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Brief Self Introduction

◼ Konstantina Koliogeorgi
❑ Senior Researcher and Lecturer @ SAFARI
❑ PhD, National Technical University of Athens, 2023
❑ kkoliogeorgi@safari.ethz.ch

◼ Research & Teaching Areas

❑ Hardware/Software Co-Design

❑ Heterogeneous System Architecture

❑ Reconfigurable Computing and Architectures

❑ Hardware Acceleration

❑ Optimized Architectures for Genome analysis

❑ High Level Synthesis Tools

❑ Design Space Exploration
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Agenda

◼ Brief Introduction to Genomics

◼ Data Movement Bottlenecks during analysis

◼ Designing algorithms and architectures that tackle data 
movement overhead

❑ Target Multiple Steps of Pipeline

❑ Leverage Processing-In-Memory

❑ Leverage In-Storage Processing
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And, many, many other applications …

Faster, Scalable & Accurate Genome Analysis

Uncovering and treating diseases
linked to genomic variations

Detecting pathogens 
in the environment

Rapid surveillance of
disease outbreaks

Altering genomes to solve
fundamental challenges of life



Typical Genome Sequence Analysis

Sequencing 
extract small 
fragments of the 
original DNA 
sequence

 

DNA

Sequencing

readsRaw signals

Basecalling

ACGT

Read Mapping

Basecalling

convert raw signals 
to DNA bases

Deep Neural 
Networks

 

Read mapping
aligns reads to 
potential matching 
locations in the 
reference genome

 

reference

mapping pos.

Filtering



Significant barrier 

to genome analyses
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Data Movement Dominates Performance

MicroprocessorMain MemoryStorage (SSD/HDD)Sequencing 
Machine

◼ Data movement dominates performance and
is a major system energy bottleneck (accounting for 
40%-62%)

- Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
- Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” IISWC 2013 
- Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014

Data Movement

Single memory request consumes >160× - 800× more energy 
compared to performing an addition operation



Data analysis 

is performed 

far away from the data
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We need to orchestrate

algorithms and architectures 

to handle data well
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Genomic Analysis Steps in Memory

We need to design algorithms 

that fit processing-in-memory
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Processing Using Memory
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https://www.youtube.com/watch?v=HNd4skQrt6I 

https://www.youtube.com/watch?v=HNd4skQrt6I


Processing Near Memory

12https://www.youtube.com/watch?v=kpgLmX9sdcI 

https://www.youtube.com/watch?v=kpgLmX9sdcI


Using Real PIM System

13https://www.youtube.com/watch?v=TuVw_SKaTCo 

https://www.youtube.com/watch?v=TuVw_SKaTCo


Raw Signal Translation using PIM [MICRO '23]

◼ Taha Shahroodi, Gagandeep Singh, Mahdi Zahedi, Haiyu Mao, Joel Lindegger, 
Can Firtina, Stephan Wong, Onur Mutlu, and Said Hamdioui,
"Swordfish: A Framework for Evaluating Deep Neural Network-based 
Basecalling using Computation-In-Memory with Non-Ideal Memristors"
Proceedings of the 56th International Symposium on Microarchitecture (MICRO), Toronto, 
ON, Canada, November 2023.
[Slides (pptx) (pdf)]
[arXiv version]
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https://arxiv.org/pdf/2310.04366.pdf
https://arxiv.org/pdf/2310.04366.pdf
https://people.inf.ethz.ch/omutlu/pub/Swordfish_micro23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Swordfish_micro23-talk.pdf
https://arxiv.org/abs/2310.04366


Using PIM for filtering

◼ Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


GRIM-Filter in 3D-Stacked DRAM
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Details are in [Kim+, BMC Genomics 2018]

1. Highly Parallel mechanism

2. Memory Bound: Given the frequent accesses to memory, 
we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter  a good 
algorithm to be run in 3D-Stacked DRAM



AIM (PIM Sequence Alignment Framework)
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Safaa Diab, Amir Nassereldine, Mohammed Alser, Juan Gómez-Luna, 
Onur Mutlu, Izzat El Hajj 
“A Framework for High-throughput Sequence Alignment using Real Processing-in-
Memory Systems“
arXiv, 2022
[Source code]

https://arxiv.org/abs/2208.01243
https://arxiv.org/abs/2208.01243
https://github.com/safaad/aim


Accelerating Sequence-to-Graph Mapping
◼ Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. 

Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika MansouriGhiasi, 
Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, 
Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph 
and Sequence-to-Sequence Mapping"
Proceedings of the 49th International Symposium on Computer Architecture (ISCA), New 
York, June 2022.
[arXiv version]

18https://arxiv.org/pdf/2205.05883.pdf

https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
http://iscaconf.org/isca2022/
https://arxiv.org/pdf/2205.05883.pdf
https://arxiv.org/pdf/2205.05883.pdf


Sequence-to-Sequence (S2S) Mapping Sequence-to-Graph (S2G) Mapping 

Genome Sequence Analysis
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Sequence-to-graph mapping results in notable quality improvements. 

However, it is a more difficult computational problem, 

with no prior hardware design.

◼ Mapping the reads to a reference genome (i.e., read mapping) is a 

critical step in genome sequence analysis

Linear Reference: ACGTACGT                 

Read:    ACGG

Alternative Sequence: ACGGACGT

Alternative Sequence: ACGTTACGT

Alternative Sequence: ACG‒ACGT

Graph-based Reference:

Read: ACGG



SWBased on our analysis with GraphAligner and vg:

Observation 1: Alignment step is the bottleneck

Observation 2: Alignment suffers from high cache miss rates

Observation 3: Seeding suffers from the DRAM latency 

bottleneck

Observation 4: Baseline tools scale sublinearly

Analysis of State-of-the-Art Tools
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HW
Observation 5: Existing S2S mapping accelerators are unsuitable 

                                 for the S2G mapping problem

Observation 6: Existing graph accelerators are unable to handle 

                                 S2G alignment



SeGraM: First universal algorithm/hardware co-designed genomic 

mapping accelerator that can effectively and efficiently support: 

◼ Sequence-to-graph mapping 

◼ Sequence-to-sequence mapping

◼ Both short and long reads

SeGraM: First Graph Mapping Accelerator

21

Our Goal:

Specialized, high-performance, scalable, and low-cost 

algorithm/hardware co-design that alleviates bottlenecks in 

multiple steps of sequence-to-graph mapping



SeGraM Module (1 x per HBM2E stack)SeGraM Module (1 x per HBM2E stack)

High Bandwidth Memory (HBM2E) Stack

Host

. . .

Overall System Design of SeGraM
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. . .

High Bandwidth Memory (HBM2E) Stack
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High-Bandwidth Memory (HBM): Enables low-latency and highly-parallel memory access



Accelerating Basecalling + Read Mapping via PIM

◼ Haiyu Mao, Mohammed Alser, Mohammad Sadrosadati, Can Firtina, Akanksha Baranwal, 
Damla Senol Cali, Aditya Manglik, Nour Almadhoun Alserr, and Onur Mutlu,
"GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration of 
Basecalling and Read Mapping"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), 
Chicago, IL, USA, October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Lecture Video (25 minutes)]
[arXiv version]

23https://arxiv.org/pdf/2209.08600.pdf 

https://arxiv.org/pdf/2209.08600.pdf
https://arxiv.org/pdf/2209.08600.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/GenPIP_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenPIP_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/GenPIP_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/GenPIP_comparch22-lecture-slides.pdf
https://youtu.be/PWWBtrL60dQ?t=8290
https://arxiv.org/abs/2209.08600
https://arxiv.org/pdf/2209.08600.pdf


Overview: Two Limitations
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Multiple steps in genome analysis

Large data movement 
between multiple steps

A lot of
wasted computation 
done on data that is 

later discovered to be 
useless



Limitation 1: Large Data Movement
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Raw
Signals Basecalling Reads

Read quality
control

High-quality
reads

Read
mapping

Mapped
reads

Large data movement between genome analysis steps

3913 GB 546 GB 437 GB 382 GB

❑ Using a human dataset in [NC’19] as an example:

[NC'19] Rory Bowden, Robert W Davies, Andreas Heger, Alistair T Pagnamenta, Mariateresa de Cesare, Laura E Oikkonen, Duncan Parkes, Colin Freeman, Fatima Dhalla, Smita Y Patel, 
et al. Sequencing of human genomes with nanopore technology. Nature Communications, 2019. 



