ISCA 2023 Tutorial Real-world Processing-in-Memory Systems for Modern Workloads

Accelerating Modern Workloads on a General-purpose PIM System

Dr. Juan Gómez Luna Professor Onur Mutlu

Sunday, June 18, 2023

Potential Barriers to Adoption of PIM

1. Applications & software for PIM

2. Ease of **programming** (interfaces and compiler/HW support)

3. **System** and **security** support: coherence, synchronization, virtual memory, isolation, communication interfaces, ...

4. **Runtime** and **compilation** systems for adaptive scheduling, data mapping, access/sharing control, ...

5. Infrastructures to assess benefits and feasibility

All can be solved with change of mindset

Benchmarking and Workload Suitability

PrIM Benchmarks

- Goal
 - A common set of workloads that can be used to
 - evaluate the UPMEM PIM architecture,
 - compare software improvements and compilers,
 - compare future PIM architectures and hardware
- Two key selection criteria:
 - Selected workloads from different application domains
 - Memory-bound workloads on processor-centric architectures
- 14 different workloads, 16 different benchmarks*

PrIM Benchmarks: Application Domains

Domain	Benchmark	Short name
Domain Dense linear algebra Sparse linear algebra Databases Data analytics Graph processing Neural networks Bioinformatics mage processing	Vector Addition	VA
Dense linear algebra	Matrix-Vector Multiply	GEMV
Sparse linear algebra	Sparse Matrix-Vector Multiply	SpMV
Databases	Select	SEL
DataDases	Unique	UNI
Data analytics	Binary Search	BS
Data analytics	Time Series Analysis	TS
Graph processing	Breadth-First Search	BFS
Neural networks	Multilayer Perceptron	MLP
Bioinformatics	Needleman-Wunsch	NW
Image processing	Image histogram (short)	HST-S
inage processing	Image histogram (large)	HST-L
	Reduction	RED
Darallal primitivas	Prefix sum (scan-scan-add)	SCAN-SSA
raiallei pillilluves	Prefix sum (reduce-scan-scan)	SCAN-RSS
	Matrix transposition	TRNS

Roofline Model

• Intel Advisor on an Intel Xeon E3-1225 v6 CPU

All workloads fall in the memory-bound area of the Roofline

PrIM Benchmarks: Diversity

- PrIM benchmarks are diverse:
 - Memory access patterns
 - Operations and datatypes
 - Communication/synchronization

Domain	Banahmarlı	Short name	Memory access pattern			Computation pattern		Communication/synchronization	
Doman	Benchmark		Sequential	Strided	Random	Operations	Datatype	Intra-DPU	Inter-DPU
Dongo lincor algobro	Vector Addition	VA	Yes			add	int32_t		
Dense intear aigebra	Matrix-Vector Multiply	GEMV	Yes			add, mul	uint32_t		
Sparse linear algebra	Sparse Matrix-Vector Multiply	SpMV	Yes		Yes	add, mul	float		
Databases	Select	SEL	Yes			add, compare	int64_t	handshake, barrier	Yes
Databases	Unique	UNI	Yes			add, compare	int64_t	handshake, barrier	Yes
Determination	Binary Search	BS	Yes		Yes	compare	int64_t		
Data analytics	Time Series Analysis	TS	Yes			add, sub, mul, div	int32_t		
Graph processing	Breadth-First Search	BFS	Yes		Yes	bitwise logic	uint64_t	barrier, mutex	Yes
Neural networks	Multilayer Perceptron	MLP	Yes			add, mul, compare	int32_t		
Bioinformatics	Needleman-Wunsch	NW	Yes	Yes		add, sub, compare	int32_t	barrier	Yes
Image processing	Image histogram (short)	HST-S	Yes		Yes	add	uint32_t	barrier	Yes
	Image histogram (long)	HST-L	Yes		Yes	add	uint32_t	barrier, mutex	Yes
Parallel primitives	Reduction	RED	Yes	Yes		add	int64_t	barrier	Yes
	Prefix sum (scan-scan-add)	SCAN-SSA	Yes			add	int64_t	handshake, barrier	Yes
	Prefix sum (reduce-scan-scan)	SCAN-RSS	Yes			add	int64_t	handshake, barrier	Yes
	Matrix transposition	TRNS	Yes		Yes	add, sub, mul	int64_t	mutex	

PrIM Benchmarks: Inter-DPU Communication

Domain	Benchmark	Short name	Memory access pattern Sequential Strided Random		Computation pattern Operations Datatype		Communication/synchronization Intra-DPU Inter-DPU		
Dense linear algebra	Vector Addition	VA	Yes			add	int32_t		
Dense micar algebra	Matrix-Vector Multiply	GEMV	Yes			add, mul	uint32 t		
Sparse linear algebra	Sparse Matrix-Vector Multiply	SpMV	Yes		Yes	add, mul	float		
Database	Select	SEL •	Yes			add, compare	int64_t	handshake, barrier	Yes
	-Unique U COMP					add, compare	int64_t	handshake, barrier	Yes
Data analytica	Binary Search	BS	Yes		Yes	compare	int64_t		
	Time Series Analysis	TS	Yes			add, sub, mul, div	int32_t		
Graph processing	Breadth-First Search	• BFS	Yes		Yes	bitwise logic	uint64_t	barrier, mutex	Yes
Neural networks	Multilayer Perceptron					add, mul, compare	int32_t		
Bioinformatics	Needleman, Wuhich , HSI	- S ,NMS	L, KED	Yes		add, sub, compare	int32_t	barrier	Yes
Image processing	Image histogram (short)	HST-S	Yes		Yes	add	uint32_t	barrier	Yes
	Image histogram (long) - CPU	J USBAINST	erses		Yes	add	uint32_t	barrier, mutex	Yes
	Reduction	RED	Yes	Yes		add	int64_t	barrier	Yes
Parallel primitives	PrefixSum (scin cui-ad)	O TAN-194 (ermeo	llate	resu	ts: add	int64_t	handshake, barrier	Yes
	Prefix sum (reduce-scan-scan)	SCAN-RSS	Yes			add	int64_t	handshake, barrier	Yes
	•MaBxFrSnsportionP, NV	V, SPCAN	-SSA, S	SCAN	RSS	add, sub, mul	int64_t	mutex	

• DPU-CPU and CPU-DPU transfers

PrIM Benchmarks

- 16 benchmarks and scripts for evaluation
- <u>https://github.com/CMU-</u> <u>SAFARI/prim-benchmarks</u>

CMU-	SAFARI / pri	m-benchmarks						۲
<> Code	 Issues 	Pull requests	➢ Actions	Projects	🕮 Wiki	I Security	🗠 Insights	Setting Setting
ę	main - 운1	I branch 🛛 🛇 0 tags				Go to file	Add file -	⊻ Code -
	Juan Gomez L	una PrIM first comr	nit			3de4b49 1	5 days ago 🕚	2 commits
	BFS		PrIM first o	commit			1	15 days ago
	BS		PrIM first o	commit			1	15 days ago
	GEMV		PrIM first o	commit			1	15 days ago
	HST-L		PrIM first o	commit			1	15 days ago
	HST-S		PrIM first o	commit			1	15 days ago
	MLP		PrIM first o	commit			1	15 days ago
	Microbenchma	rks	PrIM first o	commit			1	15 days ago
	NW		PrIM first o	commit			1	15 days ago
	RED		PrIM first o	commit			1	15 days ago
	SCAN-RSS		PrIM first c	commit			1	15 days ago
	SCAN-SSA		PrIM first o	commit			1	15 days ago
	SEL		PrIM first o	commit			1	15 days ago
	SpMV		PrIM first o	commit			1	15 days ago
	TRNS		PrIM first c	commit			1	15 days ago
	TS		PrIM first o	commit			1	15 days ago
	UNI		PrIM first o	commit			1	15 days ago
	VA		PrIM first c	commit			1	15 days ago
۵	LICENSE		PrIM first o	commit			1	15 days ago
۵	README.md		PrIM first o	commit			1	15 days ago
۵	run_strong_full	.ру	PrIM first c	commit			1	15 days ago
۵	run_strong_ran	ik.py	PrIM first c	commit			1	15 days ago
	run_weak.py		PrIM first o	commit			1	15 days ago

Outline

- Introduction
 - Accelerator Model
 - UPMEM-based PIM System Overview
- UPMEM PIM Programming
 - Vector Addition
 - CPU-DPU Data Transfers
 - Inter-DPU Communication
 - CPU-DPU/DPU-CPU Transfer Bandwidth
- DRAM Processing Unit
 - Arithmetic Throughput
 - WRAM and MRAM Bandwidth
- PrIM Benchmarks
 - Roofline Model
 - Benchmark Diversity
- Evaluation
 - Strong and Weak Scaling
 - Comparison to CPU and GPU
- Key Takeaways

