 3 7 15 31
Number of Destination Rows

Average: >99.98%

COTS DRAM chips can copy one row’s content
to up to 31 rows with a very high success rate

SAFARI 138




Impact of Data Pattern

|
o
o

Data Pattern
O-All 1s “O-Random

All Os

1 3 7 15
Number of Destination Rows

Success Rate (%)
(o]
(o]

(o]
o

At most 0.79% decrease in
average success rate

Data pattern has a small effect
on the success rate of the Multi-RowCopy operation

SAFARI
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Also in the Paper: Impact of Temperature & Voltage

Temperature

Increasing temperature up to 90°C
has a very small effect on
the success rate of the Multi-RowCopy operation

50°C =§» 90°C

Wordline Voltage

Reducing the wordline voltage
only slightly affects
the success rate of the Multi-RowCopy operation

2.5V =P 2.1V

SAFARI 140



More in the Paper

* Detailed hypotheses and key ideas on
* Hypothetical row decoder circuitry
* Input Replication

* More characterization results
* Power consumption of simultaneous many-row activation
 Effect of timing delays between ACT-PRE and PRE-ACT commands
* Effect of temperature and wordline voltage

* Circuit-level (SPICE) experiments for input replication

* Potential performance benefits of enabling new in-DRAM operations
* Majority-based computation
* Content destruction-based cold-boot attack prevention

* Discussions on the limitations of tested COTS DRAM chips

SAFARI 141



Available on arXiv

Ismail Emir Yiiksel' Yahya Can Tugrul'>
A. Giray Yaghke¢1'  Ataberk Olgun'

Juan Gémez-Luna'

VETH Ziirich

We experimentally analyze the computational capability of
commercial off-the-shelf (COTS) DRAM chips and the robust-
ness of these capabilities under various timing delays between
DRAM commands, data patterns, temperature, and voltage
levels. We extensively characterize 120 COTS DDR4 chips
Srom two major manufacturers. We highlight four key results of
our study. First, COTS DRAM chips are capable of 1) simulta-
neously activating up to 32 rows (i.e., simultaneous many-row
activation), 2) executing a majority of X (MAJX) operation where
X>3 (i.e., MAJ5, MAJ7, and MAJ9 operations), and 3) copying
a DRAM row (concurrently) to up to 31 other DRAM rows,
which we call Multi-RowCopy. Second, storing multiple copies
of MAJX's input operands on all simultaneously activated rows
drastically increases the success rate (i.e., the percentage of
DRAM cells that correctly perform the computation) of the
MAJX operation. For example, MAJ3 with 32-row activation (i.e.,
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A subset of PIM proposals devise mechanisms that en-
able PUM using DRAM cells for computation, including data
copy and initialization [67.72.77.78.89. 104, 127], Boolean
logic_[56.64-66.68.70,72.76,79. 122, 127-129], majority-
based arithmetic [64,66.69.72.91. 127, 130, 131], and lookup
table based operations [82. 106. 107. 132]. We refer to DRAM-
based PUM as Processing-Using-DRAM (PUD) and the com-
putation performed using DRAM cells as PUD operations.

PUD benefits from the bulk data parallelism in DRAM de-
vices to perform bulk bitwise PUD operations. Prior works show
that bulk bitwise operations are used in a wide variety of impor-
tant applications, including databases and web search [64.67.
79.130. 133-140], data analytics [64. 141-144], graph process-
ing [56. 80.94. 130. 145], genome analysis [60.99. 146-149],
cryptography [150. 151], set operations [56.64], and hyper-
dimensional computing [152—154].

https://arxiv.org/pdf/2405.06081
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Our Work is Open Source and Artifact Evaluated
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Conclusion

We experimentally demonstrate that COTS DRAM chips can
* simultaneously activate up to 32 DRAM rows

* perform MAJ3, MAJ5, MAJ7, and MAJ9 operations

* copy one row’s content to up to 31 rows

We characterize 120 DDR4 chips and highlight three key results

» Storing multiple copies of MAJX’s input operands (i.e., input replication)
drastically increases the success rate of MAJX operations

* Voltage and temperature slightly affect the success rate of MAJX operation,
whereas data pattern affects significantly

* Multi-RowCopy is highly resilient to changes in data pattern, temperature,
and wordline voltage

We believe these empirical results demonstrate
the promising potential of using DRAM as a computation substrate

SAFARI https://github.com/CMU-SAFARI/SiMRA-DRAM
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Power Consumption of Many-Row ACT

[dSimultaneous Many-Row Activation = ACT + PRE = RD — WR = REF

60 1

Power (mW)
wun
o

40

2 4 8 16 32
Number of Simultaneously Activated Rows

32-row activation consumes 21.19% less power than

the most power-consuming single DRAM operation (i.e., REF)

Simultaneous many-row activation power draw
likely meets the power budget of DDR4 chips
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Impact of Temperature in Many-Row ACT
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Max. decrease: 0.16%

Increasing temperature up to 90°C
has a small effect on the success rate
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Impact of Voltage in Many-Row ACT