❑ Using a human dataset in [NC’19] as an example:

Limitation 2: Wasted Computation

26

Raw
Signals Basecalling Reads

Read quality
control

High-quality
reads

Read
mapping

Mapped
reads

Low-quality
reads

Unmapped
reads

A considerable amount of computation on useless data due to 
o Low-quality reads
o Unmapped reads

100% 79.5% 69.5%

20.5% 10%

[NC'19] Rory Bowden, Robert W Davies, Andreas Heger, Alistair T Pagnamenta, Mariateresa de Cesare, Laura E Oikkonen, Duncan Parkes, Colin Freeman, Fatima Dhalla, Smita Y Patel, 
et al. Sequencing of human genomes with nanopore technology. Nature Communications, 2019. 



State-of-the-art Works
❑ NVM-based PIM is an efficient technique to reduce data

movement by processing data using or near memory

o Reduce the data movement in a single genome analysis step

o Exacerbate the data movement overhead between analysis steps

27

Raw
Signals Basecalling Reads

Read quality
control

High-quality
reads

Read
mapping

Mapped
reads

No prior work tackles data movement between analysis steps 
and reduces useless computation

NVM-based PIM for
dot-product operation
[Helix, PACT’20] 

NVM-based PIM for
search and addition 
[PARC, ASPDAC’20]



Goal and Opportunities
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❑ We perform a study to quantify potential performance benefits

o Results are normalized to the performance of GPU

Goal: Efficiently accelerate the entire genome analysis pipeline 
while minimizing data movement and useless computation

NVM-based PIM 

accelerators for 

separate basecalling

and read mapping

no data movement

between the
accelerators of 
analysis steps

no data movement 

and 

no useless reads

(ideal case)



Overview: GenPIP
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❑ GenPIP: A fast and energy-efficient in-memory acceleration system for the 
Genome analysis PIPeline via tight integration of genome analysis steps

❑ GenPIP has two key techniques 

❑ GenPIP outperforms state-of-the-art software & hardware solutions using 
CPU, GPU, and optimistic PIM by 41.6×, 8.4x, and 1.4x, respectively.

o Early rejection (ER) 

▪ Timely stops the execution on useless data by predicting which 
reads will not be useful 

o Chunk-based pipeline (CP)

▪ Provides fine-grained collaboration of genome analysis steps



Key Results – Performance 
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GenPIP provides 41.6x, 8.4x, and 1.4x speedup over CPU, GPU, and optimistic PIM
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CPU GPU Optimistic PIM GenPIP

41.6x

8.4x

1.4x

Both CP and ER are critical to the speedup



Key Results – Energy Efficiency  
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GenPIP provides 32.8x, 20.8x, and 1.37x energy savings
over CPU, GPU, and optimistic PIM
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ER is especially critical to the energy efficiency



Accelerating Basecalling + Read Mapping via PIM

◼ Haiyu Mao, Mohammed Alser, Mohammad Sadrosadati, Can Firtina, Akanksha Baranwal, 
Damla Senol Cali, Aditya Manglik, Nour Almadhoun Alserr, and Onur Mutlu,
"GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration of 
Basecalling and Read Mapping"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), 
Chicago, IL, USA, October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Lecture Video (25 minutes)]
[arXiv version]

32https://arxiv.org/pdf/2209.08600.pdf 

https://arxiv.org/pdf/2209.08600.pdf
https://arxiv.org/pdf/2209.08600.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/GenPIP_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenPIP_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/GenPIP_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/GenPIP_comparch22-lecture-slides.pdf
https://youtu.be/PWWBtrL60dQ?t=8290
https://arxiv.org/abs/2209.08600
https://arxiv.org/pdf/2209.08600.pdf
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Can we process data closer 
to where it is stored?



In-Storage Genome Filtering [ASPLOS 2022] 

◼ Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid 
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata 
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing 
System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March 
2022.
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]
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https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8
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Genome Sequence Analysis

Computation overhead
 

Data movement overhead 

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Alignment

Data Movement from Storage

Storage
System
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Heuristics Accelerators Filters

 Computation overhead
 

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory
Storage
System

Data movement overhead 

✓

Accelerating Genome Sequence Analysis
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Storage
System

Key Idea

Non-matching reads
Do not have potential matching locations and can skip alignment

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

Exactly-matching reads
Do not need expensive approximate string matching during alignment
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GenStore

Computation overhead
 

Data movement overhead 

GenStore provides significant speedup (1.4x - 33.6x) and  
energy reduction (3.9x – 29.2x) at low cost

