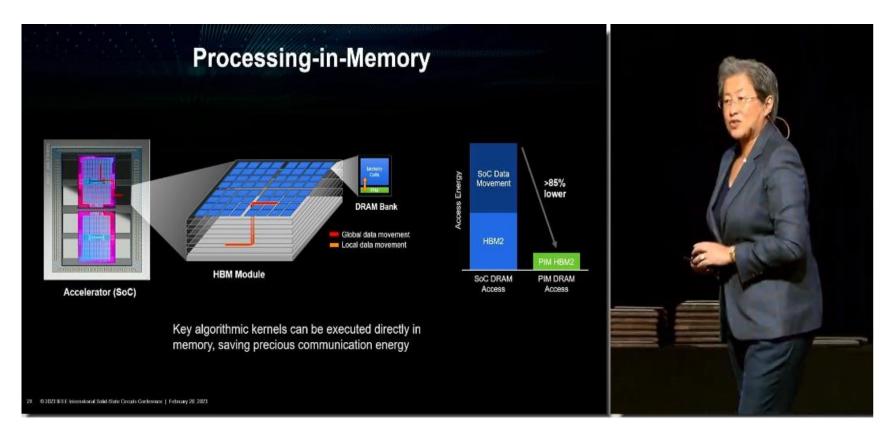


Introducing Real-world HBM-PIM Powered System for Memory-bound Applications

Samsung Electronics DRAM Design Team Sukhan Lee


Introducing HBM-PIM

Video: Samsung Electronics Semiconductor Unveils Cutting-edge Memory Technology to Accelerate Nextgeneration AI | Samsung Semiconductor Global (youtube)

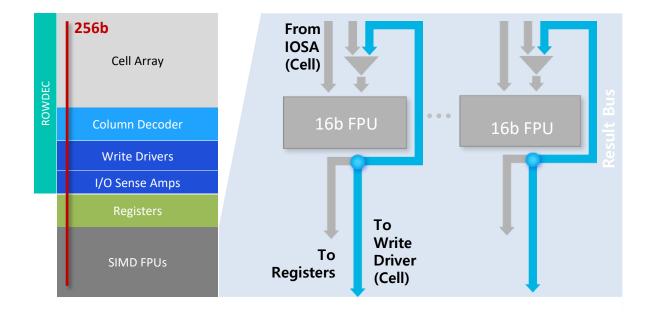
Introducing HBM-PIM

- AMD, access energy efficiency can be improved by executing the main algorithm kernel directly in memory
- By the presentation of Dr. Lisa Su from AMD, the energy reduction would be 85% by PIM compared to utilizing conventional HBM, and this reduction is more effective than our evaluation (~70%) because SEC did not include host-side energy reduction effect.

Contents

- Aquabolt-XL (HBM-PIM)
- HBM-PIM simulator
- HBM-PIM powered systems
 - AMD MI100-PIM
 - Xilinx U280-PIM
- Application 1: Deepspeech2 on MI50-PIM

- Application 2: RNN-T on U280-PIM
- Application 3: T5-MoE on MI100-PIM Cluster
- Application 4: GPT on PIM
- Wrap-up

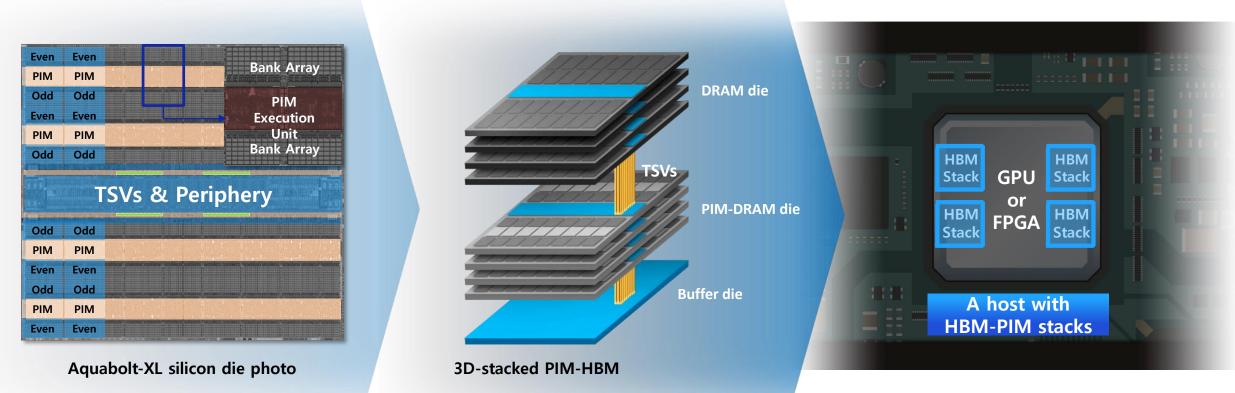

The Architecture of PIM DRAM-die and Aquabolt-XL [ISCA2021, ISSCC2021]