Evaluation Methodology

- We evaluate the 16 PrIM benchmarks on two UPMEMbased systems:
 - 2,556-DPU system
 - 640-DPU system
- Strong and weak scaling experiments on the 2,556-DPU system
 - 1 DPU with different numbers of tasklets
 - 1 rank (strong and weak)
 - Up to <u>32</u> ranks

Strong scaling refers to how the execution time of a program solving a particular problem varies with the number of processors for a fixed problem size

Weak scaling refers to how the execution time of a program solving a particular problem varies with the number of processors for a fixed problem size per processor

Evaluation Methodology

- We evaluate the 16 PrIM benchmarks on two UPMEMbased systems:
 - 2,556-DPU system
 - 640-DPU system
- Strong and weak scaling experiments on the 2,556-DPU system
 - 1 DPU with different numbers of tasklets
 - 1 rank (strong and weak)
 - Up to 32 ranks
- Comparison of both UPMEM-based PIM systems to state-of-the-art CPU and GPU
 - Intel Xeon E3-1240 CPU
 - NVIDIA Titan V GPU

2,560-DPU System

- UPMEM-based PIM system with 20 UPMEM DIMMs of 16 chips each (40 ranks)
 - P21 DIMMs

- Dual x86 socket
 - UPMEM DIMMs coexist with regular DDR4 DIMMs
 - 2 memory controllers/socket (3 channels each)
 - 2 conventional DDR4 DIMMs on one channel of one controller

640-DPU System

- UPMEM-based PIM system with 10 UPMEM DIMMs of 8 chips each (10 ranks)
 - E19 DIMMs
 - x86 socket
 - 2 memory controllers (3 channels each)
 - 2 conventional DDR4 DIMMs on one channel of one controller

Datasets

• Strong and weak scaling experiments

Benchmark	Strong Scaling Dataset	Weak Scaling Dataset	MRAM-WRAM Transfer Sizes
VA	1 DPU-1 rank: 2.5M elem. (10 MB) 32 ranks: 160M elem. (640 MB)	2.5M elem./DPU (10 MB)	1024 bytes
GEMV	1 DPU-1 rank: 8192 × 1024 elem. (32 MB) 32 ranks: 163840×4096 elem. (2.56 GB)	1024×2048 elem./DPU (8 MB)	1024 bytes
SpMV	<i>bcsstk30</i> [253] (12 MB)	bcsstk30 [253]	64 bytes
SEL	1 DPU-1 rank: 3.8M elem. (30 MB) 32 ranks: 240M elem. (1.9 GB)	3.8M elem./DPU (30 MB)	1024 bytes
UNI	1 DPU-1 rank: 3.8M elem. (30 MB) 32 ranks: 240M elem. (1.9 GB)	3.8M elem./DPU (30 MB)	1024 bytes
BS	2M elem. (16 MB). 1 DPU-1 rank: 256K queries. (2 MB) 32 ranks: 16M queries. (128 MB)	2M elem. (16 MB). 256K queries./DPU (2 MB).	8 bytes
TS	256 elem. query. 1 DPU-1 rank: 512K elem. (2 MB) 32 ranks: 32M elem. (128 MB)	512K elem./DPU (2 MB)	256 bytes
BFS	loc-gowalla [254] (22 MB)	<i>rMat</i> [255] (\approx 100K vertices and 1.2 <i>M</i> edges per DPU)	8 bytes
MLP	3 fully-connected layers. 1 DPU-1 rank: 2K neurons (32 MB) 32 ranks: ≈160K neur. (2.56 GB)	3 fully-connected layers. 1K neur./DPU (4 MB)	1024 bytes
NW	1 DPU-1 rank: 2560 bps (50 MB), large/small sub-block= $\frac{2560}{\#DPUs}$ /2 32 ranks: 64K bps (32 GB), l./s.=32/2	512 bps/DPU (2MB), l./s.=512/2	8, 16, 32, 40 bytes
HST-S	1 DPU-1 rank: 1536 \times 1024 input image [256] (6 MB) 32 ranks: 64 \times input image	1536×1024 input image [256]/DPU (6 MB)	1024 bytes
HST-L	1 DPU-1 rank: 1536 \times 1024 input image [256] (6 MB) 32 ranks: 64 \times input image	1536×1024 input image [256]/DPU (6 MB)	1024 bytes
RED	1 DPU-1 rank: 6.3M elem. (50 MB) 32 ranks: 400M elem. (3.1 GB)	6.3M elem./DPU (50 MB)	1024 bytes
SCAN-SSA	1 DPU-1 rank: 3.8M elem. (30 MB) 32 ranks: 240M elem. (1.9 GB)	3.8M elem./DPU (30 MB)	1024 bytes
SCAN-RSS	1 DPU-1 rank: 3.8M elem. (30 MB) 32 ranks: 240M elem. (1.9 GB)	3.8M elem./DPU (30 MB)	1024 bytes
TRNS	1 DPU-1 rank: 12288 × 16 × 64 × 8 (768 MB) 32 ranks: 12288 × 16 × 2048 × 8 (24 GB)	$12288 \times 16 \times 1 \times 8 / \text{DPU}$ (12 MB)	128, 1024 bytes

The PrIM benchmarks repository includes all datasets and scripts used in our evaluation

<u> https://github.com/CMU-SAFARI/prim-benchmarks</u>

Strong Scaling: 1 DPU (I)

- Strong scaling experiments on 1 DPU
 - We set the number of tasklets to 1, 2, 4, 8, and 16
 - We show the breakdown of execution time:
 - DPU: Execution time on the DPU
 - Inter-DPU: Time for inter-DPU communication via the host CPU
 - CPU-DPU: Time for CPU to DPU transfer of input data
 - DPU-CPU: Time for DPU to CPU transfer of final results
 - Speedup over 1 tasklet

SAFARI

16

Strong Scaling: 1 DPU (II)

SAFAR

VA, GEMV, SpMV, SEL, UNI, TS, MLP, NW, HST-S, RED, SCAN-SSA (Scan kernel), SCAN-RSS (both kernels), and TRNS (Step 2 kernel), the best performing number of tasklets is 16

Speedups 1.5-2.0x as we double the number of tasklets from 1 to 8. Speedups 1.2-1.5x from 8 to 16, since the pipeline throughput saturates at 11 tasklets

KEY OBSERVATION 10

A number of tasklets greater than 11 is a good choice for most realworld workloads we tested (16 kernels out of 19 kernels from 16 benchmarks), as it fully utilizes the DPU's pipeline.

Strong Scaling: 1 DPU (III)

VA, GEMV, SpMV, BS, TS, MLP, HST-S do not use intra-DPU synchronization primitives In SEL, UNI, NW, RED, SCAN-SSA (Scan

In SEL, UNI, NW, RED, SCAN-SSA (Scan kernel), SCAN-RSS (both kernels), synchronization is lightweight

BFS, HST-L, TRNS (Step 3) use mutexes, which cause contention when accessing shared data structures

Strong Scaling: 1 DPU (IV)

SAFAR

VA, GEMV, SpMV, BS, TS, MLP, HST-S do not use intra-DPU synchronization primitives

In SEL, UNI, NW, RED, SCAN-SSA (Scan kernel), SCAN-RSS (both kernels), synchronization is lightweight

BFS, HST-L, TRNS (Step 3) use mutexes, which cause contention when accessing shared data structures

KEY OBSERVATION 11

Intensive use of **intra-DPU synchronization across tasklets (e.g., mutexes, barriers, handshakes) may limit scalability**, sometimes causing the best performing number of tasklets to be lower than 11.

Strong Scaling: 1 DPU (V)

SAFAR

SCAN-SSA (Add kernel) is not compute-intensive. Thus, performance saturates with less that 11 tasklets (recall STREAM ADD). BS shows similar behavior

KEY OBSERVATION 12

Most real-world workloads are in the compute-bound region of the DPU (all kernels except SCAN-SSA (Add kernel) and BS), i.e., the pipeline latency dominates the MRAM access latency.

Strong Scaling: 1 DPU (VI)

SAFARI

The amount of time spent on CPU-DPU and DPU-CPU transfers is low compared to the time spent on DPU execution

TRNS performs step 1 of the matrix transposition via the CPU-DPU transfer. Using small transfers (8 elements) does not exploit full CPU-DPU

bandwidth

KEY OBSERVATION 13

Transferring large data chunks from/to the host CPU is preferred for input data and output results due to higher sustained CPU-DPU/DPU-CPU bandwidths.

