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Potential Barriers to Adoption of PIM

1. Applications & software for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System and security support: coherence, synchronization,
virtual memory, isolation, communication interfaces, ...

4. Runtime and compilation systems for adaptive scheduling,
data mapping, access/sharing control, ...

5. Infrastructures to assess benefits and feasibility

All can be solved with change of mindset
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Benchmarking and
Workload Suitability



PriM Benchmarks

e Goal

- A common set of workloads that can be used to
e evaluate the UPMEM PIM architecture,
* compare software improvements and compilers,
* compare future PIM architectures and hardware

* Two key selection criteria:
- Selected workloads from different application domains
- Memory-bound workloads on processor-centric architectures

* 14 different workloads, 16 different benchmarks*

SA FARI *There are two versions for two of the workloads (HST, SCAN). 4



PrIM Benchmarks: Application Domains

Domain Benchmark Short name
Vector Addition VA
Dense linear algebra
Matrix-Vector Multiply GEMV
Sparse linear algebra Sparse Matrix-Vector Multiply SpMV
Select SEL
Databases
Unique UNI
Binary Search BS
Data analytics
Time Series Analysis TS
Graph processing Breadth-First Search BFS
Neural networks Multilayer Perceptron MLP
Bioinformatics Needleman-Wunsch NW
Image histogram (short) HST-S
Image processing
Image histogram (large) HST-L
Reduction RED
Prefix sum (scan-scan-add) SCAN-SSA
Parallel primitives
Prefix sum (reduce-scan-scan) SCAN-RSS
Matrix transposition TRNS
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Roofline Model

* Intel Advisor on an Intel Xeon E3-1225 v6 CPU
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[ All workloads fall in the memory-bound area of the Roofline ]
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PrIM Benchmarks: Diversity

* PrIM benchmarks are diverse:
- Memory access patterns
- Operations and datatypes
- Communication/synchronization

: Memory access pattern Computation pattern

Domiain Benclimntle ShurtuEme Sequential T Stridedpl Random Oper;:tions II) Datatype Intra-DPU | Inter-DPU

Dense linearalgeben Vector Addition VA Yes add int32_t
Matrix-Vector Multiply GEMV Yes add, mul uint32_t

Sparse linear algebra | Sparse Matrix-Vector Multiply SpMV Yes Yes add, mul float

Databases Select SEL Yes add, compare int64_t handshake, barrier Yes
Unique UNI Yes add, compare int64_t handshake, barrier Yes

. Binary Search BS Yes Yes compare int64_t

Data analytics Time }Slteries Analysis TS Yes add, sub,pmul, div int32_t

Graph processing Breadth-First Search BFS Yes Yes bitwise logic uint64_t barrier, mutex Yes

Neural networks Multilayer Perceptron MLP Yes add, mul, compare | int32_t

Bioinformatics Needleman-Wunsch NW Yes Yes add, sub, compare int32_t barrier Yes

JiagE ProCEHaiE Image histogram (short) HST-S Yes Yes add uint32_t barrier Yes
Image histogram (long) HST-L Yes Yes add uint32_t barrier, mutex Yes
Reduction RED Yes Yes add int64_t barrier Yes

Parallel primitives Prefix sum (scan-scan-add) SCAN-SSA Yes add int64_t §| handshake, barrier Yes
Prefix sum (reduce-scan-scan) | SCAN-RSS Yes add int64_t | handshake, barrier Yes
Matrix transposition TRNS Yes Yes add, sub, mul int64_t mutex
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PrIM Benchmarks: Inter-DPU Communication

; | Memory access pattern Computation pattern Communication/synchronization
Domaix Benchmazi Shostname Sequential | Strided | Random Operations Datatype Intra-DPU Inter-DPU
Senise Tneaniaebin Vector Addition VA Yes add int32_t

& Matrix-Vector Multipl GEMV Yes add, mul uint32 t

Sparse linear algebra | Sparse Matrix-Vector Multiply SpMV Yes Yes add, mul float

Dat ‘)as Selact— 1 SEL » I , Yes add, compare int64_t handshake, barrier Yes
fn t e Shigk U ) COITTHTIUI ] LB % add, compare int64_t [ handshake, barrier Yes

Data analvti Binary Search BS Yes Yes compare int64_t

BEajanAlytics Time Spries Apalysis. 7~ afe TS Yes add, sub, mul, div int32_t
Graph processing! \ ~Brekdth-Firdt Sdarel 5' I'T& e« BFS Yes Yes bitwise logic uint64_t barrier, mutex Yes

Neural networks Multi rPerceptron | L ~ MLE __8 . Yes— add, mul, compare int32_t
Bioinformatics Ne |, A>1-D> ,Nm D 'L, ) Yes add, sub, compare int32_t barrier Yes
Fi s BTOCaRER Image histogr ) HST-S __Yes Yes add uint32_t barrier Yes
gep & Im T oRg) ™~ j‘tﬁ&ﬂS‘lel Ses Yes add uint32_t barrier, mutex Yes
Redyction ,, e ARED Yes . Yes . add int64_t barrier Yes
parallel rimire R CRERSEHD @ T (O [ateresufitsraa inted_t_|| Fandshake, barrier | Yes
P Prefix sum (reduce-scan-scan) | SCAN-RSS Yes add int64_t § handshake, barrier Yes

pMaB)F@’sthlP’ N y \./’ S@A |\I_S gé ‘ A |N R &5 add, sub, mul int64 t mutex

e DPU-CPU and CPU-DPU transfers
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PriM Benchmarks

H CMU-SAFARI/ prim-benchmarks foxt

* 16 benchmarks and scripts
for evaluation

e https://github.com/CMU-

<> Code () Issues 19 Pull requests () Actions [T Projects 10 wiki @) Security |~ Insights 1 Settings