Aquabolt-XL HBM2-PIM Architecture

- PIM concept: Place a programmable PIM execution unit at the I/O boundary of a bank based on HBM2
 - Exploit bank-level parallelism: access multi banks/FPUs in a lockstep manner
 - Support both standard HBM and Aquabolt-XL modes for versatility
 - Minimize engineering cost of re-designing DRAM core to support PIM
- Drop-in Replacement: the same form-factor, timing parameters, and commands as Aquabolt product
 - Facilitate drop-in replacement of JEDEC-specification compliant Aquabolt HBM2 with Aquabolt-XL HBM-PIM for any system
- Passive device: DRAM RD/WR command triggers execution of a PIM instruction in PIM mode

- Preserving determinism – Host knows the status of DRAM

BANK	BANK	BANK	BANK	BANK	BANK	BANK	BANK
PIM UNIT	PIM UNIT	PIM UNIT	PIM UNIT	PIM UNIT	PIM UNIT	PIM UNIT	PIM UNIT
BANK	BANK	BANK	BANK	BANK	BANK	BANK	BANK
TSVs & Periphery							
BANK	BANK	BANK	BANK	BANK	BANK	BANK	BANK

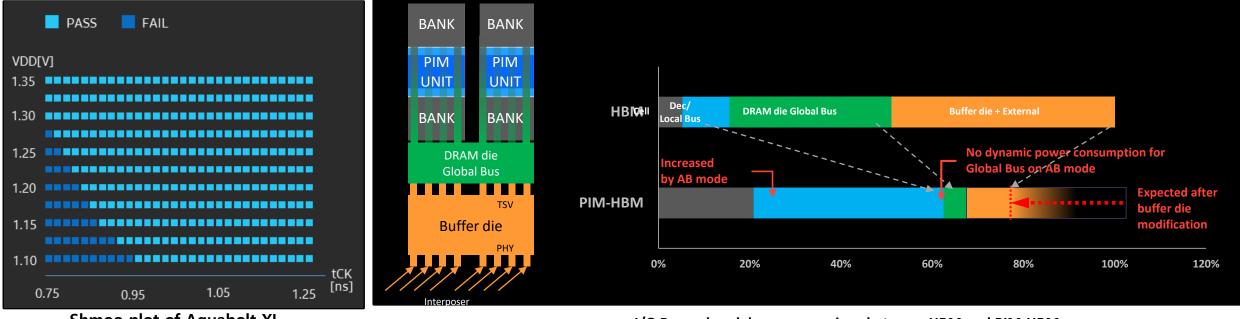


SAMSIING

Chip Implementation and Integration with systems

Implemented PIM by modifying a commercial HBM2 design (Aquabolt). Resulting HBM-PIM device codenamed Aquabolt-XL

- Integrated the fabricated Aquabolt-XL with an unmodified GPU and Xilinx FPGA
 - Validated fabricated HBM-PIM in system with unmodified HBM controller
 - Off-chip and on-chip PIM compute bandwidth is 1.23 TB/s and 4.92 TB/s, respectively.


Chip Evaluation

Aquabolt-XL passes commercial product engineering steps

• Operate at 2.4Ghz, without any shmoo hole

Power analysis

• On the heavy all-channel/bank PCU operation workload, it consumes 5.4% higher current than Aquabolt

Shmoo plot of Aquabolt-XL

I/O Power breakdown comparison between HBM and PIM-HBM

Reference: Aquabolt-XL HBM2-PIM, LPDDR5-PIM with in-memory process ing, and AXDIMM with acceleration buffer in *IEEE Micro*

HBM-PIM Simulator

HBM-PIM Simulator

- SEC opened HBM-PIM simulator to the public
- DRAMsim2-based "cycle-accurate" model for Aquabolt-XL
- It contains internal control register sets and procedures for PIM with HBM JEDEC specification
- GitHub URL: <u>https://github.com/SAITPublic/PIMSimulator</u> → Let me explain Readme.md

Product 🗸 Solutions 🗸 Open Sou	Irce Y Pricing Search	Sign in Sign up
SAIT (Samsung Advanced Inst A 26 followers O Korea, South O https://www.sait.san		
Overview ☐ Repositories 12 ☐ Projects Ŷ Packages	A People	
Pinned		People
MLPerf_Training_v2.0 Public About BERT model training implementation using more than 1000 A100 GPUs for MLPerf Training v2.0	Image: Comparison of the system Public This repository is a meta package to provide Samsung OneMCC (Memory Coupled Computing) infrastructure. Coupled Computing)	This organization has no public members. You must be a member to see who's a part of this organization.
● Python 🛣 2	Top languages	
д Repositories	● Python ● C++ ● Shell	
Q Find a repository		