Strong Scaling: 1 Rank (I)

Strong scaling (su) 250 400 (Su) 500 DPU DPU DPU -O-Speedup Speedu experiments on 1 rank 0 200 E 150 on Time Time Time 30 sedup 40 p 30 Ū We set the number of _ **DPU-CPU** 2500 20 **CPU-DPU** tasklets to the best Inter-DPU 18 performing one DPU 16 \triangleleft Time (ms) 2000 16 Speedup #DPUs The number of DPUs 14 Speedup 1500 12 is 1, 4, 16, 64 ----Spee -O-Speed 10 40 np We show the Execution 1000 8 breakdown of 6 execution time: 500 4 P T \triangleleft **DPU:** Execution time #DPU #DPUs 2 on the DPU 0 0 Inter-DPU: Time for SE 400 350 Spe NW 4 16 64 inter-DPU 40 dnpəəds **#DPUs** communication via 20 ds the host CPU X 100 **CPU-DPU:** Time for CPU to DPU transfer MLP \triangleleft NW \triangleleft #DPUs of input data **DPU-CPU:** Time for (S 600 57.E+05 E 6.E+05 DPU to CPU transfer 40 np of final results 40 40 anpeed 30 Đ Speedup over 1 DPU #DPUs **#DPUs** #DPUs

Strong Scaling: 1 Rank (II)

SAFARI

VA, GEMV, SpMV, SEL, UNI, BS, TS, MLP, HST-S, HSTS-L, RED, SCAN-SSA (both kernel), SCAN-RSS (both kernels), and TRNS (both kernels) scale linearly with the number of DPUs

Scaling is sublinear for BFS and NW

BFS suffers load imbalance due to irregular graph topology

NW computes a diagonal of a 2D matrix in each iteration. More DPUs does not mean more parallelization in shorter diagonals.

23

Strong Scaling: 1 Rank (III)

SAFARI

VA, GEMV, SpMV, BS, TS, TRNS do not need inter-DPU synchronization

SEL, UNI, HST-S, HST-L, RED, SCAN-SSA, SCAN-RSS need inter-DPU synchronization but 64 DPUs still obtain the best performance

BFS, MLP, NW require heavy inter-DPU synchronization, involving DPU-CPU and CPU-DPU transfers

Strong Scaling: 1 Rank (IV)

VA, GEMV, TS, MLP, HST-S, HST-L, RED, SCAN-SSA, SCAN-RSS, TRNS use parallel transfers.

CPU-DPU and DPU-CPU transfer times decrease as we increase the number of DPUs

- BS, NW use parallel transfers but do not reduce transfer times:
- BS transfers a complete array to all DPUs.
- NW does not use all DPUs in all iterations

SpMV, SEL, UNI, BFS cannot use parallel transfers, as the transfer size per DPU is not fixed

PROGRAMMING RECOMMENDATION 5

Parallel CPU-DPU/DPU-CPU transfers inside a rank of DPUs are recommended for realworld workloads when all transferred buffers are of the same size.

Strong Scaling: 32 Ranks (I)

- Strong scaling experiments on 32 rank
 - We set the number of tasklets to the best performing one
 - The number of DPUs is 256, 512, 1024, 2048
 - We show the breakdown of execution time:
 - DPU: Execution time on the DPU
 - Inter-DPU: Time for inter-DPU communication via the host CPU
 - We do not show CPU-DPU/DPU-CPU transfer times
 - Speedup over 256 DPUs

SAFARI

26

Strong Scaling: 32 Ranks (II)

SAFARI

VA, GEMV, SEL, UNI, BS, TS, MLP, HST-S, HSTS-L, RED, SCAN-SSA (both kernel), SCAN-RSS (both kernels), and TRNS (both kernels) scale linearly with the number of DPUs

SpMV, BFS, NW do not scale linearly due to load imbalance

KEY OBSERVATION 14

Load balancing across DPUs ensures linear reduction of the execution time spent on the DPUs for a given problem size, when all available DPUs are used (as observed in strong scaling experiments).

Strong Scaling: 32 Ranks (III)

SAFARI

SEL, UNI, HST-S, HST-L, RED only need to merge final results

KEY OBSERVATION 15

The overhead of merging partial results from DPUs in the host CPU is tolerable across all PrIM benchmarks that need it.

BFS, MLP, NW, SCAN-SSA, SCAN-RSS have more complex communication

KEY OBSERVATION 16

Complex synchronization across DPUs (i.e., inter-DPU synchronization involving twoway communication with the host CPU) imposes significant overhead, which limits scalability to more DPUs.

Weak Scaling: 1 Rank

KEY OBSERVATION 17

Equally-sized problems assigned to different DPUs and little/no inter-DPU synchronization lead to linear weak scaling of the execution time spent on the DPUs (i.e., constant execution time when we increase the number of DPUs and the dataset size accordingly).

KEY OBSERVATION 18

Sustained bandwidth of parallel CPU-DPU/DPU-CPU transfers inside a rank of DPUs increases sublinearly with the number of DPUs.

CPU/GPU: Evaluation Methodology

- Comparison of both UPMEM-based PIM systems to state-of-the-art CPU and GPU
 - Intel Xeon E3-1240 CPU
 - NVIDIA Titan V GPU
- We use state-of-the-art CPU and GPU counterparts of PrIM benchmarks
 - <u>https://github.com/CMU-SAFARI/prim-benchmarks</u>
- We use the largest dataset that we can fit in the GPU memory
- We show overall execution time, including DPU kernel time and inter DPU communication

CPU/GPU: Performance Comparison (I)

The 2,556-DPU and the 640-DPU systems outperform the CPU for all benchmarks except SpMV, BFS, and NW

The 2,556-DPU and the 640-DPU are, respectively, 93.ox and 27.9x faster than the CPU for 13 of the PrIM benchmarks

CPU/GPU: Performance Comparison (II)

The 2,556-DPU outperforms the GPU for 10 PrIM benchmarks with an average of 2.54x

The performance of the 640-DPU is within 65% the performance of the GPU for the same 10 PrIM benchmarks

CPU/GPU: Performance Comparison (III)

KEY OBSERVATION 19

The UPMEM-based PIM system can outperform a state-of-the-art GPU on workloads with three key characteristics:

- Streaming memory accesses 1.
- No or little inter-DPU synchronization 2.
- No or little use of integer multiplication, integer division, or floating 3. point operations

These three key characteristics make a workload potentially suitable to the UPMEM PIM architecture.

CPU/GPU: Energy Comparison (I)

The 640-DPU system consumes on average 1.64x less energy than the CPU for all 16 PrIM benchmarks

For 12 benchmarks, the 640-DPU system provides energy savings of 5.23x over the CPU

CPU/GPU: Energy Comparison (II)

KEY OBSERVATION 20

The UPMEM-based PIM system provides large energy savings over a state-of-the-art CPU due to higher performance (thus, lower static energy) and less data movement between memory and processors. The UPMEM-based PIM system provides energy savings over a state-of-

the-art CPU/GPU on workloads where it outperforms the CPU/GPU. This is because the source of both performance improvement and energy savings is the same: the significant reduction in data movement between the memory and the processor cores, which the UPMEM-based PIM system can provide for PIM-suitable workloads.

Outline

- Introduction
 - Accelerator Model
 - UPMEM-based PIM System Overview
- UPMEM PIM Programming
 - Vector Addition
 - CPU-DPU Data Transfers
 - Inter-DPU Communication
 - CPU-DPU/DPU-CPU Transfer Bandwidth
- DRAM Processing Unit
 - Arithmetic Throughput
 - WRAM and MRAM Bandwidth
- PrIM Benchmarks
 - Roofline Model
 - Benchmark Diversity
- Evaluation
 - Strong and Weak Scaling
 - Comparison to CPU and GPU

Key Takeaways

Operational Intensity (OP/B)

The throughput saturation point is as low as ¼ OP/B, i.e., 1 integer addition per every 32-bit element fetched

KEY TAKEAWAY 1

The UPMEM PIM architecture is fundamentally compute bound. As a result, **the most suitable workloads are memory-bound.**

KEY TAKEAWAY 2

The most well-suited workloads for the UPMEM PIM architecture use no arithmetic operations or use only simple operations (e.g., bitwise operations and integer addition/subtraction).

KEY TAKEAWAY 3

The most well-suited workloads for the UPMEM PIM architecture require little or no communication across DPUs (inter-DPU communication).

KEY TAKEAWAY 4

• UPMEM-based PIM systems **outperform state-of-the-art CPUs in terms of performance** (by 23.2× on 2,556 DPUs for 16 PrIM benchmarks) **and energy efficiency on most of PrIM benchmarks**.

• UPMEM-based PIM systems **outperform state-of-the-art GPUs on a majority of PrIM benchmarks** (by 2.54× on 2,556 DPUs for 10 PrIM benchmarks), and the outlook is even more positive for future PIM systems.

