ISCA 2023 Tutorial
Real-world Processing-in-Memory Systems for Modern Workloads

Hands-on Lab

Programming and Understanding a
Real Processing-in-Memory Architecture

Dr. Juan Gomez Luna
Professor Onur Mutlu

m Ziirich SA F A R '

Sunday, June 18, 2023

Real PIM Tutorial: Hands-on Lab

ISCA 2023 TUTORIAL: REAL-WORLD PROCESSING-IN-MEMORY SYSTEMS FOR MODERN WORKLOADS. -
JuNE 18, 2023 1/7

Programming and Understanding
a Real Processing-in-Memory Architecture

INSTRUCTORS: DR. JUAN GOMEZ LUNA, PROF. ONUR MUTLU

1. Introduction

In this lab, you will work hands-on with a real processing-in-memory (PIM) architecture. You will program
the UPMEM PIM architecture [1]2, 3, 4] for several workloads and will experiment with them. Your main
goals are (1) to become familiar with the UPMEM PIM system organization (as an example of real-world
memory-centric computing system), (2) to understand the UPMEM programming model and write your own
code, and (3) to understand the microarchitecture and instruction set architecture (ISA) of UPMEM’s PIM core
(called DRAM Processing Unit, DPU).

As we introduced in this tutorial, the UPMEM PIM architecture is composed of multiple DPUs (up to 2,560),
each of which has access to its own DRAM bank (called Main RAM, MRAM) and its own scratchpad memory
(called Working RAM, WRAM). You can find a full description of the UPMEM PIM system in [3, 4].

2. Your Task 0/4: Accessing the UPMEM PIM Server
UPMEM has granted us with remote access to servers with UPMEM DIMMs in a datacenter.

Our username is: ethisca23 and we are part of the group upmem0065 (ETH ISCA 2023 team). You can
download the SSH private key used to connect the machines from here: https://events.safari.ethz.
ch/isca-pim-tutorial/lib/exe/fetch.php?media=upmemcloud_ethisca23.zip (download and unzip!)

Put the following base configuration in your .ssh/config file:

Host upmemcloud*®
User ethisca23
Hostname %h.cloud.upmem.com
IdentityFile ~/.ssh/upmemcloud_ethisca23
StrictHostKeyChecking no
UserKnownHostsFile=/dev/null

You can connect to the booked machine anytime until 10am (Orlando time) on Monday, June 19, 2023.

The booked machine for this period is upmemcloud5 with ’20 UPMEM-P21’. You can connect to it by doing:
ssh upmemclouds, if you have the private SSH key and the .ssh/config file provided above.

The machine is installed with the latest and greatest UPMEM SDK version (also available on https://sdk.
upmem. com). As an introduction, the public demonstration program doing a trivial checksum in parallel on
one DPU can be run by doing:

git clone https://github.com/upmem/dpu_-demo.git

cd /dpu-demo/checksum

NR_DPUS=1 make test

Please read the entire Section 2|before you access the server.

In summary, the steps are:

1. Paste the configuration into .ssh/config.

2. Copy the private key upmemcloud_ethisca23 to your .ssh folder. You may need to change permissions,
as indicated in Section 2.1]

3. ssh upmemcloud5 from the terminal. Note that the server is already reserved for us. No booking is

SA FAR' needed.

How to Access the UPMEM PIM Server?

1. Paste the configuration into .ssh/config
Host upmemcloud*®
User ethisca23
Hostname %h.cloud.upmem.com
IdentityFile ~/.ssh/upmemcloud ethisca23
StrictHostKeyChecking no
UserKnownHostsFile=/dev/null

2. Copy the private key upmemcloud ethisca23to
your .ssh folder. You may need to change permissions

3. ssh upmemcloud5 from the terminal

SAFARI Access until 10am (Orlando time) on Monday, June 19, 2023

Template Files

T3 template

* Contain templates for o
taSk 1 and taSk) Dockerfile

= start_docker.bat

start_docker.sh

* Task 2’s template can be B

—_—

N dpu

used for the remaining e
tasks -

¢ app.c
v [support
common.h
params.h
timer.h
Makefile
v B task2
v B8 dpu
¢ task.c
v O3 host
¢ app.c
v 7 support
common.h
cyclecount.h
params.h
timer.h