HBM-Powered Systems

Introducing HBM-PIM Powered Board Systems

Need a host: HBM-PIM cannot perform any operation itself without a host

Thus, SEC collaborated with two system-board companies

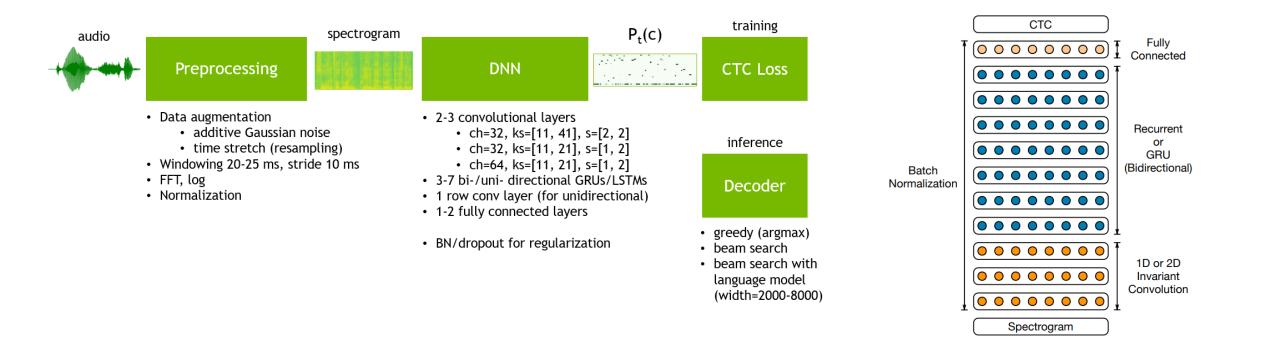
AMD MI50/100-PIM GPU

Xilinx Alveo U280 FPGA

HBM-PIM Powered Systems

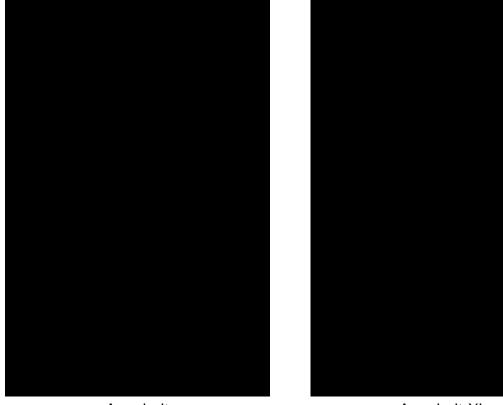
AMD MI50

- Based on Normal MI50/100 GPU system
- Consists of four HBM2 stacks
- GPU FP16 performance: 26.5 TFLOPS
- HBM-PIM bandwidth: 1024GB/s
- HBM-PIM internal bandwidth/performance: 4096GB/s (FP16) 4 TFLOPS
- Capacity: 24GB
- AMD MI100
 - Consists of four HBM2 stacks
 - GPU FP16 performance: 184.6 TFLOPS
 - HBM-PIM bandwidth: 1228GB/s
 - HBM-PIM internal bandwidth/performance: 4912GB/s (FP16) 4.9 TFLOPS
 - Capacity: 24GB
- Xilinx U280
 - Consists of two HBM2 stacks
 - HBM-PIM bandwidth: 460GB/s
 - HBM-PIM internal bandwidth/performance: 1840GB/s (FP16) 1.8 TFLOPS
 - Capacity: 12GB

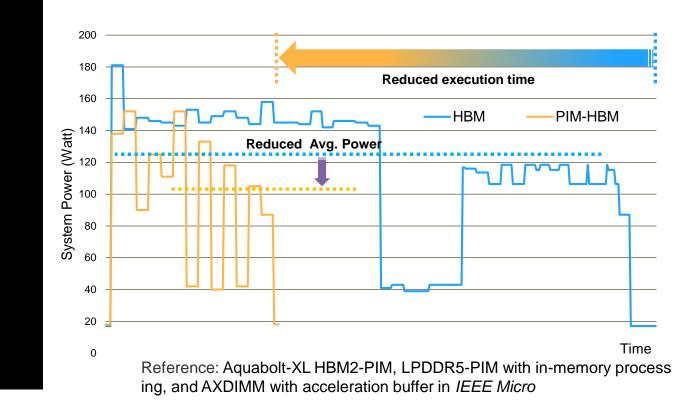

Pros: Use only software techniques Cons: GPU architecture limits the gain

Pros: Can show maximum performance gain Cons: Need to build (RTL) everything including the baseline

Application 1: Deepspeech on MI50-PIM [ISCA2021, Hotchips 2021]


DeepSpeech2

- Sequence to sequence speech recognition DNN algorithm from BAIDU
- From our observation, DS2 inference has matrix-vector multiplications for RNNs (GRU/LSTMs) on the single batch case and elementwise (BN: batch normalization) operations
- More than 80% of the layer consists of GEMV operation
- Because of these characteristics, DS2 is selected for the first accelerator target algorithm.

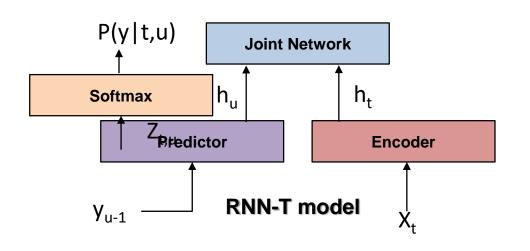


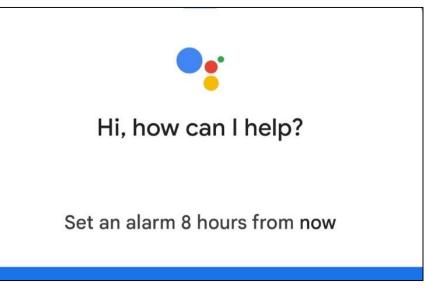
Demo and System Evaluation

- MI50-PIM shows 3.2x faster and 3.5x higher energy efficiency than the baseline (normal HBM)
- Working demo and real-time avg. system power analysis