¥ main ~ ¥ 1branch © 0 tags Go to file Add file ~

Juan Gomez Luna PrIM -- first commit 3desbs9 15 days ago O 2 commits
SAFARI/ rim_benchmarks BFS PriM -- first commit 15 days ago
- p EE— - - — BS PrIM -- first commit 15 days ago

GEMV PrIM -- first commit 15 days ago

HST-L PrIM -- first commit 15 days ago

HST-S PrIM -- first commit 15 days ago

MLP PrIM -- first commit 15 days ago

Microbenchmarks PrIM -- first commit 15 days ago

NW PrIM -- first commit 15 days ago

RED PrIM -- first commit 15 days ago

SCAN-RSS PrIM -- first commit 15 days ago

SCAN-SSA PrIM -- first commit 15 days ago

SEL PriM -- first commit 15 days ago

SpMV PrIM -- first commit 15 days ago

TRNS PrIM -- first commit 15 days ago

TS PriM -- first commit 15 days ago

UNI PrIM -- first commit 15 days ago

VA PrIM -- first commit 15 days ago

[ LICENSE PriM -- first commit 15 days ago
[ README.md PrIM -- first commit 15 days ago
[ run_strong_full.py PrIM -- first commit 15 days ago
[ run_strong_rank.py PriM -- first commit 15 days ago
[} run_weak.py PrIM -- first commit 15 days ago

SAFARI
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https://github.com/CMU-SAFARI/prim-benchmarks

Outline

(« Introduction b
- Accelerator Model

. - UPMEM-based PIM System Overview )

(¢ UPMEM PIM Programming )
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth )

(» DRAM Processing Unit h
- Arithmetic Throughput

. - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity )

(» Evaluation B
- Strong and Weak Scaling

. - Comparison to CPU and GPU )

* Key Takeaways
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Evaluation Methodology

* We evaluate the 16 PrIM benchmarks on two UPMEM-
based systems:
- 2,556-DPU system
- 640-DPU system

* Strong and weak scaling experiments on the 2,556-DPU
system
- 1 DPU with different numbers of tasklets
- 1rank (strong and weak)
- Up to 32 ranks

N\

[ Strong scaling refers to how the execution time of a program solving a particular problem varies
with the number of processors for a fixed problem size

S
~

Weak scaling refers to how the execution time of a program solving a particular problem varies
with the number of processors for a fixed problem size per processor

\ S
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Evaluation Methodology

* We evaluate the 16 PrIM benchmarks on two UPMEM-
based systems:
- 2,556-DPU system
- 640-DPU system

* Strong and weak scaling experiments on the 2,556-DPU
system
- 1 DPU with different numbers of tasklets
- 1rank (strong and weak)
- Up to 32 ranks

* Comparison of both UPMEM-based PIM systems to
state-of-the-art CPU and GPU

- Intel Xeon E3-1240 CPU
- NVIDIA TitanV GPU
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2,560-DPU System

* UPMEM-based PIM

Main Memory

system with 20 .U PMEM 1,
DIMMs of 16 chips each
Host
(40 ranks) cPU 0 P 2560 DPUs*
P21 DIMMs PN 67 BN BN B o BB G
Dual x86 socket VA0

° UP M E M DI MMS PIM-enabled Memory
coexist with regular Main Memory
DDR4 DIMMs =

e > memory 4—»[
controllers/socket (3 2
channels each) crU 1 ,,

« 2 conventional DDR4 4. [ﬂﬂﬂﬂﬂﬂﬂﬂ
DIMMSs on one  BEEEEEEE
channel of one ..gwg,ze.../m
controller

160 GB
SA FAR’ * There are 4 faulty DPUs in the system that we use in our experiments. Thus, the maximum number of DPUs we can use is 2,556. 1 3



640-DPU System

* UPMEM-based PIM
system with 10 UPMEM
DIMMs of 8 chips each

(1 o ran kS) Main Memory
- E19 DIMMs £
- x86 socket f—ﬁ{“)(l)ﬁﬂ()(lﬂ()
* 2 memo ry contro l I ers Chip)(chip; \cnip)(cmp)(éiﬁ,;; \Chi;ﬂﬁ&?ﬂ@;%ﬂ
(3 channels each) aoor P
* 2 conventional DDR4 o
DIMMs on one ~—<->&f:;::}Ez::}{:z::}{:::}{:z:)(::
Cha n nel Of On e Chip || Chip || Chip || Chip || Chip || Chip
controller PIM-enable
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Datasets

 Strong and weak scaling experiments

Benchmark I Strong Scaling Dataset Weak Scaling Dataset N;m;ﬁvg&?
VA | 1 DPU-1 rank: 2.5M elem. (10 MB) |32 ranks: 160M elem. (640 MB) I 2.5M elem./DPU (10 MB) 1024 bytes
GEMV 1 DPU-1 rank: 8192 X 1024 elem. (32 MB) | 32 ranks: 163840 x 4096 elem. (2.56 GB) 1024 x 2048 elem./DPU (8 MB) 1024 bytes
SpMV besstk30 [253] (12 MB) besstk30 [253] 64 bytes

SEL 1 DPU-1 rank: 3.8M elem. (30 MB) | 32 ranks: 240M elem. (1.9 GB) 3.8M elem./DPU (30 MB) 1024 bytes

UNI 1 DPU-1 rank: 3.8M elem. (30 MB) | 32 ranks: 240M elem. (1.9 GB) 3.8M elem./DPU (30 MB) 1024 bytes

BS 2M elem. (16 MB). 1 DPU-1 rank: 256K queries. (2 MB) | 32 ranks: 16M queries. (128 MB) 2M elem. (16 MB). 256K queries./DPU (2 MB). 8 bytes