• UPMEM-based PIM systems are **more energy-efficient than state**of-the-art CPUs and GPUs on workloads that they provide performance improvements over the CPUs and the GPUs.

Understanding a Modern PIM Architecture

Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

JUAN GÓMEZ-LUNA¹, IZZAT EL HAJJ², IVAN FERNANDEZ^{1,3}, CHRISTINA GIANNOULA^{1,4}, GERALDO F. OLIVEIRA¹, AND ONUR MUTLU¹

¹ETH Zürich

²American University of Beirut

³University of Malaga

⁴National Technical University of Athens

Corresponding author: Juan Gómez-Luna (e-mail: juang@ethz.ch).

https://arxiv.org/pdf/2105.03814.pdf https://github.com/CMU-SAFARI/prim-benchmarks

Benchmarking Memory-Centric Computing Systems: Analysis of Real Processing-in-Memory Hardware

Juan Gómez-Luna ETH Zürich

Izzat El Hajj American University of Beirut

University of Malaga

Ivan Fernandez Christina Giannoula Geraldo F. Oliveira Onur Mutlu National Technical ETH Zürich ETH Zürich University of Athens

https://arxiv.org/pdf/2110.01709.pdf

https://github.com/CMU-SAFARI/prim-benchmarks

Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture

Juan Gómez-Luna¹ Izzat El Hajj² Ivan Fernandez^{1,3} Christina Giannoula^{1,4} Geraldo F. Oliveira¹ Onur Mutlu¹

¹ETH Zürich ²American University of Beirut ³University of Malaga ⁴National Technical University of Athens

https://arxiv.org/pdf/2105.03814.pdf

https://github.com/CMU-SAFARI/prim-benchmarks

PrIM Repository

- All microbenchmarks, benchmarks, and scripts
- <u>https://github.com/CMU-SAFARI/prim-benchmarks</u>

G CMU-SAFARI / prim-benchma	rks			 Unwatc 	ch ▼ 2 🛱	Star 2 Fork 1	
<> Code · Issues · Dull reques	ts 🕑 Actions	III Projects	🕮 Wiki	Security	✓ Insights	诊 Settings	
গ main ২ prim-benchmarks / REA	DME.md					Go to file	
Juan Gomez Luna PrIM first comm	it			Late	st commit 3de4b4	9 9 days ago 🕚 History	
२२ 1 contributor							
i≘ 168 lines (132 sloc) 5.79 KB					Rav	v Blame 🖵 🖉 ปี	
PrIM (Processing-In-Memory Benchmarks) PrIM is the first benchmark suite for a real-world processing-in-memory (PIM) architecture. PrIM is developed to evaluate, analyze, and characterize the first publicly-available real-world processing-in-memory (PIM) architecture, the UPMEM PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip. PrIM provides a common set of workloads to evaluate the UPMEM PIM architecture with and can be useful for programming, architecture and system researchers all alike to improve multiple aspects of future PIM hardware and software. The workloads have different characteristics, exhibiting heterogeneity in their memory access patterns, operations and data types, and communication patterns. This repository also contains baseline CPU and GPU implementations of PrIM benchmarks for comparison purposes.							
Prim also includes a set of microber memory bandwidth	ιchmarks can be ι	used to assess	various arcł	nitecture limits	such as compu	ite throughput and	

Machine Learning Training

An Experimental Evaluation of Machine Learning Training on a Real Processing-in-Memory System

<u>Juan Gómez Luna</u>, Yuxin Guo, Sylvan Brocard, Julien Legriel, Remy Cimadomo, Geraldo F. Oliveira, Gagandeep Singh, Onur Mutlu

> https://arxiv.org/pdf/2207.07886.pdf https://github.com/CMU-SAFARI/pim-ml

juang@ethz.ch

ISPASS 2023 Version

Presented at ISPASS 2023

Evaluating Machine Learning Workloads on Memory-Centric Computing Systems

Juan Gómez-Luna¹ Yuxin Guo¹ Sylvan Brocard² Julien Legriel² Remy Cimadomo² Geraldo F. Oliveira¹ Gagandeep Singh¹ Onur Mutlu¹ ¹ETH Zürich ²UPMEM

https://people.inf.ethz.ch/omutlu/pub/MLonUPMEM-PIM_ispass23.pdf Source code: https://github.com/CMU-SAFARI/pim-ml https://youtu.be/60pkaI5AeM4

Executive Summary

- Training machine learning (ML) algorithms is a computationally expensive process, frequently memory-bound due to repeatedly accessing large training datasets
- Memory-centric computing systems, i.e., with Processing-in-Memory (PIM) capabilities, can alleviate this data movement bottleneck
- Real-world PIM systems have only recently been manufactured and commercialized
 - UPMEM has designed and fabricated the first publicly-available real-world PIM architecture
- Our goal is to understand the potential of modern general-purpose PIM architectures to accelerate machine learning training
- Our main contributions:
 - PIM implementation of several classic machine learning algorithms: linear regression, logistic regression, decision tree, K-means clustering
 - Workload characterization in terms of quality, performance, and scaling
 - Comparison to their counterpart implementations on processor-centric systems (CPU and GPU)
 - PIM version of DTR is 27x / 1.34x faster than the CPU / GPU version, respectively
 - PIM version of KME is 2.8x / 3.2x faster than the CPU / GPU version, respectively
 - Source code: <u>https://github.com/CMU-SAFARI/pim-ml</u>
- Experimental evaluation on a real-world PIM system with 2,524 PIM cores @ 425 MHz and 158 GB of DRAM memory
- Key observations, takeaways, and recommendations for ML workloads on general-purpose PIM systems

Outline

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

Evaluation

Quality Metrics

Analysis of PIM Kernels

Performance Scaling

Comparison to CPU and GPU

Machine Learning Workloads

 Machine learning training with large amounts of data is a computationally expensive process, which requires many iterations to update an ML model's parameters

- Frequent data movement between memory and processing elements to access training data
- The amount of computation is not enough to amortize the cost of moving training data to the processing elements
 - Low arithmetic intensity
 - Low temporal locality
 - Irregular memory accesses

Machine Learning Workloads: Our Goal

- Our goal is to study and analyze how real-world general-purpose PIM can accelerate ML training
- Four representative ML algorithms: linear regression, logistic regression, decision tree, K-means

 Roofline model to quantify the memory boundedness of CPU versions of the four workloads

All workloads fall in the memory-bound area of the Roofline

Outline

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

Evaluation

Quality Metrics

Analysis of PIM Kernels

Performance Scaling

Comparison to CPU and GPU

Processing-in-Memory (PIM)

- PIM is a computing paradigm that advocates for memorycentric computing systems, where processing elements are placed near or inside the memory arrays
- Real-world PIM architectures are becoming a reality
 - UPMEM PIM, Samsung HBM-PIM, Samsung AxDIMM, SK Hynix AiM, Alibaba HB-PNM
- These PIM systems have some common characteristics:
 - 1. There is a host processor (CPU or GPU) with access to (1) standard main memory, and (2) PIM-enabled memory
 - 2. PIM-enabled memory contains multiple PIM processing elements (PEs) with high bandwidth and low latency memory access
 - 3. PIM PEs run only at a few hundred MHz and have a small number of registers and small (or no) cache/scratchpad
 - 4. PIM PEs may need to communicate via the host processor

A State-of-the-Art PIM System

- In our work, we use the UPMEM PIM architecture
 - General-purpose processing cores called DRAM Processing Units (DPUs)
 - Up to 24 PIM threads, called *tasklets*
 - <u>32-bit integer arithmetic, but multiplication/division are</u> emulated*, as well as floating-point operations
 - 64-MB DRAM bank (MRAM), 64-KB scratchpad (WRAM)

2,560-DPU UPMEM PIM System

- 20 UPMEM DIMMs of 16 chips each (40 ranks)
- Dual x86 socket

- UPMEM DIMMs coexist with regular DDR4 DIMMs
 - 2 memory controllers/socket (3 channels each)
 - 2 conventional DDR4 DIMMs on one channel of one controller

Outline

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

Evaluation

Quality Metrics

Analysis of PIM Kernels

Performance Scaling

Comparison to CPU and GPU

ML Training Workloads

- Memory access patterns
- Operations and datatypes
- Communication/synchronization

Learning	arning Application Algo		Algorithm Short name	Memory access pattern			Computation pattern		Communication/synchronization	
approach	Application	Algorithm	Short hame	Sequential	Strided	Random	Operations	Datatype	Intra PIM Core	Inter PIM Core
Supervised	Regression	Linear Regression	LIN	Yes	No	No	mul, add	float, int32_t	barrier	Yes
	Classification	Logistic Regression	LOG	Yes	No	No	mul, add, exp, div	float, int32_t	barrier	Yes
		Decision Tree	DTR	Yes	No	No	compare, add	float	barrier, mutex	Yes
Unsupervised	Clustering	K-Means	KME	Yes	No	No	mul, compare, add	int16_t, int64_t	barrier, mutex	Yes