DeepSpeech2 DEMO

Average system power of DeepSpeech2 over time

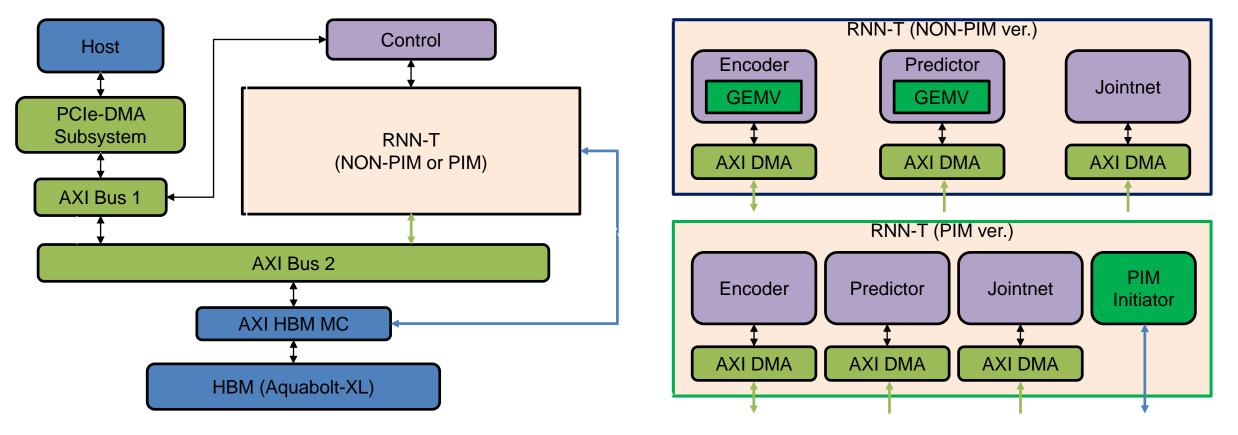

Aquabolt


Aquabolt-XL

Application 2: RNN-T on U280-PIM [FPGA2022, CES2022, SC2022]

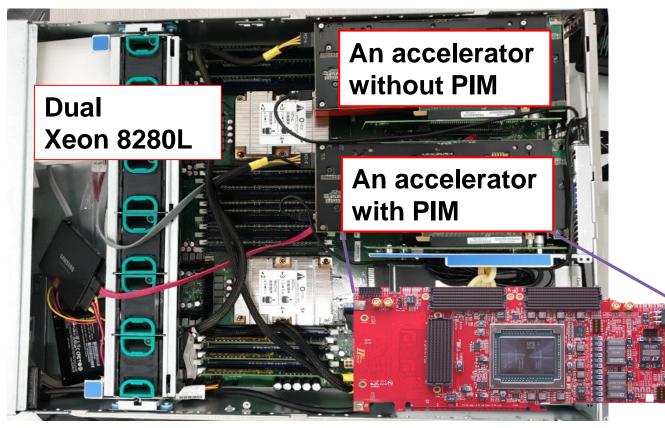
Demo Target Application: RNN-T

- Encoder : Five LSTM layers (hidden dimension: 1024) and one time stacking layer.
 - It receives speech audio data divided into 'n' time steps and calculates 'n/2' of encoder outputs.
- Predictor : Embedding and two LSTM layers (hidden dimension: 320).
 - It uses previous token (argmax character) as an input and generates the outputs.
- Joint network : Two FC and one ReLU layers.
 - It concatenates the encoder and predictor output and calculates the probability distribution of result characters.
- Main key layer : LSTM layer consumes 90.7% of the running time, and vector-matrix multiplication kernel uses 78.8%.



'Hey Google' Voice search

RNN-T Accelerator (FPGA) Top-level Design

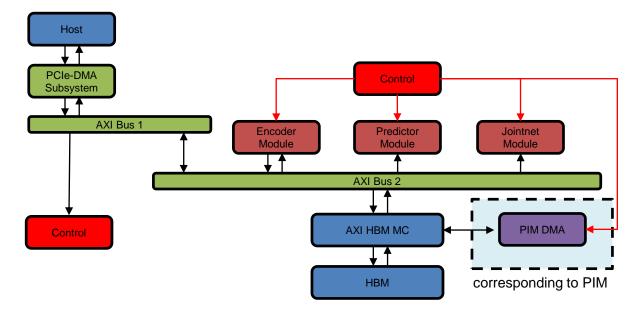

- We have designed two versions of RNN-T accelerator: PIM vs NONPIM
 - NONPIM: perform vector-matrix multiplication in LSTM in FPGA
 - PIM: perform vector-matrix multiplication in HBM-PIM
- PIM initiator (controller): DMA supporting in-order memory access + PIM instruction generator
- Activation function (Sigmoid, Tanh): LUT-based approximation

SAMSIING

Evaluation Setup

- Host CPU transfers data and control signals to the FPGA through PCIe 3.0 interface, and FPGA runs the entire network and notifies the host of the end of the execution.
- PIM FPGA uses 27.4% less power from its smaller logic and lower peak performance (FLOPS) as much as 4.9 W, but it consumes only 0.6 W more power on HBM2 due to PIM accelerations.