TS 256 elem. query. 1 DPU-1 rank: 512K elem. (2 MB) | 32 ranks: 32M elem. (128 MB) 512K elem./DPU (2 MB) 256 bytes

BFS loc-gowalla [254] (22 MB) rMat [255] (=100K vertices and 1.2M edges per DPU) [18 bytes

MLP 3 fully-connected layers. 1 DPU-1 rank: 2K neurons (32 MB) | 32 ranks: ~160K neur. (2.56 GB) 3 fully-connected layers. 1K neur./DPU (4 MB) 1024 bytes

NW 1 DPU-1 rank: 2560 bps (50 MB), large/small sub-block=2580—/2 | 32 ranks: 64K bps (32 GB), 1./s.=32/2 | 512 bps/DPU (2MB), 1/s.=512/2 8, 16, 32, 40 bytes
HST-S 1 DPU-1 rank: 1536 X 1024 input image [256] (6 MB) | 32 ranks: 64 X input image 1536 x 1024 input image [256]/DPU (6 MB) 1024 bytes
HST-L 1 DPU-1 rank: 1536 X 1024 input image [256] (6 MB) | 32 ranks: 64 X input image 1536 x 1024 input image [256]/DPU (6 MB) 1024 bytes

RED 1 DPU-1 rank: 6.3M elem. (50 MB) | 32 ranks: 400M elem. (3.1 GB) 6.3M elem./DPU (50 MB) 1024 bytes
SCAN-SSA 1 DPU-1 rank: 3.8M elem. (30 MB) | 32 ranks: 240M elem. (1.9 GB) 3.8M elem./DPU (30 MB) 1024 bytes
SCAN-RSS 1 DPU-1 rank: 3.8M elem. (30 MB) | 32 ranks: 240M elem. (1.9 GB) 3.8M elem./DPU (30 MB) 1024 bytes
TRNS 1 DPU-1 rank: 12288 X 16 X 64 x 8 (768 MB) | 32 ranks: 12288 x 16 x 2048 X 8 (24 GB) 12288 x 16 x 1 x 8/DPU (12 MB)

The PrIM benchmarks repository includes

all datasets and scripts used in our evaluation
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Strong Scaling: 1 DPU (1)

* Strong scaling
experiments on 1 DPU

- We set the number
of tasklets to 1, 2, 4,
8,and 16

- We show the
breakdown of
execution time:

* DPU: Execution
time on the DPU

* |nter-DPU: Time for
inter-DPU
communication via
the host CPU

* CPU-DPU: Time for
CPU to DPU
transfer of input
data

e DPU-CPU: Time for

DPU to CPU
transfer of final
results

- Speedup over 1
tasklet

Execution Time (ms

800
600
400
200

0
VA

EZADPU-CPU

= CPU-DPU
(I | nter-DPU

[ DPU

N

a=Q=Speedup

oz
"

L7z
S

— N < o0 O
i

#tasklets per DPU

14

12

Speedup

SAFARI
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Strong Scaling: 1 DPU (lI)

3DPU-CPU ZZ3DPU-CPU

ESNCPU-DPU [ - [ 10000 - [ [E=3CPU-DPU

1200

8
1000 D I nter-DPU | _ - " :ggg - _ I nter-DPU 7 (VA, GEMV, SpMV’ SEL, UNI, TS’ \
S wo < 5 e :o| | MLP, NW, HST-S, RED, SCAN-SSA
= = I~ = °
5 5 5 o 5 oo . (Scan kernel), SCAN-RSS (both
g o I A | : g 0 g o . kernels), and TRNS (Step 2 kernel),
- S =IE i o . the best performing number of
0 0 0 0
#tasklets per DPU IG i UaSklets IS 16 )

#tasklets per DPU #tasklets per DPU #tasklets per DPU

8 140000
 omo Tg}fﬁr'opu L7 120000
77 ===V 2 oo ) Speedups 1.5-2.0x as we double the
£ 3 1 a0 2 number of tasklets from 1to 8.
2w 2o - .5 Speedups 1.2-1.5x from 8 to 16,
@ 200 L % 20000 2 since the pipeline throughput
UNI o e e g A e saturates at 11 tasklets
#tasklets per DPU #tasklets per DPU k J
12 s 1600 ggﬂj;gg
1400 I | nter-DPU
B * e 2 1o KEY OBSERVATION 10
g o g g 1000
= 800 A I= 800
RUE A number of tasklets
g 400 g g 400 =
S o : 1% 5 20 greater than 11 is a good

- N < 0 ©
—

MLP = & ¥ © g

=
=3

choice for most real-

#tasklets per DPU #taskletsBer DPU
g = e e s ] world workloads we
DPU (Add) «lemSpeedup (Scan) (== «lemSpeedup (Step 3)
= 2000 Speedup (Add) 7 e 5p 02 15
£ 2000 | o 1E om0 tested (16 kernels out of 19
IE 1500 > 5 o L g
= £ 1500 Sl E 1500 g
£ % | 5| | kernels from 16
5 S 1000 S8 S 1000 <4
- 3 27413 4 b h k it full
2 e . enchmarks), as it fully
0 0 0 0 o a1 ) . .
ReD <~ e kawsa v e e g Lo - utilizes the DPU'’s pipeline.
ttasklets per DPU #tasklets per DPU #tasklets per DPU ttasklets per DPU
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Strong Scaling: 1 DPU (llI)

S do not use intra-DPU
([ synchronization primitives

" VA, GEMV, SpMV, BS, TS, MLP, HST- |

J

kernel), SCAN-RSS (both kernels),
\_synchronization is lightweight

[ In SEL, UNI, NW, RED, SCAN-SSA (Scan |

iy b — ——— e —— )
( BFS, HST-L, TRNS (Step 3) use 0
mutexes, which cause contention
when accessing shared data
\_Structures y
SAFARI 18