Success Rate (%)
S
un

99 402.502402.3022021

8 16 32
Number of Simultaneously Activated Rows

Max. decrease: 0.64%

Reducing the wordline voltage
only slightly affects the success rate
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Impact of Temperature in MAJX

15.20% increase

MAJ5 MAJ7

MAJ9

Success Rate (%)

170

—
Temp. (°C)
150 380
160 390

ol

g LU,

Number of Simultaneously Activated Rows

16 32

from 50°C to 90 °C, the success rate varies by 4.25% on average

across all the tested operations

Temperature slightly affects
the success rate of the MAJX operation
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Impact of Voltage in MAJX Operations

- MAJ3 MAJ5 MAJ7 MAJ9
< e W o) il
é SZ%HI ‘ um %HH ‘ m m lml %1

Number of Simultaneously Activated Rows

Wordline voltage slightly affects
the success rate of the MAJX operation
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Impact of Timing Delays in Many-Row ACT
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Impact of Timing Delays in MAJX
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Impact of Timing Delays in Multi-RowCopy
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Impact of Temperature in Multi-RowCopy

\
J
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Only 0.04% decrease in

average success rate

Increasing temperature up to 90°C
has a very small effect on the success rate
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Impact of Voltage in Multi-RowCopy
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Reducing the wordline voltage
only slightly affects the success rate
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Majority-based Computation

Performance (Speedup)
o - N w O - N w

AND OR XOR ADD SUB MUL DIV AVG

New MAJX operations provide
121.61% (46.54%) higher performance
over using only MAJ3 in Mfr. M (Mfr. H) on average.
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Cold Boot Attack Prevention

N
o

N
(&)

N
o

Performance
(Speedup)

a

o

RowClone Frac 2-row 4-row 8-row 16-row 32-row
Activation _Activation Activation Activation Activation
Technique

Multi-RowCopy-based content destruction outperforms
both RowClone-based and Frac-based content destruction
by up to 20.87x and 7.55%, respectively.
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Frac Operation

FTac FTac

11

"""" Cell
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Input Replication in Real Chips

MAJ3(a,b,c)=F
Veret 8, + 4, + 4,
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perturbation
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Rows Incorrect
Result
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MAJ6(a,b,c,a,b,c)=F
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f

2x higher
perturbation
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Result
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DRAM Chips Tested: Extended Table

Module Chip Module Identifier #Modules Freq Mfr. Date Chip Die  Chip | Subarray

Vendor Vendor Chip Identifier (#Chips) (MT/s) WW-Yy Den. Rev. Org. Size
TLRD44G2666HC18F-SBK [240]

TimeTec SK Hynix 7 (56) 2666 Unknown 4Gb M X8 512 or 640
H5AN4G8NMFER-TFC [241
T6TT2INUSIRS-4G [242]

TeamGroup | SK Hynix 5 (40) 2133 Unknown 4Gb M x8 512
H5AN4G8NAFR-TFC [243
MTA4ATF1G64HZ-3G2E]1 [244

Micron Micron 4 (16) 3200 46-20 16Gb E x16 1024
MT40A1G16KD-062E:E [245]
MTA4ATF1G64HZ-3G2B2 [246]

Micron Micron _ 2(8) 2666 26-21 16Gb B x16 1024
MT40A1G16RC-062E:B [247
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Row Decoder Circuitry
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Effect of Input Replication on the Bitline Deviation
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Limitations of Tested COTS DRAM Chips (I)

* Some COTS DRAM chips do not support all in-DRAM operations

* We do not observe simultaneous many-row activation
in tested 64 Samsung chips

* Hypothesis

* Internal DRAM circuitry ignores the PRE command or
the second ACT command when the timing parameters are greatly
violated

If such a limitation were not imposed, we believe these DRAM chips
are also fundamentally capable of performing the operations
we examine in this work
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Limitations of Tested COTS DRAM Chips (ll)

* Tested COTS DRAM chips support only
consecutive two row activation and
simultaneous activation of 2, 4, 8, 16, and 32 rows

* Hypothesis

* This is due to our current infrastructure limitations,
where we can issue DRAM commands at intervals of only 1.5ns.

* Having fine-grained control on timing would allow us to
deassert/assert desired intermediate signals
In the row decoder circuitry
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Limitations of Tested COTS DRAM Chips (lll)

* Performing in-DRAM operations potentially have an effect
on transient errors in DRAM chips

* We perform each test (a single data point in the distribution)
10K times

* We do not observe any errors in rows
outside of the simultaneously activated row group

We believe that investigating all potential effects
(e.g., on transient errors) requires a much more extensive exploration
of various aspects
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Open Research Questions

A~ W NN -

5

SAFARI

|s it possible to robustly activate
more than four DRAM rows simultaneously?

What other PUD operations can be realized
in COTS DRAM chips?

How robustly can PUD operations be performed
in COTS DRAM chips?

Can the robustness of PUD operations be improved?

What are the effects of operating conditions
on the robustness of PUD operations?
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DRAM Cell Operation
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DRAM Cell Operation - ACTIVATE
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DRAM Cell Operation - PRECHARGE
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