Xilinx Alveo U280 (SiP: VU47P + Two HBM-PIM)
--

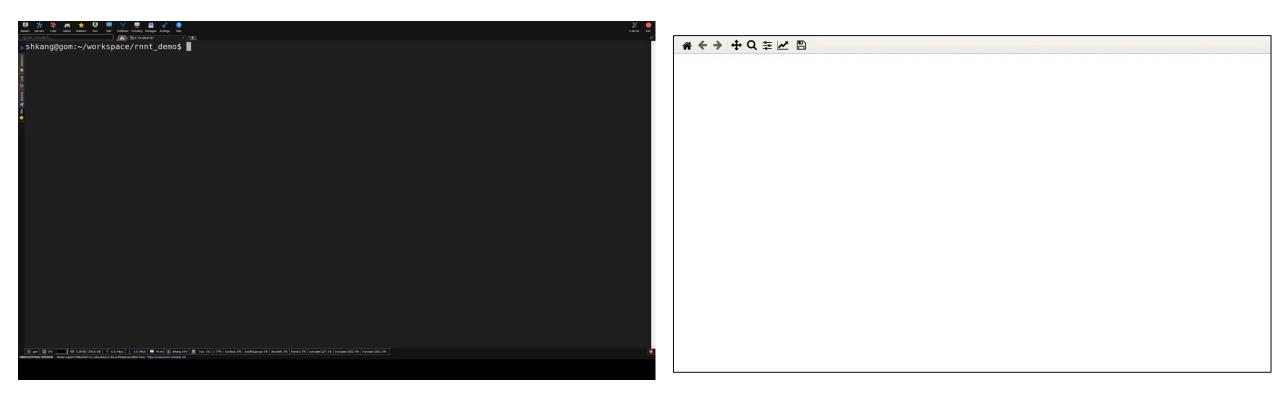

Description	NON-PIM	PIM	
Core Frequency	300 MHz	300 MHz	
HBM Datarate	1.8 Gbps	1.8 Gbps	
Memory	two HBM2s	two PIM-HBMs	
CLB LUTs	32,511 (12.20%)	29,266 (10.88%)	
CLB Registers	162,586 (6.24%)	157,772 (6.05%)	
DSPs	221 (2.45%)	188 (2.08%)	
Avg. FPGA power	23.223 W	18.224 W	
Avg. HBM power	4.9 W	5.5 W	
Peak DRAM BW	9.6 Gbps	4.8 Gbps	
Peak Perf.(FPGA)	256.5 GFLOPS	47.4 GFLOPS	

Demo Environment & Target application

- Target Application : RNN-Transducer (RNN-T)
 - Main Module : Encoder, Predictor, Jointnet
 - Key layer : LSTM layer consumes 90.7% of the running time, and vector-matrix multiplication kernel uses 78.8%

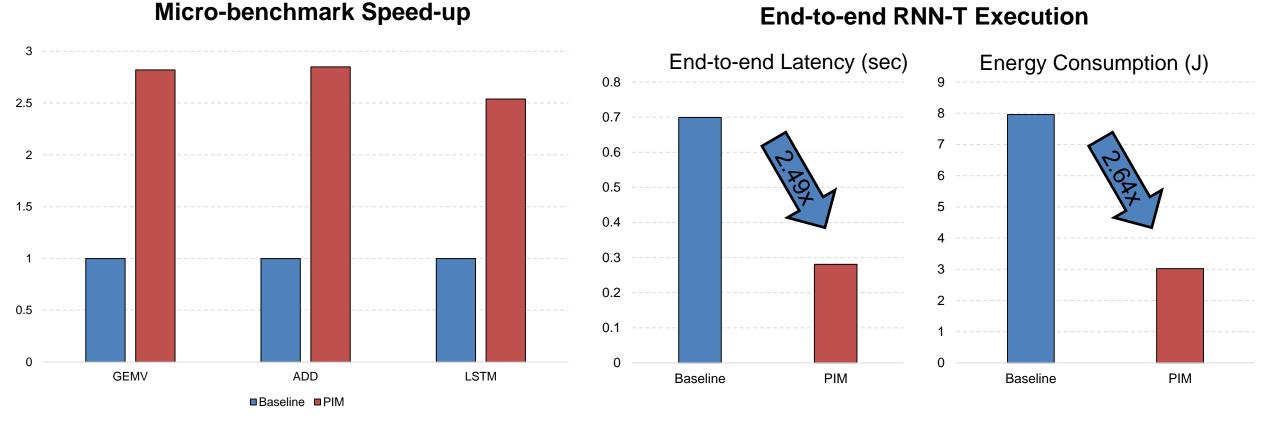
SAMSIING

- RNN-T PIM on U280
 - Demo Environment : Intel Xeon, Ubuntu 18.04, 2 * Xilinx Alveo U280 FPGA board (VU47, 2 HBM-PIM stacks)
 - Baseline system: RNN-T module @ 300Mhz without HBM-PIM
 - Target system : RNN-T module @ 300Mhz with HBM-PIM