Linear Regression

- Linear regression (LIN) is a supervised learning algorithm where the predicted output variable has a linear relation with the input variable
 - We use *gradient descent* as the optimization algorithm to find the minimum of the loss function
- Our PIM implementation divides the training dataset (X) equally among PIM cores
 - PIM threads compute dot products of row vectors and weights
 - Each dot product is compared to the observed value y to compute a partial gradient value
 - Partial gradient values are reduced and sent to the host
- Four versions of LIN:
 - LIN-FP32: training datasets of <u>32-bit real values</u>
 - LIN-INT32: 32-bit fixed-point representation
 - LIN-HYB: hybrid precision (8-bit, 16-bit, 32-bit)
 - LIN-BUI: custom multiplication based on 8-bit built-in multiplication

Custom Integer Multiplication

Default integer multiplication

Φ			
po	1	<pre>result = X[i] * W[i];</pre>	<pre>// X and W are in WRAM (scratchpad)</pre>
U U			
-	1	lbs r3, r2, 0	<pre>// Load 1 byte from X[i]</pre>
	2	<pre>lsl_add r2, r20, r1, 1</pre>	// Address of W[i]: r2=r20+(r1<<1)
	3	lhs r4, r2, 0	// Load 2 bytes from W[i]
SA	4	<pre>mul_ul_ul r2, r4, r3, small,</pre>	0x80000378 // r2=r4(l)*r3(l)
S S	5	<pre>mul_sh_ul r5, r4, r3</pre>	// r5=r4(h)*r3(l)
ΛE	6	<pre>lsl_add r2, r2, r5, 8</pre>	// r2=r2+(r5<<8)
UPA	7	<pre>mul_sh_ul r5, r3, r4</pre>	// r5=r3(h)*r4(l)
	8	<pre>lsl_add r2, r2, r5, 8</pre>	// r2=r2+(r5<<8)
	9	<pre>mul_sh_sh r3, r4, r3</pre>	// r3=r4(h)*r3(h)
	10	<pre>lsl_add r2, r2, r3, 16, true,</pre>	0x80000378 //r2=r2+(r3<<16)

Custom integer multiplication

e	1	<pre>builtin_mul_sl_ul_rrr(templ, X[i], W[i]);</pre>
00	2	<pre>builtin_mul_sl_sh_rrr(temph, X[i], W[i]);</pre>
Ŭ	3	<pre>result = (temph << 8) + templ;</pre>
4	1	<pre>lbs r4, r4, 0 // Load 1 byte from X[i]</pre>
	2	<pre>lsl_add r5, r20, r3, 1</pre>
S	3	<pre>lhs r5, r5, 0 // Load 2 bytes from W[i]</pre>
MEM	4	<pre>mul_sl_ul r6, r4, r5 // r6=r4(1)*r5(1)</pre>
	5	<pre>mul_sl_sh r4, r4, r5 // r4=r4(1)*r5(h)</pre>
	6	add r2 r6 r2 $(/ r^2 = r^2 + r^6)$

r2=r2+(r4 << 8)

r2=r2+r6

6

7

lsl_add r2, r2, r4, 8

add r2, r6, r2

Logistic Regression

- Logistic regression (LOG) is a supervised learning algorithm used for classification, which outputs probability values for each input observation variable or vector
 - Sigmoid function to map predicted values to probabilities
- Our PIM implementation follows the same workload distribution pattern as our linear regression implementation
- Six versions of LOG:
 - LOG-FP32: training datasets of <u>32-bit real values</u>, Sigmoid approximated with Taylor series
 - LOG-INT32: 32-bit fixed-point representation, Taylor series
 - LOG-INT32-LUT: Sigmoid calculation with a lookup table (LUT)
 - LOG-INT32-LUT(MRAM): LUT in MRAM
 - LOG-INT32-LUT(WRAM): LUT in WRAM
 - LOG-HYB-LUT: hybrid precision (8-bit, 16-bit, 32-bit), LUT in WRAM
 - LOG-BUI-LUT: custom multiplication based on 8-bit built-in multiplication, LUT in WRAM

LUT-based Sigmoid Calculation

- We take advantage of the fact that Sigmoid is symmetric
- The LUT size depends on the boundary (e.g., 20) and the number of bits for the decimal part of the fixed-point representation (e.g., 10)
 - 20 x 1024 entries (with 16-bit entries) = 40 KB

Decision Tree

- Decision trees (DTR) are tree-based methods used for classification and regression, which partition the feature space into *leaves*, with a simple prediction model in each leaf
- Our PIM implementation partitions the training set among PIM cores, which compute partial *Gini* scores to evaluate the host's *split* decisions
- The host sends commands to the PIM cores:
 - Split commit to split a tree leaf
 - Split evaluate to evaluate a split
 - Min-max to query minimum/maximum values of a feature in a tree leaf
- Data layout in split commit to maximize memory bandwidth with streaming accesses
- This data layout also ensures memory accesses in streaming in split evaluate

Dataset:

5 points, 2 features: p0 = (0, 11); p1 = (8, 4); p2 = (7, 9); p3 = (2, 6); p4 = (5, 2)

K-Means Clustering

- K-means (KME) is an iterative clustering method used to find groups in a dataset which have not been explicitly labeled
- Our PIM implementation distributes the dataset evenly over the PIM cores
- PIM threads evaluate which centroid is the closest one to each point of the training set
 - Counter and accumulator per coordinate (per centroid)
- Then, the host recalculates the centroids
- Convergence to a local optimum when the updated centroid's coordinates are within a threshold (*Frobenius norm*)

Outline

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

Evaluation

Quality Metrics

Analysis of PIM Kernels

Performance Scaling

Comparison to CPU and GPU

Evaluation Methodology

• Synthetic and real datasets

MT M71-11	Synthetic Datasets [†]	Real Deterrate		
ML WORKIOAd	Strong Scaling (1 PIM core 256-2048 PIM cores)	Weak Scaling (per PIM core)	Real Datasets	
Linear regression	2,048 samples, 16 attr. (0.125 MB) 6,291,456 samples, 16 attr. (384 MB)	2,048 samples, 16 attr. (0.125 MB)	SUSY [232, 233]	
Logistic regression	2,048 samples, 16 attr. (0.125 MB) 6,291,456 samples, 16 attr. (384 MB)	2,048 samples, 16 attr. (0.125 MB)	Skin segmentation [234]	
Decision tree	60,000 samples, 16 attr. (3.84 MB) 153,600,000 samples, 16 attr. (9830 MB)	600,000 samples, 16 attr. (38.4 MB)	Higgs boson [232, 235] Criteo [236]	
K-Means	10,000 samples, 16 attr. (0.64 MB) 25,600,000 samples, 16 attr. (1640 MB)	100,000 samples, 16 attr. (6.4 MB)	Higgs boson [232, 235] Criteo [236]	

[†] Format = Samples (dataset elements), Attributes (Size in MB).

- Evaluated systems
 - UPMEM PIM system with 2,524 PIM cores @ 425 MHz and 158 GB of DRAM
 - Intel Xeon Silver 4215 CPU
 - NVIDIA A100 GPU
- We evaluate:
 - Quality metrics
 - Performance of PIM kernels
 - Performance scaling
 - Comparison to CPU and GPU

2,560-DPU UPMEM PIM System

- 20 UPMEM DIMMs of 16 chips each (40 ranks)
- Dual x86 socket

- UPMEM DIMMs coexist with regular DDR4 DIMMs
 - 2 memory controllers/socket (3 channels each)
 - 2 conventional DDR4 DIMMs on one channel of one controller

Outline

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

Evaluation

Quality Metrics

Analysis of PIM Kernels

Performance Scaling

Comparison to CPU and GPU

Evaluation: Quality Metrics: LIN

• Linear regression

Training error rate of LIN-FP32 is the same as the CPU version

For the integer versions, the training error rate remains low and close to that of LIN-FP32

Evaluation: Quality Metrics: LOG

• Logistic regression

Training error rate of LOG-FP32 is the same as the CPU version

LUT-based versions obtain lower training error rates than LOG-INT32, since they use exact values, not approximations

Reduced-precision datatypes increase the training error rate, which heavily depends on the number of decimal numbers of the samples (e.g., 4 in (a), 2 in (b))

Evaluation: Quality Metrics

- Linear regression
 - Training error rate of LIN-FP32 is the same as the CPU version
 - For integer versions, it remains low and close to that of LIN-FP32
- Logistic regression
 - LUT-based versions obtain lower training error rates that LOG-INT32, since they use exact values, not approximations
- Decision tree
 - Training accuracy only slightly lower than that of the CPU version
- K-means clustering
 - Same Calinski-Harabasz score and adjusted Rand index of PIM and CPU versions

We maintain the accuracy of all workloads (or keep it close to the CPU baseline)

Outline

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

Evaluation

Quality Metrics

Analysis of PIM Kernels

Performance Scaling

Comparison to CPU and GPU

Evaluation: Analysis of PIM Kernels (I)

Linear regression

All versions saturate at 11 or more PIM threads

Fixed-point representation accelerates the kernel by an order of magnitude over FP32

Key Takeaway 1. Workloads with **arithmetic operations or datatypes not natively supported** by PIM cores run at low performance due to instruction emulation (e.g., FP in UPMEM PIM).