Strong Scaling: 1 DPU (IV)

HST-L = & ¥ ® 3
#tasklets per DPU

Z=1DPU-CPU
1800 - E=9 CPU-DPU 6
1600 - I | nter-DPU
> I DPU - 5
£ 1400 4B w@=speedup
o 1200 4
g 1000
s |_
S 600
(&)
L 400
L
200
0

" VA, GEMV, SpMV, BS, TS, MLP, HST- |
S do not use intra-DPU
(_synchronization primitives y

[ In SEL, UNI, NW, RED, SCAN-SSA (Scan R
kernel), SCAN-RSS (both kernels),
\_synchronization is lightweight

J
( BFS, HST-L, TRNS (Step 3) use B
mutexes, which cause contention
when accessing shared data
\_Structures y

KEY OBSERVATION 11

Intensive use of intra-DPU
synchronization across
tasklets (e.g., mutexes,
barriers, handshakes)

may limit scalability,
sometimes causing the best
performing number of

tasklets to be lower than
11.
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Strong Scaling: 1 DPU (V)

(SCAN-SSA (Add kernel) is not )
compute-intensive. Thus,
performance saturates with

=|

oy | |ess that 11 tasklets (recall
4 DPU-CPU ™% CPU-DPU
(I Inter -DPU mmm DPU (Scan) STREAM ADD).
o g peedup (Sean) 7 GS shows similar behavior )
£ 2000 {77 [ ©
2 ‘ s
s e B Bl N KEY OBSERVATION 12
S 1000 - g -3 38
= ; |,V Most real-world
9 500 - qra workloads are in the
L
0 4 Lo compute-bound region of

SCAN-SSA = & S o © the DPU (all kernels except
#tasklets per DPU SCAN-SSA (Add kernel) and
BS), i.e., the pipeline
latency dominates the
MRAM access latency.
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Strong Scaling: 1 DPU (VI)

(The amount of time spent on CPU- A
DPU and DPU-CPU transfers is low
compared to the time spent on DPU
_execution )
==1DPU-CPU E==9 CPU-DPU (Step 1) [ ) \
(I Inter-DPU I DPU (Step 3) TRNS performs step 1 of the matrix
oo gy Seecdw(Biens) | transposition via the CPU-DPU
— 14000 1 10 transfer.
£ 15000 - Using small trapsfers (8 elements)
g 10000 ~_ 8 a Soe(sj nc.)(;ctixplmt full CPU-DPU
= 8000 - y 68 \ [Danaw! )
.S 6000 - . &
S
g 4000 - , KEY OBSERVATION 13
& 2000 - I
0 - L0 Transferring large data
TRNS = © ¥ = 3 chunks from/to the host

#tasklets per DPU

CPU is preferred for input
data and output results due
to higher sustained CPU-

DPU/DPU-CPU bandwidths.
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Strong Scaling: 1 Rank (I)

* Strong scaling
experiments on 1 rank

- We set the number of
tasklets to the best
performing one

- The number of DPUs
is1, 4,16, 64

- We show the
breakdown of
execution time:

* DPU: Execution time
on the DPU

* Inter-DPU: Time for
inter-DPU
communication via
the host CPU

* (CPU-DPU: Time for
CPU to DPU transfer
of input data

* DPU-CPU: Time for
DPU to CPU transfer
of final results

- Speedup over 1 DPU

2500

“» 2000

1500

1000

500

Execution Time (ms

NW

FEZADPU-CPU
E=I1CPU-DPU
[T | nter-DPU
[ DPU
a=Q=Speedup

w,
N\

< o}
—

#DPUs

20
18
16

=
N

o
Speedup

o N B O

SAFARI

22



Strong Scaling: 1 Rank (II)

E=NCPU-DPU
(I | nter-DPU

Execution Time (ms)

DP!

E=3CPU-DPU

=LIDPU-CPU LZJDPU-CPU
_ |==acPu-opu [ ==3IcPu-oPU [y

I inter-DPU | (%) I | nter-DPU

=T " m— 0 60 1200
|-°-Seedu ' | [=©=Speedup L 5o 1000

/"VA, GEMV, SpMV, SEL, UNI, BS, TS,
MLP, HST-S, HSTS-L, RED, SCAN-
SSA (both kernel), SCAN-RSS (both
kernels), and TRNS (both kernels)
scale linearly with the number of

kDPUS

~

J

Scaling is sublinear for BFS and NW

-
BFS suffers load imbalance due to

irregular graph topology
\

.

NW computes a diagonal of a 2D
matrix in each iteration.
More DPUs does not mean more

-9
L8
= m = -
£ 300 E £
o ) ) 6
250 a
£ 40 € L a £ L s 3
Z 200 ' ' b
S s 5 L4 g
S 150 =] = &
3 L 3 3 M3
50 /1 r 1
o 10 L L O O 0
UNI - ¥ 8 3 BS - ¥ 8 3 s - ¥ &8 3 BFS - Y 5 3
140
= T 2000 16 =
é é 14 E 120 50
[ [ [ ()
£ £ 2 offf £ 10 sl € w08
= = 0ol = 80 30 R0 E 250 3
5 § 1000 il 5 | B 30 8
E E 4 | ERS L2008 5 v
o o o o 150 20
2 = ) ] ] 40 o 100
% mmuum X 500 X 10 X "
B 50
= L Lo
Inter-DPU -DPtJr(Scan) I inter-0PU - DPU’lScan) I nter DPU -DPUV(Step 3)
DPU (Add) el Speedup (Scan) E=mDPU (Reduce) === Speedup (Scan) EEmOPU (Step 2) wle=Speedup (Step 3)
Speedup (Add) 70 | @u=Speedup (Red.) 70 e@==Speedup (Step 2 70
z 700 4? 60 2 6.E+02 60 z 7.E+05 3 14 60
= 60 ARECN | o} N | ] IRk
£ 500 / 20 S £ 4E402 // 10 2 £ 5.E+05 0 =
= 400 § T l SHIT acv0s N / 3
30 @ 7]
§ 300 218 302 0 SHNS 3 eios / 0g
§ 200 20 § 2.E+02 20 g 26405 20
~ 3 100 10 S 1E+02 10 & 1.6+05 10
@ 0 0 0.E+00 0 0.E+00 0
RED =~ ~ g g CAN-SSA ™ Y 98 CAN-RSS ~ Y 9§ RNS = Y & 3
#DPUs #DPUs #DPUs #DPUs

\parallelization in shorter diagonals.