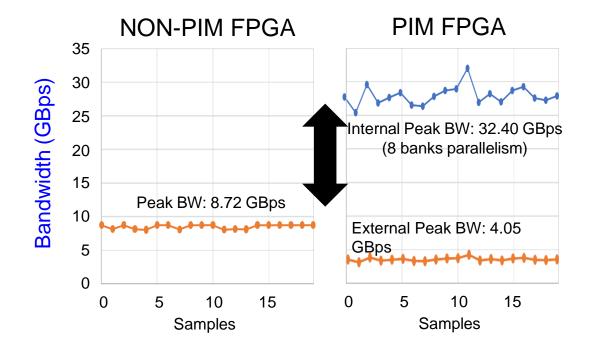


RNN-T FPGA System (rnnt_tiger) Structure

PIM Live Demo Demonstration


RNN-T PIM paper is accepted to FPGA 22

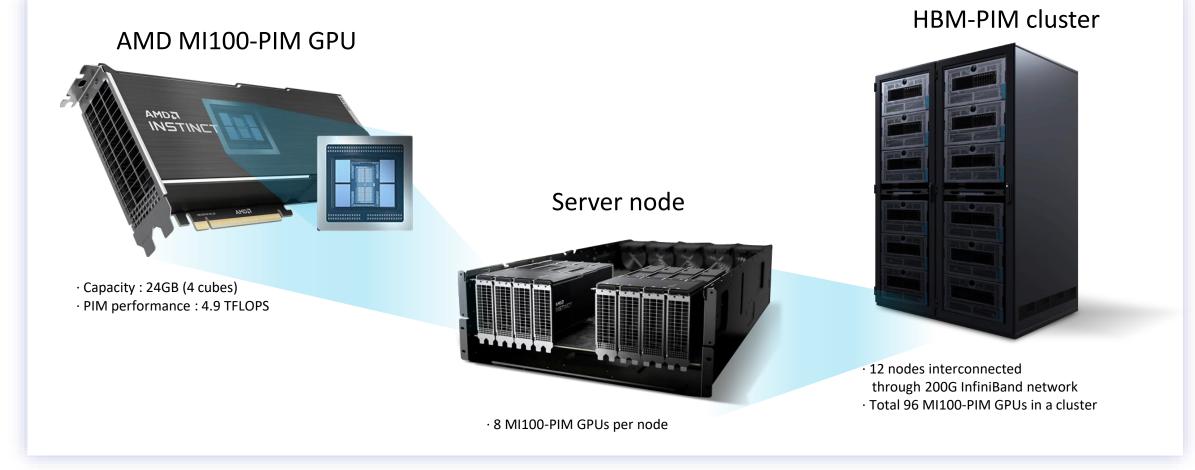
- "An FPGA-based RNN-T Inference Accelerator with PIM-HBM"


Performance Comparison

- PIM for Micro-benchmarks have performance gain up to 2.5 ~ 2.8x.
- PIM reduce the End-to-end RNN-T Execution Latency by up to 2.49x and the Energy Consumption by up to x2.64.

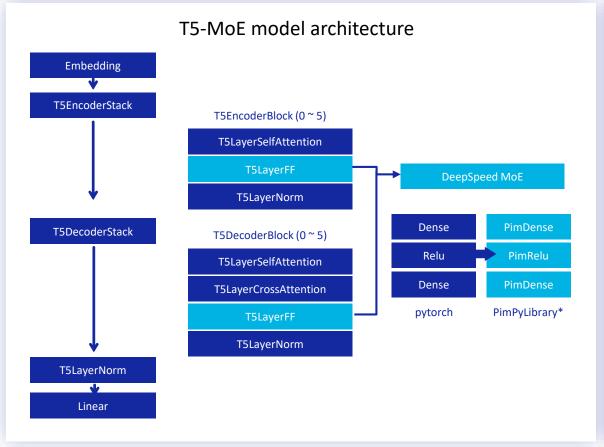
Performance Analysis & Comparison

- Performance
 - PIM FPGA runs 2.5 x faster than NONPIM FPGA
 - PIM FPGA (projected to A100's BW) runs 1.98x faster than the world record (A100 with tensor-RT)
- Accuracy: MLPerf-qualified
 - PIM accelerator presents an accuracy of 99.5% (8.09 WER) to the baseline (7.66 WER)

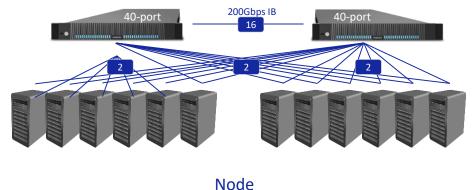


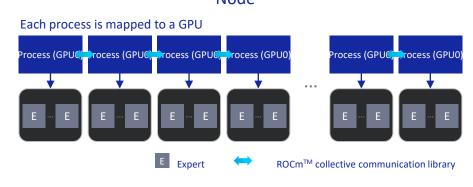
	Latency(ms)
PIM FPGA (1 pCH)	574.13
NON-PIM FPGA (1 pCH)	1422.38
PIM FPGA (32 pCHs, projected)	24.81
PIM FPGA (A100 BW, projected)	9.76
Intel Xeon Platinum 8280L	173.02
Nvidia A100 80GB w/o tensor-RT	82.63
Nvidia A100 80GB w/ tensor-RT	19.3