Makefile

SAFARI

Task 1: CPU-DPU and DPU-CPU Transfers

* Use serial, parallel, and broadcast transfers

Your tasks are as follows:

1. Write a host program that exercises all types of data transfers between the host main memory and one
or multiple MRAM banks. Concretely, there are three types of data transfers [2]: (1) serial, (2) parallel,
and (3) broadcast. Serial and parallel transfers move data from main memory to the MRAM banks or
vice versa. Broadcast transfers can only happen from the main memory to the MRAM banks.

2. Evaluate all different types of data transfers for data transfers of size (1) 1MB, (2) 24MB, (3) 48MB per
DPU. Use different numbers of DPUs between 1 and 64.

Serial Transfers Parallel Transfers Broadcast Transfers

*dpu_copy._to(); * We push different buffers toffrom a DPU set in one *dpu _broadcast_to();

« dpu_copy_from(); transfer - Only CPU to DPU

* We transfer (part of) a buffer toffrom each DPU in the - Allbuffers need to be of the same size * We transfer the same buffer to all DPUs in the dpu_set.
dpu_set * First, prepare (dpu_prepare_xfer);

« DPU_MRAM HEAP POINTER NAME: Start of the then, push (dpu_push_xfer)
MRAM range that can be freely accessed by applications * Direction: prUASS e brosiast.ottp-sst, o wgEm it » Pl et ety s ggar(n] om v e)

- We do not allocate MRAM explicitly - DPU_XFER_TO_DPU
- DPU_XFER FROM DPU

inter to main memory

Offset within MRAM Pointer to main memory Transfer size

Offset within MRAM

SAFARI 73 SAFARI 74 SAFARI 75

SAFARI 5

Task 2: AXPY

Your tasks are as follows:

1. Write a DPU kernel that executes the AXPY operation (y = y + alpha X x) [5] on every element of
a vector. You have to (1) transfer two input vectors, Y and X, to the MRAM bank/s, (2) perform the
AXPY operation with a variable number of tasklets, (3) write the results to the output vector, Y, and (4)
transfer the output vector back to the host main memory.

* VAis a good reference code for this task

Programming a DPU Kernel (1)

* Vector addition

a Size of vector tile processed by a DPU
_t input_size_dpu_bytes = DPU_INPUT_ARGUMENTS.size;
_t input_size_dpu_bytes_transfer = DPU_INPUT_ARGUMENTS. transfer_size;

uint32 t base tasklet = tasklet id << BLOCK SIZE L0G2; MRAM addresses of arrays A and B
uint32_t mram_base_addr_A = (u 2_t) DPU_MRAM_HEAP_POINTER;
uint32_t mram_base_addr_B = (uint32_t) (DPU_MRAM_HEAP_POINTER + input_size_dpu_bytes_transfer);

T *cache_A = (T %) m c(BLOCK_SIZE); o
T xcache B = (T) m c(sLock_stze) ;| WRAM allocation

for(unsigned int byte_index = base_tasklet; byte_index < input_size_dpu_bytes; byte_index += BLOCK_SIZE * NR_TASKLETS){

>_t 1_size_bytes = (byte_index + BLOCK_SIZE >= input_size_dpu_bytes) ? (input_size_dpu_bytes - byte_index) : BLOCK_SIZE;

mram_ptr void constk)(mram_base_addr_A + byte_index), cache A, _size bytes); | MRAM-WRAM DMA
mram_ptr void const) (mram_base_addr_B + byte_index), cache B, 1_size_bytes); |transfers

vector_addition(cache_B, cache_A, 1_size_bytes >> DIV); | Vector addition (see next slide)
mram_write(cache_B, (_mram_ptr voidx) (mram_base_addr_B + byte_index), 1 _size_bytes); | WRAM-MRAM DMA transfer

}

return 0;

"SAFARI 87

SAFARI

Task 3: Operations and Datatypes

Your tasks are as follows:

1. Modify your AXPY DPU kernel to make it a vector addition (y = y+ z) and to support other operations
besides addition (i.e., subtraction, multiplication, division).