J
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Strong Scaling: 1 Rank (l1I)

VA, GEMV, SpMV, BS, TS, TRNS do
not need inter-DPU synchronization

SEL, UNI, HST-S, HST-L, RED, SCAN-
SSA, SCAN-RSS need inter-DPU
synchronization but 64 DPUs still
obtain the best performance

BFS, MLP, NW require heavy inter-
DPU synchronization, involving
DPU-CPU and CPU-DPU transfers

SAFARI 24



Strong Scaling: 1 Rank (1V)

/"VA, GEMV, TS, MLP, HST-S, HST-L, )
RED, SCAN-SSA, SCAN-RSS, TRNS

use parallel transfers.

CPU-DPU and DPU-CPU transfer
times decrease as we increase the
Qumber of DPUs Y,

(BS, NW use parallel transfers but )
do not reduce transfer times:
- BStransfers a complete array

to all DPUs.
- NW does not use all DPUs in all

\ iterations )
~

-
SpMV, SEL, UNI, BFS cannot use
parallel transfers, as the transfer

_size per DPU is not fixed

PROGRAMMING
RECOMMENDATION 5

Parallel CPU-DPU/DPU-CPU
transfers inside a rank of DPUs
are recommended for real-

world workloads when all
transferred buffers are of the same
size.

SAFARI




Strong Scaling: 32 Ranks (1)

* Strong scaling
experiments on 32
rank

- We set the number

of tasklets to the
best performing one

- The number of DPUs
is 256, 512, 1024,
2048

- We show the
breakdown of
execution time:

* DPU: Execution
time on the DPU

* |nter-DPU: Time for
inter-DPU
communication via
the host CPU

* We do not show
CPU-DPU/DPU-CPU
transfer times

- Speedup over 256
DPUs

SAFARI

1200

1000

800

600

400

Execution Time (ms)

200

MLP

[ DPU

=Q=Speedup

I
@

O <
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(@ o

i

#DPUs
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Speedup
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Strong Scaling: 32 Ranks (II)

/"VA, GEMV, SEL, UNI, BS, TS, MLP, )
HST-S, HSTS-L, RED, SCAN-SSA
(both kernel), SCAN-RSS (both
kernels), and TRNS (both kernels)
scale linearly with the number of
\_DPUs )
p

~

SpMV, BFS, NW do not scale linearly

due to load imbalance
g )

KEY OBSERVATION 14

Load balancing across
DPUs ensures linear
reduction of the
execution time spent on

the DPUs for a given
problem size, when all
available DPUs are used (as
observed in strong scaling
experiments).
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Strong Scaling: 32 Ranks (llI)

SEL, UNI, HST-S, HST-L, RED only
need to merge final results

KEY OBSERVATION 15

The overhead of merging

partial results from DPUs in
the host CPU is tolerable across
all PrIM benchmarks that need it.

BFS, MLP, NW, SCAN-SSA, SCAN-RSS
have more complex communication

KEY OBSERVATION 16

Complex synchronization
- - _ across DPUs (i.e., inter-DPU
synchronization involving two-

way communication with the
host CPU) imposes significant
overhead, which limits
scalability to more DPUs.
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Weak Scaling: 1 Rank

KEY OBSERVATION 17
0 5Py N Equally-sized problems
600 4 = CPU-DPU y/ assigned to different DPUs
é o0 J MInter-DPU / and little/no inter-DPU
w mDPU . .
2 oo . V A s.ynchromzatlon_lead to
= / w linear weak scaling of the
S 300 - - VA § \ execution time spent on the
g 200 - /4‘: \ \ DPUs (i.e., constant execution
S 100 N time when we increase the
. number of DPUs and the
VA o < © < dataset size accordingly).
— (Vo)

KEY OBSERVATION 18

Sustained bandwidth of
parallel CPU-DPU/DPU-CPU

transfers inside a rank of
DPUs increases sublinearly
with the number of DPUs.
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CPU/GPU: Evaluation Methodology

* Comparison of both UPMEM-based PIM systems to
state-of-the-art CPU and GPU

- Intel Xeon E3-1240 CPU
- NVIDIA TitanV GPU

* We use state-of-the-art CPU and GPU counterparts of
PriM benchmarks

- https://github.com/CMU-SAFARI/prim-benchmarks

* We use the largest dataset that we can fit in the GPU
memory

* We show overall execution time, including DPU kernel
time and inter DPU communication
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CPU/GPU: Performance Comparison (1)
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The 2,556-DPU and the 640-DPU systems outperform the CPU for

all benchmarks except SpMV, BFS, and NW

The 2,556-DPU and the 640-DPU are, respectively, 93.0x and 27.9x

faster than the CPU for 13 of the PrIM benchmarks
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CPU/GPU: Performance Comparison (Il)

More PIM-suitable workloads (1)

Less PIM-suitable workloads (2)

The 2,556-DPU outperforms the GPU
for 10 PriIM benchmarks with an average of 2.54x

The performance of the 640-DPU is within 65%
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CPU/GPU: Performance Comparison (lI)
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KEY OBSERVATION 19