Application 3: T5-MoE on MI100-PIM Cluster [CES2022, SC2022, Memcon2023]

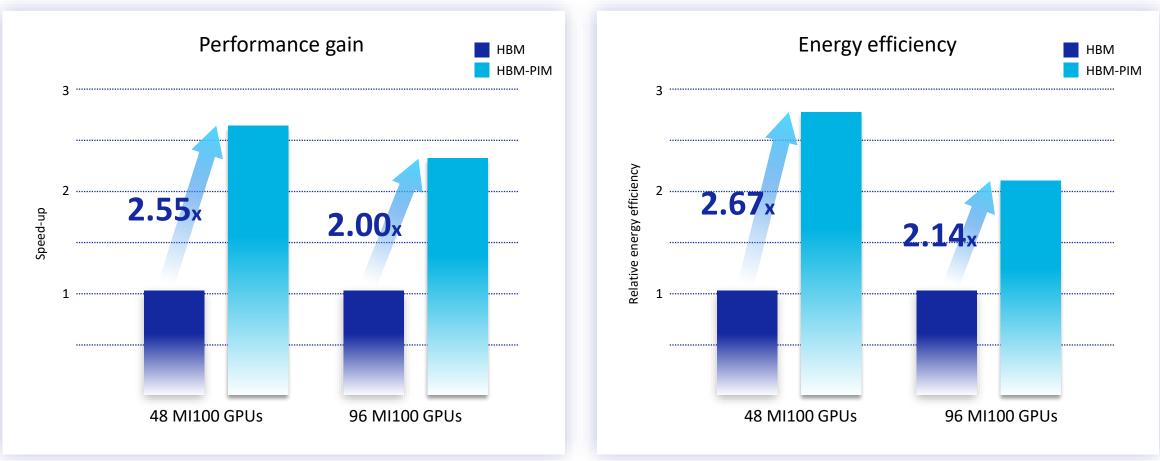

Architecture of HBM-PIM Cluster

- Installed 96 AMD MI100 GPUs fabricated with HBM-PIM
- Accelerate large-scale workloads with low latency and high energy efficiency


Workload : T5-Based MoE (Mixture of Expert) Model


- MoE model mostly uses GEMV functions
- DeepSpeed MoE replaces T5LayerFF layer to accelerate T5-large model with PIM
- The MoE layers are updated to use our PimPyLibrary* APIs

SAMSUNG



* PimPyLibrary is a python library for providing PIM-enabled AI operators. PIM SDK provides not only PimPyLibrary but also full SW stack for utilizing PIM

Performance and Energy Efficiency of T5-MoE Model

More than 2x greater performance compared to normal GPU clusters

■ Increases system energy efficiency by more than 2x over baseline

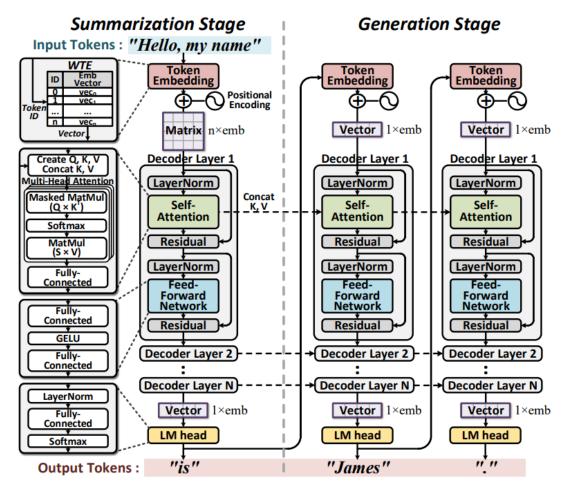
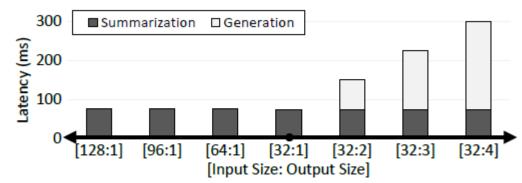
SAMSUNG

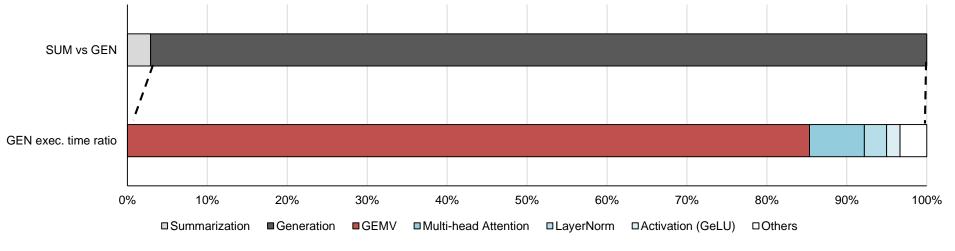
* Acknowledgement: Jaeyoung Heo and professor Sungjoo Yoo (Seoul National University) provided the idea of PIM acceleration for this workload