Filter reads that do not require alignment
inside the storage system

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

GenStore-Enabled
Storage
System

✓
✓



In-Storage Genome Filtering [ASPLOS 2022] 

◼ Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid 
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata 
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing 
System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March 
2022.
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]
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https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8


In-Storage Metagenomics [ISCA 2024] 

◼ Nika Mansouri Ghiasi, Mohammad Sadrosadati, Harun Mustafa, Arvid Gollwitzer, 
Can Firtina, Julien Eudine, Haiyu Mao, Joel Lindegger, Meryem Banu Cavlak, 
Mohammed Alser, Jisung Park, and Onur Mutlu,
"MegIS: High-Performance and Low-Cost Metagenomic Analysis with 
In-Storage Processing"
Proceedings of the 51st Annual International Symposium on Computer 
Architecture (ISCA), Buenos Aires, Argentina, July 2024.
[Slides (pptx) (pdf)]
[arXiv version]
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https://arxiv.org/pdf/2406.19113 

https://arxiv.org/pdf/2406.19113
https://arxiv.org/pdf/2406.19113
https://iscaconf.org/isca2024/
https://iscaconf.org/isca2024/
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pptx
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pdf
https://arxiv.org/abs/2406.19113
https://arxiv.org/pdf/2406.19113
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MegIS: Metagenomics In-Storage

• First in-storage system for end-to-end metagenomic analysis

• Idea: Cooperative in-storage processing for metagenomic analysis

- Hardware/software co-design between the storage system and host system
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MegIS’s Steps

A large database 
containing information

on many species 

Metagenomic sample
with species that 

are not known in advance

Preparation 
of Input Queries Q

u
er

y 
K

-m
er

s

…

GCTCA

CTCAT

TCATG

Presence/Absence 
Identification

V. cholerae

E. coli

SARS-CoV-2

Abundance
Estimation

Step 1

Step 2

Step 3
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MegIS Hardware-Software Co-Design
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MegIS Hardware-Software Co-Design
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MegIS
FTL

MegIS
Metadata

CntrlCntrl

Channel#NChannel#1

Data mapping scheme and Flash Translation Layer (FTL) 
• Specialize to the characteristics of metagenomic analysis

• Leverage the SSD’s full internal bandwidth

Step 1 Step 2 Step 3

Storage-aware algorithms
• Enable efficient 

access patterns to the SSD 

Lightweight in-storage accelerators 
• Minimize SRAM/DRAM buffer spaces 

needed inside the SSD

Data/computation flow coordination
• Reduce communication overhead
• Reduce #writes to flash chips

Task partitioning and mapping
•  Each step executes 

in its most suitable system 

ACCACC
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Evaluation: Speedup over the Software Baselines

MegIS provides significant speedup over both 

Performance-Optimized and Accuracy-Optimized baselines
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• On average across different input sets and SSDs
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MegIS provides significant energy reduction over 

the Performance-Optimized, Accuracy-Optimized, and PIM baselines
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In-Storage Metagenomics [ISCA 2024] 

• Nika Mansouri Ghiasi, Mohammad Sadrosadati, Harun Mustafa, Arvid Gollwitzer, Can 
Firtina, Julien Eudine, Haiyu Mao, Joel Lindegger, Meryem Banu Cavlak, Mohammed 
Alser, Jisung Park, and Onur Mutlu,
"MegIS: High-Performance and Low-Cost Metagenomic Analysis with In-Storage 
Processing"
Proceedings of the 51st Annual International Symposium on Computer 
Architecture (ISCA), Buenos Aires, Argentina, July 2024.
[Slides (pptx) (pdf)]
[arXiv version]
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https://arxiv.org/pdf/2406.19113 

https://arxiv.org/pdf/2406.19113
https://arxiv.org/pdf/2406.19113
https://iscaconf.org/isca2024/
https://iscaconf.org/isca2024/
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pptx
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pdf
https://arxiv.org/abs/2406.19113
https://arxiv.org/pdf/2406.19113


Conclusion

◼ System design for bioinformatics is a critical problem

❑ It has large scientific, medical, societal, personal implications

◼ This talk is about accelerating genomics by alleviating data 
movement bottleneck

◼ We covered various recent works on individual algorithms and 
pipelines

❑ PnM, PuM, ISP

◼ Many future opportunities exist

❑ Especially with new sequencing technologies

❑ Especially with new applications and use cases
48
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