The UPMEM-based PIM system can outperform a state-of-the-art GPU
on workloads with three key characteristics:
1. Streaming memory accesses

GMEAN

2. No or little inter-DPU synchronization

3. No or little use of integer multiplication, integer division, or floating
point operations

These three key characteristics make a workload potentially suitable to

the UPMEM PIM architecture.
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CPU/GPU: Energy Comparison (I)
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Energy savings over CPU (log scale)
VA

SEL

UNI
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HST-S
HST-L
RED

SCAN-SSA
SCAN-RSS

TRNS

More PIM-suitable workloads (1)

GEMV
SpMV
TS
BFS
MLP
NW

Less PIM-suitable workloads (2)

GMEAN (1)

GMEAN (2)

The 640-DPU system consumes on average 1.64x less energy than
the CPU for all 16 PrIM benchmarks

For 12 benchmarks, the 640-DPU system provides energy savings

GMEAN

of 5.23x over the CPU
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CPU/GPU: Energy Comparison (II)

256,00 OCPU  EIGPU 640 DPUs | |
@ 128.00 - — L |
T 64.00 - : ] :
“» 3200 4 ! : B
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S 2.00 - i |
= 1.00 : ;
> 0.50 - : :
° 0.5 A : :
o 0.13 - ! !
% 86 7] I 1 1
8 KEY OBSERVATION 20 E
]
S The UPMEM-based PIM system provides large energy savings over a Z
state-of-the-art CPU due to higher performance (thus, lower static energy)
and less data movement between memory and processors.
The UPMEM-based PIM system provides energy savings over a state-of-
the-art CPU/GPU on workloads where it outperforms the CPU/GPU.
This is because the source of both performance improvement and energy
savings is the same: the significant reduction in data movement between
the memory and the processor cores, which the UPMEM-based PIM
system can provide for PIM-suitable workloads.
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Outline

(« Introduction b
- Accelerator Model

. - UPMEM-based PIM System Overview )

(¢ UPMEM PIM Programming )
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth )

(» DRAM Processing Unit h
- Arithmetic Throughput

. - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity )

(+ Evaluation b
- Strong and Weak Scaling

- Comparison to CPU and GPU Y

* Key Takeaways
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Key Takeaway 1
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KEY TAKEAWAY 1

NV X D

The throughput
saturation point is as low
as ¥a OP/B,

i.e., 1integer addition per
every 32-bit element
fetched

The UPMEM PIM architecture is fundamentally compute bound.

As aresult, the most suitable workloads are memory-bound.
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Key Takeaway 2

1024.000

o CPU GPU

640 DPUs

2556 DPUs

256.000 -
64.000 -
16.000 -
4.000 -
1.000

0.250 -
0.063 -
0.016 -
0.004 -
0.001

Speedup over CPU (log scale)

VA

SEL

UNI

BS

HST-S
HST-L

RED
SCAN-SSA
SCAN-RSS

TRNS

More PIM-suitable workloads (1)

KEY TAKEAWAY 2
The most well-suited workloads for the UPMEM PIM architecture

use no arithmetic operations or use only simple operations (e.g.,
bitwise operations and integer addition/subtraction).

SAFARI

GEMV
SpMV
TS
BFS
MLP
NW

Less PIM-suitable workloads (2)

GMEAN (1)

GMEAN (2)

GMEAN
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Key Takeaway 3

_ NV3IND
[ A
: (z) NVIWD
o Fg g FFFFyFFrFrd
_ (T) NVIWD
........................ —
o
(7,)
FFEFFFFF e]
_ MN m
| . FEEEEEFEFEFE m
_ d1N o
S
] Q
_ S4d o
©
L A x
: Sl 3
1
(i A N
_ AWdS a
a
(2] | i
Q
2 AW3ID =
i Y R A UL SN P S S P B
(o}
LN
LN
(V]
| & EEEFEFEFFEFF
¥ _ SNY1
| A i A \1'—'
_ SSY-NVIS =
(7] (7]
w | A A A w
o | VSS-NVIS | 8
o -z
< FFFFFFEFFFyFrFyFryFyrFyr) S
e} _ a3y m
" i h
_ 7-1SH o]
©
=
[ A A A A u
= : S-1SH ]
O >
D " . A A —
_ Sd o
g
[ i o
I E INN S
@ FFFFFFFFFg gy FFFFFrFr)
o _ 13S
" i
i VA
O OO 0O 00O Mm W
OO0 OO0 00O WMNMmMuLVU-HOOoO
©Co0oooonNOOoOoOo
T O <FT O T H OO O OO
N 1N O
(@ Mo\
—

(1e3s 80]) NdD 49n0 dnpaads

KEY TAKEAWAY 3

=
J—y
A
=
=
=
o
=
<)
=
wd
o
=
2
.=
9
S
k
o
=)
=
=
<]
=
=
?
O
=
wd
2]
=
=
<)
=
=

7))
—
A
an]

7]

7]

(@)

S

()

«

e

o
u
b

«

()
u

S

=

=]

(S

o

e

B

(@)

Q
o
)
b
“

Q
=

=]

op

[<B)

9

L

|

-
)

()

Q
b
u
=

1)

)

4+

_—
=
(@)
ﬁ
°)
=
=
=]
£
£
(@)
()
=
(=
2
B
Q
)
=
&

39

SAFARI



Key Takeaway 4

KEY TAKEAWAY 4

e UPMEM-based PIM systems outperform state-of-the-art CPUs in
terms of performance (by 23.2x on 2,556 DPUs for 16 PrIM
benchmarks) and energy efficiency on most of PrIM benchmarks.

e UPMEM-based PIM systems outperform state-of-the-art GPUs on

a majority of PrIM benchmarks (by 2.54x on 2,556 DPUs for 10
PrIM benchmarks), and the outlook is even more positive for future
PIM systems.

e UPMEM-based PIM systems are more energy-efficient than state-
of-the-art CPUs and GPUs on workloads that they provide
performance improvements over the CPUs and the GPUs.
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Understanding a Modern PIM Architecture

Benchmarking a New Paradigm:
Experimental Analysis and
Characterization of a Real
Processing-in-Memory System

JUAN GOMEZ-LUNA', I1ZZAT EL HAJJ?, IVAN FERNANDEZ'-3, CHRISTINA GIANNOULA' 4,
GERALDO F. OLIVEIRA', AND ONUR MUTLU

'ETH Ziirich

% American University of Beirut
3Univc.arsity of Malaga

“National Technical University of Athens

Corresponding author: Juan Gémez-Luna (e-mail: juang @ethz.ch).