Application 4: GPT on U280-PIM

GPT-3 Generative Model Workload

- GPT model consists summarization and generation stage
- By increasing the size of the output sequences, the total portion of the generation gets higher

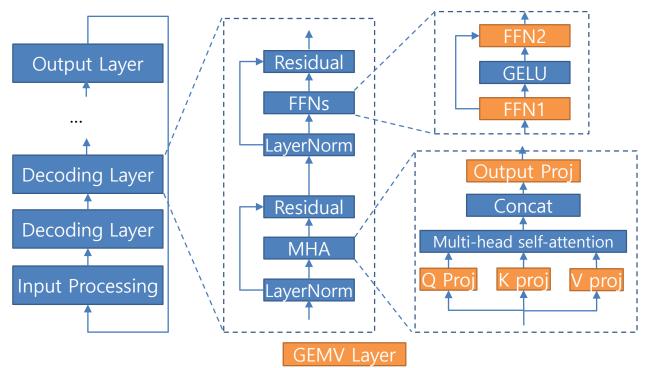




Figure 2. GPT-2 structure and illustration of summarization and generation stages in text generation.

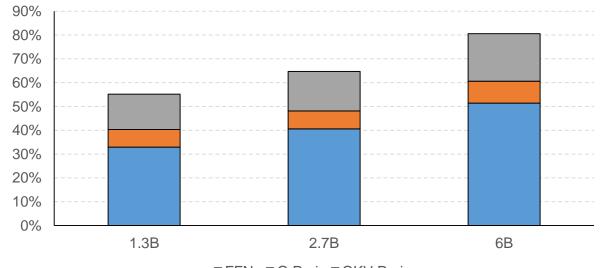
Source : DFX: A Low-latency Multi-FPGA Appliance for Accelerating Transformer-based Text Generation, MICRO 2022

GPT-3 Profiling Result on GPU

- We found two key observations from GPT-3 workload analysis with profiling tool
 - Unlike BERT, GPT-3's summarization portion is smaller than generation phase
 - As the weight size increases, the portion of GEMV in the total execution time also increases.
- Currently, multi-batch inference is difficult to use in GPT-3 due to size and service level agreement (SLA) latency requirements.
- From this, it seems that GPT-3 is a memory bound application (capacity and bandwidth).


Execution time breakdown of GPT (6B)

Nvidia A100, Fastertransformer, Input:Output = (64,64), Single batch


GPT-3 Latency for GEMV

- Memory-bound: vector-matrix multiplication takes most of execution times.
 As the model size increases, the linear layer O(H²) overwhelms attention layer O(HL).
 *H is hidden dimension, L is sequence length
- It's well-known that vector-matrix multiplication is a perfect fit for PIM technology

- Accelerating vector-matrix multiplication of projections and feed-forward networks.

GEMV portion based on GPU Profiling Results

■FFN ■O Proj ■QKV Proj

GPT-3 Acceleration with PIM Technology

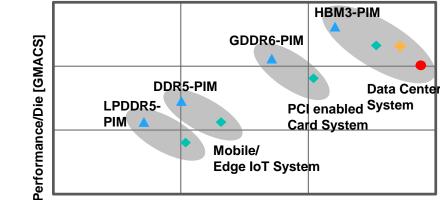
SEC is working on the implementation of GPT-3 Accelerator by GPU and FPGA, concurrently

- PIM is the key for small latency to keep SLA, with single batch GPT-3 inference
- The accelerator will be released this autumn.

Wrap-up

Lessons from HBM-PIM

- DRAM technology is <u>really</u> large and slow
- Custom design + EDA tool flow: best solution for limited resource but,
 - Handling EDA design flow in DRAM technology process is much complex than logic technology process
 - True hell: physical interface and timing analysis between legacy DRAM logic and EDA designed logic
- Energy efficiency with PIM is much better than our expectation
 - Most energy consumption comes from external channel
- Need specific protocol and interfaces for PIM
 - Deterministic interface has many pros for performance, but many engineering issues to use it for near-DRAM cell computing


Software is key to success

- "All that glitters is not gold" without software
- Near-DRAM cell Computing is meaningless if there is no "end to end performance gain" analysis

Our Efforts

Wider target applications

- PIM supporting multiple functions
 - GEMV from MAC, MAD
 - Activation functions
 - INT8/INT16/BF16/FP16/FP32/FP64 support

0.1

LPDDR5-

PIM

Prospective PCU supported data format

Mobile/

Calculator Power/Die [W]

Edge IoT System

SAMSUNG

PCI enabled System

Card System

1

🔺 INT8 INT16

FP16

FP32

10

Various DRAM types: Applying different trade-off bias for the other DRAM

- LPDDR: energy efficient first (reduce off-chip data transfer)
- HBM: boosting bandwidth first (bank, rank parallelism)

Our Efforts

New standards

- Command truth table for near-DRAM cell computing
 - Add multiple bank activation/precharge command, PIM read/write/load/store commands, PIM execution commands
- AC timing parameters
 - For practical implementation, several timing parameters are needed to redefined (such as tRCD at multibank activation)

Collaborate with academia and industry

- Brilliant ideas for PIM architecture
- On the next-generation memory devices
- Also targeting wider functions

Moreover..

END