2. Evaluate the performance of your new kernel for different operations (addition, subtraction, multipli-
cation, division) and data types (char, short, int, long long int, float, double).

* You will observe significant variations in arithmetic
throughput for different operations and datatypes

SAFARI

Task 4: Vector Reduction

Your tasks are as follows:

1. Your vector reduction DPU kernel should have four different versions: (1) final reduction with a single
tasklet, (2) final tree-based reduction with barriers, (3) final tree-based reduction with handshakes, (4)
final reduction with mutexes.

* Performance differences due to the final reduction step

Final Reduction

* Asingle tasklet can perform the final reduction

x += BLOCK_SIZE * NR_TASKLETS){
uint32_t 1_size bytes = (byte_index + BLOCK_SIZE >= input_size_dpu_bytes) ? (input_size_dpu_bytes - byte_index) : BLOCK_SIZE;
constx) (mram_base_addr_A + byte_index), cache_A, 1_size_bytes);

size_bytes >> DIV); | Accumulate in a local sum

message [tasklet_id] = 1_count; | Copy local sum into WRAM

barrier_wait(&my_barrier);| Barrier synchronization

if (tasklet_.)){
#pragma
for (unsigned int each_tasklet = 1; each_tasklet < NR_TASKLETS; each_tasklet++){
message[0] += message[each_tasklet]; Sequential accumulation

result->t_count = message[0];

}

SAFARI 94

SAFARI 8

Real PIM Tutorial: Hands-on Lab

ISCA 2023 TUTORIAL: REAL-WORLD PROCESSING-IN-MEMORY SYSTEMS FOR MODERN WORKLOADS.
JUNE 18, 2023 7/7]

References
[1] UPMEM. UPMEM Software Development Kit (SDK). https://sdk.upmem.com, 2023.
[2] UPMEM. UPMEM User Manual. https://sdk.upmem.com/2023.1.0/, 2023.

[3] Juan Gémez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F. Oliveira, and Onur
Mutlu. Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory
Architecture. arXiv:2105.03814 [cs.AR], 2021.

[4] Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F. Oliveira, and Onur
Mutlu. Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-
in-Memory System. IEEE Access, 2022.

[5] Wikipedia. Basic Linear Algebra Subprograms. Level 1. https://en.wikipedia.org/wiki/Basic_
Linear_Algebra_Subprograms#Level 1, 2023.

[6] Wikipedia. Grayscale. https://en.wikipedia.org/wiki/Grayscale, 2023.

[7] LLVM. llvm-objdump - LLVM’s Object File Dumper. https://11lvm.org/docs/CommandGuide/
11vm-objdump.html, 2023.

[8] Compiler Explorer. Compiler Explorer for DPU. https://dpu.dev, 2023.
[9] Docker Inc. Docker. https://www.docker.com, 2023.
Appendix: Installing the UPMEM SDK

You can set up the UPMEM SDK on your machine to compile and run the code of this lab. If you have access
to a system with a supported Linux version, you can install the UPMEM SDK natively from the UPMEM
website [1]2]. If you encounter issues with the installation or do not have access to a system with a sup-
ported Linux version, you can use the Dockerfile we provide, along with the associated shell scripts for either
Windows or Unix-based host systems.

Using the Dockerfile

Using the Dockerfile requires Docker [9] to be installed on your system. With Docker installed, you can
execute the docker/start_docker. sh shell script (docker\start_docker.bat on Windows).

$ docker/start_docker.sh

The script will automatically build the Docker image (which will take a few minutes the first time) and then
start an interactive shell within it. The working directory of the host machine where the docker was started
will be mounted to the Docker (try running 1s inside the docker). The code for this lab can then be compiled
and executed using this interactive shell.

SAFARI

ISCA 2023 Tutorial
Real-world Processing-in-Memory Systems for Modern Workloads

Hands-on Lab

Programming and Understanding a
Real Processing-in-Memory Architecture

Dr. Juan Gomez Luna
Professor Onur Mutlu

m Ziirich SA F A R '

Sunday, June 18, 2023