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
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Short arXiv Version

Benchmarking Memory-Centric Computing Systems:
Analysis of Real Processing-in-Memory Hardware

Juan Gomez-Luna Izzat El Hajj Ivan Fernandez Christina Giannoula Geraldo E. Oliveira Onur Mutlu
ETH Ziirich American University University National Technical ETH Ziirich ETH Ziirich
of Beirut of Malaga University of Athens

https://arxiv.org/pdf/2110.01709.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
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Long arXiv Version

Benchmarking a New Paradigm: An Experimental Analysis

of a Real Processing-in-Memory Architecture

Juan Gémez-Luna! Izzat Fl Hajj? Ivan Fernandez!* Christina Giannoula®*
]]

Geraldo F. Oliveira! Onur Mutlu!
IETH Ziirich  2American University of Beirut  *University of Malaga  *National Technical University of Athens

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

SAFARI 43


https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

PrIM Repository

* All microbenchmarks, benchmarks, and scripts
* https://github.com/CMU-SAFARI/prim-benchmarks

H CMU-SAFARI/ prim-benchmarks @ Unwatch ~ 2 {7 star 2 % Fork 1

<>

I_Y

Jaty

Code () Issues 1 Pull requests (*) Actions ["1] Projects [ wiki () Security [~ Insights 51 Settings

main v prim-benchmarks / README.md Go to file

Juan Gomez Luna PrIM -- first commit Latest commit 3desb49 9 days ago O History

1 contributor

168 lines (132 sloc) 5.79 KB Raw Blame G 2 O

PrIM (Processing-In-Memory Benchmarks)

PrIM is the first benchmark suite for a real-world processing-in-memory (PIM) architecture. PrIM is developed to evaluate,
analyze, and characterize the first publicly-available real-world processing-in-memory (PIM) architecture, the UPMEM PIM
architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called
DRAM Processing Units (DPUs), integrated in the same chip.

PrIM provides a common set of workloads to evaluate the UPMEM PIM architecture with and can be useful for programming,
architecture and system researchers all alike to improve multiple aspects of future PIM hardware and software. The workloads
have different characteristics, exhibiting heterogeneity in their memory access patterns, operations and data types, and
communication patterns. This repository also contains baseline CPU and GPU implementations of PrIM benchmarks for
comparison purposes.

Prim also includes a set of microbenchmarks can be used to assess various architecture limits such as compute throughput and
memory bandwidth.
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An Experimental Evaluation of

Machine Learning Training

on a Real Processing-in-Memory System

Juan Gédmez Luna, Yuxin Guo, Sylvan Brocard,
Julien Legriel, Remy Cimadomo, Geraldo F. Oliveira,
Gagandeep Singh, Onur Mutlu

https://arxiv.org/pdf/2207.07886.pdf
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ISPASS 2023 Version

* Presented at ISPASS 2023

Evaluating Machine Learning Workloads
on Memory-Centric Computing Systems

Juan Gémez-Luna! Yuxin Guo' Sylvan Brocard’* Julien Legriel®

Remy Cimadomo? Geraldo F. Oliveira! Gagandeep Singh! Onur Mutlu!
IETH Zirich 2UPMEM

https://people.inf.ethz.ch/omutlu/pub/MLonUPMEM-PIM ispass23.pdf
Source code: https://github.com/CMU-SAFARI/pim-ml
https://youtu.be/60pkal5AeM4
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Executive Summary

* Training machine learning (ML) algorithms is a computationally expensive
grocess, frequently memory-bound due to repeatedly accessing large training
atasets

* Memory-centric computing systems, i.e., with Processing-in-Memory (PIM)
capabilities, can alleviate this data movement bottleneck

* Real-world PIM systems have only recently been manufactured and
commercialized
- UPMEM has designed and fabricated the first publicly-available real-world PIM
architecture
* Our goal is to understand the potential of modern general-purpose PIM
architectures to accelerate machine learning training

* Our main contributions:
- PIM implementation of several classic machine learning algorithms: linear
regression, logistic regression, decision tree, K-means clustering
- Workload characterization in terms of quality, performance, and scaling
- Comparison to their counterpart implementations on processor-centric systems
(CPU and GPU)
* PIM version of DTRis 27x [ 1.34x faster than the CPU | GPU version, respectively

* PIM version of KME is 2.8x [ 3.2x faster than the CPU / GPU version, respectively
- Source code: https://github.com/CMU-SAFARI/pim-m|

* Experimental evaluation on a real-world PIM system with 2,524 PIM cores @
425 MHz and 158 GB of DRAM memory

* Key observations, takeaways, and recommendations for ML workloads on
general-purpose PIM systems
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Machine Learning Workloads

Machine learning
Unsupervised
learning

* Machine learning training
with large amounts of data
is a computationally
expensive process, which
requires many iterations to
update an ML model’s e
parameters e,

Supervised Reinforcement
learning learning

* Frequent data movement between memory and processing
elements to access training data