Recommendation 1. Use **fixedpoint representation**, without much accuracy loss, if PIM cores do not support FP.
Evaluation: Analysis of PIM Kernels (II)

• Linear regression LIN-HYB is 41% faster than LIN-INT32

LIN-BUI provides an additional 25% speedup

Recommendation 2. Quantization can take advantage of native hardware support. Hybrid precision can significantly improve performance.

Recommendation 3. Programmers/better compilers can optimize code by leveraging native instructions (e.g., 8-bit integer multiplication in UPMEM).

Evaluation: Analysis of PIM Kernels (III)

Logistic regression

Very high kernel time of LOG–FP32 and LOG– INT32 due to Sigmoid approximation

LOG-INT32-LUT(MRAM) is 53x faster than LOG-INT32

Recommendation 4. Convert computation to memory accesses by keeping pre-calculated operation results (e.g., LUTs, memoization) in memory.

LOG–HYB–LUT is 28% faster than LOG–INT32–LUT

LOG-BUI-LUT provides an additional 43% speedup

Evaluation: Analysis of PIM Kernels (IV)

• Linear regression, logistic regression, decision tree, K-means clustering

KNAE

Evaluation: Analysis of PIM Kernels (V)

• Linear regression, logistic regression, decision tree, K-means clustering

Key Takeaway 2. ML workloads that are memorybound due to low arithmetic intensity in CPU/GPU **become compute-bound when running on PIM**.

Recommendation 6. Maximize the utilization of PIM cores by **keeping their pipeline fully busy**.

Outline

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

Evaluation

Quality Metrics

Analysis of PIM Kernels

Performance Scaling

Comparison to CPU and GPU

Evaluation: Performance Scaling (I)

• Weak scaling: 1 to 64 PIM cores

SAFARI

PIM kernel time of LIN, LOG, and DTR scales linearly with the number of PIM cores

KME converges with fewer iterations on a larger dataset

The sum of CPU-PIM, Inter PIM core, and PIM-CPU takes less than 7% of the total execution time in all cases

Evaluation: Performance Scaling (II)

• Strong scaling: 256 to 2,048 PIM cores

PIM kernel time scales linearly with the number of PIM cores

Little overhead from inter PIM core communication and communication between host and PIM cores

Evaluation: Performance Scaling (II)

• Strong scaling: 256 to 2,048 PIM cores

Key Takeaway 3. ML training workloads, which need large training datasets, benefit from large PIMenabled memory with many PIM cores.

Outline

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

Evaluation

Quality Metrics

Analysis of PIM Kernels

Performance Scaling

Comparison to CPU and GPU

Comparison to CPU and GPU (I)

Linear regression and logistic regression

PIM versions are heavily burdened when they use operations that are not natively supported by the hardware

SAFARI

10

1

100000

10000

1000

100

10

1

LOG-FP32

LOG-BUI-LUT

(WRAM)

10

1

100000

10000

1000

100

10

1

LOG-INT32-LUT

(MRAM)

CPU

10

1

100000

10000

1000

100

10

1

LOG-INT32-LUT

(WRAM)

☑ GPU-CPU

CPU-GPU

GPU Kernel

Inter PIM

2 CPU-PIM

LOG-INT32

LOG-HYB-LUT

(WRAM)

PIM Kernel

10

100000

10000

1000

100

10

Execution Time (ms)

Several optimizations reduce the execution time considerably (LIN/LOG up to 10x/3.9x faster than CPU) and close the gap with GPU performance (LIN/LOG still 4x/16x slower than GPU)

GPU

Т.Т N

Comparison to CPU and GPU (II)

• Decision tree and K-means with Higgs boson dataset

PIM version of DTR is 27x faster than the CPU version and 1.34x faster than the GPU version PIM version of KME is 2.8x faster than the CPU version and 3.2x faster than the GPU version

Long arXiv Version

- Additional implementation details
- More evaluation results
- Extended observations, takeaways, and recommendations

An Experimental Evaluation of Machine Learning Training on a Real Processing-in-Memory System

Juan Gómez-Luna¹ Yuxin Guo¹ Sylvan Brocard² Julien Legriel² Remy Cimadomo² Geraldo F. Oliveira¹ Gagandeep Singh¹ Onur Mutlu¹ ¹ETH Zürich ²UPMEM

<u>https://arxiv.org/pdf/2207.07886.pdf</u> <u>Source code: https://github.com/CMU-SAFARI/pim-ml</u>

Comparison to CPU and GPU (III)

• Decision tree and K-means with Criteo 1TB dataset

PIM version of DTR is 62x faster than the CPU version and 4.5x faster than the GPU version PIM version of KME is 2.7x faster than the CPU version and 3.2x faster than the GPU version

Comparison to CPU and GPU (IV)

• Decision tree and K-means with Criteo 1TB dataset

Key Takeaway 4. ML workloads that require mainly operations natively supported by the PIM architecture, such as decision tree and K-means clustering, outperform their CPU and GPU counterparts.

faster than the CPU version and **4.5x** faster than the GPU version faster than the CPU version and **3.2x** faster than the GPU version

Long arXiv Version

- Additional implementation details
- More evaluation results
- Extended observations, takeaways, and recommendations

An Experimental Evaluation of Machine Learning Training on a Real Processing-in-Memory System

Juan Gómez-Luna¹ Yuxin Guo¹ Sylvan Brocard² Julien Legriel² Remy Cimadomo² Geraldo F. Oliveira¹ Gagandeep Singh¹ Onur Mutlu¹ ¹ETH Zürich ²UPMEM

<u>https://arxiv.org/pdf/2207.07886.pdf</u> <u>Source code: https://github.com/CMU-SAFARI/pim-ml</u>

Short arXiv Version

• Presented at ISVLSI 2022

Machine Learning Training on a Real Processing-in-Memory System

Juan Gómez-Luna¹ Yuxin Guo¹ Sylvan Brocard² Julien Legriel² Remy Cimadomo² Geraldo F. Oliveira¹ Gagandeep Singh¹ Onur Mutlu¹ ¹ETH Zürich ²UPMEM

> <u>https://arxiv.org/pdf/2206.06022.pdf</u> <u>Source code: https://github.com/CMU-SAFARI/pim-ml</u> <u>https://youtu.be/CVX8n-X-5wI</u>

ISPASS 2023 Version

Presented at ISPASS 2023

Evaluating Machine Learning Workloads on Memory-Centric Computing Systems

Juan Gómez-Luna¹ Yuxin Guo¹ Sylvan Brocard² Julien Legriel² Remy Cimadomo² Geraldo F. Oliveira¹ Gagandeep Singh¹ Onur Mutlu¹ ¹ETH Zürich ²UPMEM

https://people.inf.ethz.ch/omutlu/pub/MLonUPMEM-PIM_ispass23.pdf Source code: https://github.com/CMU-SAFARI/pim-ml https://youtu.be/60pkaI5AeM4

Source Code

• <u>https://github.com/</u> <u>CMU-SAFARI/pim-ml</u>

lic	☆ Edit Pins → ③ Unwatch 2 → ♀							
Code ③ Issues 비 Pull requests ④ Actions 田 Projects ③ Security 너 Insights 행								
tags	Go to file Add file - Code -							
	7d7289d 2 days ago 🕤 16 commits							
upload regression code	2 days ago							
upload regression code	2 days ago							
submodules	2 days ago							
submodules	2 days ago							
submodules	2 days ago							
readme	2 days ago							
readme	2 days ago							
	equests (•) Actions (*) tags upload regression code upload regression code submodules submodules submodules readme readme							

i≣ README.md

PIM-ML

PIM-ML is a benchmark for training machine learning algorithms on the UPMEM architecture, which is the first publicly-available real-world processing-in-memory (PIM) architecture. The UPMEM architecture integrates DRAM memory banks and general-purpose in-order cores, called DRAM Processing Units (DPUs), in the same chip.

PIM-ML is designed to understand the potential of modern general-purpose PIM architectures to accelerate machine learning training. PIM-ML implements several representative classic machine learning algorithms:

- Linear Regression
- Logistic Regression
- Decision Tree
- K-means Clustering

SAFARI

0

Executive Summary

- Training machine learning (ML) algorithms is a computationally expensive process, frequently memory-bound due to repeatedly accessing large training datasets
- Memory-centric computing systems, i.e., with Processing-in-Memory (PIM) capabilities, can alleviate this data movement bottleneck
- Real-world PIM systems have only recently been manufactured and commercialized
 - UPMEM has designed and fabricated the first publicly-available real-world PIM architecture
- Our goal is to understand the potential of modern general-purpose PIM architectures to accelerate machine learning training
- Our main contributions:
 - PIM implementation of several classic machine learning algorithms: linear regression, logistic regression, decision tree, K-means clustering
 - Workload characterization in terms of quality, performance, and scaling
 - Comparison to their counterpart implementations on processor-centric systems (CPU and GPU)
 - PIM version of DTR is 27x / 1.34x faster than the CPU / GPU version, respectively
 - PIM version of KME is 2.8x / 3.2x faster than the CPU / GPU version, respectively
 - Source code: <u>https://github.com/CMU-SAFARI/pim-ml</u>
- Experimental evaluation on a real-world PIM system with 2,524 PIM cores @ 425 MHz and 158 GB of DRAM memory
- Key observations, takeaways, and recommendations for ML workloads on general-purpose PIM systems

Lecture on PIM-ML

SAFARI

https://youtu.be/elWNYISE10c

An Experimental Evaluation of Machine Learning Training on a Real Processing-in-Memory System

<u>Juan Gómez Luna</u>, Yuxin Guo, Sylvan Brocard, Julien Legriel, Remy Cimadomo, Geraldo F. Oliveira, Gagandeep Singh, Onur Mutlu

> https://arxiv.org/pdf/2207.07886.pdf https://github.com/CMU-SAFARI/pim-ml

juang@ethz.ch

Transcendental Functions

TransPimLib: Efficient Transcendental Functions for Processing-in-Memory Systems

Maurus Item, <u>Juan Gómez Luna</u>, Yuxin Guo, Geraldo F. Oliveira, Mohammad Sadrosadati, Onur Mutlu

> <u>https://arxiv.org/pdf/2304.01951.pdf</u> <u>https://github.com/CMU-SAFARI/transpimlib</u> juang@ethz.ch

Thursday, June 1, 2023

ISPASS 2023 Version

Presented at ISPASS 2023

TransPimLib: Efficient Transcendental Functions for Processing-in-Memory Systems

Maurus Item	Juan Gómez-Luna	Yuxin	Guo
Geraldo F. Oliveira	Mohammad Sadrosad	lati	Onur Mutlu
	ETH Zürich		

https://people.inf.ethz.ch/omutlu/pub/TransPIMLib_ispass23.pdf Source code: https://github.com/CMU-SAFARI/transpimlib https://youtu.be/lqqf4eaaEE4

Executive Summary

- Processing-in-Memory (PIM) promises to alleviate the data movement bottleneck
- However, current real-world PIM systems have very constrained hardware, which results in limited instruction sets
 - Difficulty/impossibility of computing complex operations, such as transcendental functions (e.g., trigonometric, exp, log) and other hard-to-calculate functions (e.g., square root)
 - These functions are important for modern workloads, e.g., activation functions in machine learning applications
- TransPimLib is the first library for transcendental and other hard-tocalculate functions on general-purpose PIM systems
 - CORDIC-based and LUT-based methods for trigonometric functions, hyperbolic functions, exponentiation, logarithm, square root, etc.
 - Source code: <u>https://github.com/CMU-SAFARI/transpimlib</u>
- We implement TransPimLib for the UPMEM PIM architecture and evaluate its methods in terms of performance, accuracy, memory requirements, and setup time
 - Three real workloads (Blackscholes, Sigmoid, Softmax)

Outline

Processing-in-memory and transcendental functions

TransPimLib: A library for transcendental and other hard-to-calculate functions

Evaluation

How to Calculate Transcendental Functions in a PIM System?

• Three possible alternatives

How to Calculate Transcendental Functions in a PIM System?

• Three possible alternatives

SAFARI

https://github.com/CMU-SAFARI/transpimlib

Outline

Processing-in-memory and transcendental functions

TransPimLib: A library for transcendental and other hard-to-calculate functions

Evaluation

TransPimLib: Implementation

- Various methods to calculate transcendental functions:
 - Taylor approximation, minimax polynomials, CORDIC, LUTs
- CORDIC is an iterative method that uses bit-shifts, additions, and table lookups
 - In rotation mode, CORDIC computes the function value for an input θ by rotating a vector [1, 0] iteratively
 - The rotation is done by multiplying the vector and a matrix
 - The matrix represents the rotation angle, which decreases in each iteration
- Fuzzy Lookup Tables (LUTs) return an (approximate) output f(x) for each input x
 - A function a(x) returns an address to access the LUT
 - The table returns $LUT(a(x)) \simeq f(x)$
 - To generate the LUT, we need a helper function $a^{-1}()$, such that $x = a(a^{-1}(x))$
 - LUTs' accuracy improves with interpolation:

 $f(x) \simeq LUT(a(x)) + LUT(a(x)+1) - LUT(a(x)) \cdot \Delta$

TransPimLib: CORDIC-based Methods

- TransPimLib contains
 CORDIC implementations

 of trigonometric (sin, cos,
 tan) and hyperbolic (sinh,
 cosh, tanh) functions,
 exponentiation,
 logarithm, and square
 root
- Example: Sine function

TransPimLib: LUT-based Methods

- Multiplication-based LUT (M-LUT)
 - Regular spacing between table entries
 - a(x) = round((x p) · k), where k represents the LUT density
- LDEXP-based LUT (L-LUT)
 - Multiplication is cheaper if we multiply by 2^n
 - Idexp(arg, exp) to perform $\arg \cdot 2^{exp}$
 - $a(x) = round((x p) \cdot 2^n)$
 - *k* is a power-of-two, which results in less precision but avoids multiplication
- Direct Float Conversion-based LUT (D-LUT)
 - a(x) uses the last n bits of the exponent and p
 bits of the mantissa
 - Piece-wise linear density: 2ⁿ steps of 2^p addresses

Map interval [0, 5] to a 12-entry LUT

TransPimLib: Combined Methods

- Direct Float Conversion
 + LDEXP-based LUT
 (DL-LUT)
 - Uses an L-LUT between
 o and the smallest
 exponent and a D-LUT
 for larger inputs

- CORDIC+L-LUT (CORDIC+LUT)
 - Replaces the first few iterations of CORDIC with a LUT
 - Flexible tradeoff between computing cost, table size, and precision

M-LUT

TransPimLib: Supported Functions

	Supported Functions									
Implementation Method	sin	cos	tan	sinh	cosh	tanh	exp	log	sqrt	GELU
CORDIC	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
M-LUT	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	
M-LUT+Interp.	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	
L-LUT	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	
L-LUT+Interp.	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	
D-LUT+Interp.	\checkmark					\checkmark				\checkmark
DL-LUT+Interp.	\checkmark					\checkmark				\checkmark
CORDIC+LUT	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			

Based on our preliminary analysis, we provide the most suitable methods for each of the supported functions (other than sine).

Outline

Processing-in-memory and transcendental functions

TransPimLib: A library for transcendental and other hard-to-calculate functions

Evaluation

Evaluation Methodology

- Evaluated systems
 - UPMEM PIM system with 2,545 PIM cores @ 350 MHz and 159 GB of DRAM
 - 2-socket Intel Xeon CPU (32 cores)
- Microbenchmarks
 - Performance evaluation
 - We measure execution cycles
 - Accuracy evaluation
 - Root-mean-square absolute error (RMSE) with respect to the CPU with the standard math library
 - Setup time
 - Generation on the host CPU and transfers to the PIM side
 - Memory consumption
 - All tables and variables allocated in the DRAM bank of a PIM core
 - We use sine, as a representative function
- Real-world Benchmarks
 - Blackscholes: exp, log, sqrt, cumulative normal distribution (CNDF)
 - Sigmoid
 - Softmax
Microbenchmark Results: Performance (I)

- We measure the execution cycles for an accuracy range between 10⁻⁴ and 10⁻⁹
- LUT-based versions place the LUT in either the PIM core's DRAM bank (MRAM) or the scratchpad (WRAM)

Execution cycles depend on the number of multiplications:

- Interp. M-LUT: 2 FP multiplications
- Non-interp. M-LUT and inter. L-LUT: 1 FP multiplication
- Non-interp. L-LUT: No FP multiplication

Fixed-point version of the L-LUT

Interp. Fix. L-LUT doubles the performance of inter. L-LUT due to faster fixed-point multiplication

Microbenchmark Results: Performance (II)

- We measure the execution cycles for an accuracy range between 10⁻⁴ and 10⁻⁹
- CORDIC-based methods take more execution cycles to provide higher accuracy

CORDIC, as it replaces the initial iterations with an L-LUT query

At some point (~10⁻⁹), further increasing the LUT size or CORDIC iterations does not improve accuracy Little benefit from placing LUTs in the scratchpad (WRAM) instead of the DRAM bank (MRAM)

Microbenchmark Results: Performance (III)

- We measure the execution cycles for an accuracy range between 10⁻⁴ and 10⁻⁹
- CORDIC-based methods take more execution cycles to provide

Key Takeaway 1 Interpolated L-LUT methods (lookup table with LDEXP operation) offer the best tradeoff in terms of performance and accuracy

CORDIC+LUT runs faster than **CORDIC**, as it replaces the initial iterations with an L-LUT query At some point (~10⁻⁹), further increasing the LUT size or CORDIC iterations does not improve accuracy Little benefit from placing LUTs in the scratchpad (WRAM) instead of the DRAM bank (MRAM)

Microbenchmark Results: Setup Time (I)

• The setup time can also impact the decision of what method to use

CORDIC methods can provide higher overall performance (i.e., setup time + PIM kernel time) than LUT-based methods when the total number of transcendental functions in a workload is low. For example, we estimate ~40 sine operations (see paper)

Microbenchmark Results: Setup Time (II)

• The setup time can also impact the decision of what method to use

CORDIC

Key Takeaway 2 CORDIC-based methods are preferable when a PIM kernel needs to execute just a few transcendental functions due to their low setup time in the host CPU

💢 D-LUT (Interp.) 🔶 L-LUT (Interp.) 💧 📥 M-LUT (Interp.)

CORDIC methods can provide higher overall performance (i.e., setup time + PIM kernel time) than LUT-based methods when the total number of transcendental functions in a workload is low. For example, we estimate ~40 sine operations (see paper)

Microbenchmark Results: Memory (I)

• We also obtain the memory consumption (in bytes) in the DRAM bank of a PIM core

Microbenchmark Results: Memory (II)

Key Takeaway 3

Interpolated L-LUT methods offer a good tradeoff in terms of accuracy, execution cycles, and memory consumption.

However, **CORDIC and CORDIC+LUT methods** are recommended for applications that require high accuracy, where the available memory is limited (e.g., needed for large datasets)

Other Supported Functions (I)

- The general trends for other functions supported by TransPimLib are similar to those of the sine function
- Some major differences:
 - 1. Tangent calculation takes around 2-3 times more cycles than sine calculation, as it requires
 - a) Calculation of sine and cosine
 - b) A floating-point division
 - 2. Some supported functions require range reduction and/or range extension
- a) The cost differs between functions, 15000 as it depends on specific mathematical identity needed for 0 10000 the conversion 5
- b) But range reduction/extension is only necessary depending on the actual range of input values

Other Supported Functions (II)

- Some major differences:
 - 3. Activation functions *tanh* and GELU do not require range reduction/extension and are approximately linear in most parts

Key Takeaway 4 D-LUT and DL-LUT methods are well-suited for activation functions, such as *tanh* and *GELU*, which (1) do not require range extension, and (2) are approximately linear in most parts.

D-LUT and DL-LUT are faster than interpolated L-LUT, while providing similar accuracy

Real-world Benchmark Results (I)

Real-world Benchmark Results (II)

Key Takeaway 5 TransPimLib can reduce data movement from PIM cores to the CPU (Fig. (b)) for applications running on the PIM cores.

As a result, the execution of transcendental functions in the PIM cores (Fig. (c)) could be 6–8× faster than the execution in the host CPU

More in the Paper

- Background on CORDIC and Fuzzy Lookup Tables
- How to use TransPimLib (APIs)
- Additional observations and takeaways

TransPimLib: Efficient Transcendental Functions for Processing-in-Memory Systems

Maurus Item Geraldo F. Oliveira Juan Gómez-Luna Yuxin Guo Mohammad Sadrosadati Onur Mutlu ETH Zürich

https://people.inf.ethz.ch/omutlu/pub/TransPIMLib_ispass23.pdf https://arxiv.org/pdf/2304.01951.pdf

TransPimLib: A Library for Efficient Transcendental Functions on Processing-in-Memory Systems

Maurus Item Geraldo F. Oliveira Juan Gómez-Luna Yuxin Guo Mohammad Sadrosadati Onur Mutlu ETH Zürich

https://arxiv.org/pdf/2304.01951.pdf

<u>Source code: https://github.com/CMU-SAFARI/transpimlib</u> <u>https://youtu.be/lqqf4eaaEE4</u>

ISPASS 2023 Version

Presented at ISPASS 2023

TransPimLib: Efficient Transcendental Functions for Processing-in-Memory Systems

Maurus Item	Juan Gómez-Luna	Yuxin	Guo
Geraldo F. Oliveira	Mohammad Sadrosada	ati	Onur Mutlu
	ETH Zürich		

https://people.inf.ethz.ch/omutlu/pub/TransPIMLib_ispass23.pdf Source code: https://github.com/CMU-SAFARI/transpimlib https://youtu.be/lqqf4eaaEE4

Source Code

<u>https://github.com/</u>
<u>CMU-</u>
<u>SAFARI/transpimlib</u>

		🛠 Edit Pins 👻 💿 Unwatch 2
<> Code	s 🕑 Actions 🖽 Projects	① Security 🗠 Insights 🔅 Settings
ੀ main 🚽 ੀ branch 💿 0 tags		Go to file Add file - <> Code -
👔 el1goluj readme		3209a33 3 days ago 🛛 6 commits
benchmarks	commit files	3 days ago
🖿 dpu	commit files	3 days ago
host	commit files	3 days ago
microbenchmarks	readme	3 days ago
validation	commit files	3 days ago
	commit files	3 days ago
🗋 README.md	readme	3 days ago
E README.md		ß

TransPimLib: A Library for Efficient Transcendental Functions on Processing-in-Memory Systems

Processing-in-memory (PIM) promises to alleviate the data movement bottleneck in modern computing systems. However, current real-world PIM systems have the inherent disadvantage that their hardware is more constrained than in conventional processors (CPU, GPU), due to the difficulty and cost of building processing elements near or inside the memory. As a result, general-purpose PIM architectures support fairly limited instruction sets and struggle to execute complex operations such as transcendental functions and other hard-to-calculate operations (e.g., square root). These operations are particularly important for some modern workloads, e.g., activation functions in machine learning applications.

To provide support for transcendental (and other hard-to-calculate) functions in general-purpose PIM systems, TransPimLib is a library that provides CORDIC-based and LUT-based methods for trigonometric functions, hyperbolic functions, exponentiation, logarithm, square root, etc. The first implementation of TransPimLib is for the UPMEM PIM architecture.

Executive Summary

- Processing-in-Memory (PIM) promises to alleviate the data movement bottleneck
- However, current real-world PIM systems have very constrained hardware, which results in limited instruction sets
 - Difficulty/impossibility of computing complex operations, such as transcendental functions (e.g., trigonometric, exp, log) and other hard-to-calculate functions (e.g., square root)
 - These functions are important for modern workloads, e.g., activation functions in machine learning applications
- TransPimLib is the first library for transcendental and other hard-tocalculate functions on general-purpose PIM systems
 - CORDIC-based and LUT-based methods for trigonometric functions, hyperbolic functions, exponentiation, logarithm, square root, etc.
 - Source code: <u>https://github.com/CMU-SAFARI/transpimlib</u>
- We implement TransPimLib for the UPMEM PIM architecture and evaluate its methods in terms of performance, accuracy, memory requirements, and setup time
 - Three real workloads (Blackscholes, Sigmoid, Softmax)

Lecture on TransPimLib

148 views 12 days ago Livestream - Data-Centric Architectures: Fundamentally Improving Performance and Energy (Spring 2023)

Projects & Seminars, ETH Zürich, Spring 2023

Data-Centric Architectures: Fundamentally Improving Performance and Energy

TransPimLib: Efficient Transcendental Functions for Processing-in-Memory Systems

Maurus Item, <u>Juan Gómez Luna</u>, Yuxin Guo, Geraldo F. Oliveira, Mohammad Sadrosadati, Onur Mutlu

> <u>https://arxiv.org/pdf/2304.01951.pdf</u> <u>https://github.com/CMU-SAFARI/transpimlib</u> juang@ethz.ch

Thursday, June 1, 2023

ISCA 2023 Tutorial Real-world Processing-in-Memory Systems for Modern Workloads

Accelerating Modern Workloads on a General-purpose PIM System

Dr. Juan Gómez Luna Professor Onur Mutlu

Sunday, June 18, 2023