* The amount of computation is not enough to amortize the
cost of moving training data to the processing elements

- Low arithmetic intensity
- Low temporal locality
- Irregular memory accesses
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Machine Learning Workloads: Our Goal

* Our goal is to study and analyze
how real-world general-purpose
PIM can accelerate ML training

* Four representative ML

algorithms: linear regression,
logistic regression, decision tree,
K-means - 30 etk compute perormance
* Roofline modelto g 1
quantify the memory g o]
boundedness of CPU &
versions of the four & | :
workloads *301 0.1 ; 10

Arithmetic Intensity (OP/B)

All workloads fall in the memory-bound area of the Roofline
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Processing-in-Memory (PIM)

* PIM is a computing paradigm that advocates for memory-
centric computing systems, where processing elements are
placed near or inside the memory arrays

* Real-world PIM architectures are becoming a reality

- UPMEM PIM, Samsung HBM-PIM, Samsung AXDIMM, SK Hynix AiM,
Alibaba HB-PNM

* These PIM systems have some common characteristics:

1. Thereis a host processor (CPU or GPU) with access to (1) standard
main memory, and (2) PIM-enabled memory

2. PIM-enabled memory contains multiple PIM processing elements
(PEs) with high bandwidth and low latency memory access

3. PIM PEs run only at a few hundred MHz and have a small number
of registers and small (or no) cache/scratchpad

4. PIM PEs may need to communicate via the host processor
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A State-of-the-Art PIM System

Standard Main Memory

o A
(Host CPU /7
/7 Memory Array
gl g 4 (Rank or Bank)
AL
°f 3 = . P
[} .
(4] Instruction |Scratchpad/
-5 .t:u\\': —— Memory ][ Memory Memory
(] - Array Array
) il e D
| PIM PE PIM PE
[ \lPIM Processing Elements

M_-

PIM-enabled Memory

* In our work, we use the UPMEM PIM architecture

- General-purpose processing cores called DRAM Processing
Units (DPUs)
* Up to 24 PIM threads, called tasklets

* 32-bit integer arithmetic, but multiplication/division are
emulated¥®, as well as floating-point operations

- 64-MB DRAM bank (MRAM), 64-KB scratchpad (WRAM)
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2,560-DPU UPMEM PIM System
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o UPMEM DIMMs coexist with
regular DDR4 DIMMs

- 2 memory controllers/socket
(3 channels each)

- 2 conventional DDR4 DIMMs
on one channel of one
controller

PI/
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* There are some faulty DPUs in the system that we use in our 1 1 2
SA FA R’ experiments. Thus, the maximum number of DPUs we can use is 2,524
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ML Training Workloads

* Four widely-used machine learning
workloads:

Machine learning
Unsupervised
learning

Supervised Reinforcement
learning learning

Linear reg i Logistic reg i K-means

Linear regression (LIN)

Logistic regression (LOG)

Decision tree (DTR)
K-means clustering (KME)

* Diversity of our ML training workloads:
- Memory access patterns
- Operations and datatypes
- Communication/synchronization

Learning Avplication | Alsorithm Short name Memory access pattern Computation pattern Communication/synchronization
approach PP & Sequential | Strided | Random Operations | Datatype Intra PIM Core | Inter PIM Core
Regression Linear Regression LIN Yes No No mul, add float, int32_t barrier Yes
Supervised Classification Logistic Regression LOG Yes No No mul, add, exp, div | float, int32_t barrier Yes
Decision Tree DTR Yes No No compare, add float barrier, mutex Yes
Unsupervised | Clustering K-Means KME Yes No No ul, compare, add | int16_t, int64_t| barrier, mutex Yes
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Linear Regression

* Linear regression (LIN)is a supervised learning algorithm where
the predicted output variable has a linear relation with the input
variable

- We use gradient descent as the optimization algorithm to find the
minimum of the loss function

* Our PIM implementation divides the training dataset (X) equally
among PIM cores

- PIM threads compute dot products of row vectors and weights

- Each dot product is compared to the observed value y to compute a
partial gradient value

- Partial gradient values are reduced and sent to the host

* Four versions of LIN:
- LIN-FP32: training datasets of 32-bit real values
- LIN-INT32: 32-bit fixed-point representation
- LIN-HYB: hybrid precision (8-bit, 16-bit, 32-bit)
- LIN-BUI: custom multiplication based on 8-bit built-in
multiplication
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Custom Integer Multiplication

% 1 result = X[i] * W[i];
U
- 1l 1bs r3, r2, 0
S 2 1sl_add r2, r20, rl, 1
L% 3 lhs r4, r2, 0
£ Y % 4 mul ul ul r2, r4, r3, small, 0x80000378
ﬁ: S = 5 mul_sh ul r5, r4, r3
= Y 6 1sl_add r2, r2, r5, 8
8 E 5 7 mul sh ul r5, r3, r4
8 1sl add r2, r2, r5, 8
9 mul sh sh r3, r4, r3
10 1sl add r2, r2, r3, 16, true, 0x80000378
v 1 builtin mul sl ul rrr(templ, X[i1], W[i]);
g 2 builtin mul sl sh rrr(temph, X[1], W[i]);
O c U 3 result = (temph << 8) + templ;
o0 O
= 1 1bs r4, rd, 0
'é S« 2 1sl add r5, r20, r3, 1
o5 £ 3 1lhs r5, r5, 0
"3 2 4 mul sl ul r6, r4, r5
3 S E 5 mul sl sh r4, r4, r5
- 6 add r2, r6, r2
7 1sl add r2, r2, r4, 8
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Logistic Regression

* Logistic regression (LOG) is a supervised learning algorithm used
for classification, which outputs probability values for each input
observation variable or vector

- Sigmoid function to map predicted values to probabilities

* Our PIM implementation follows the same workload distribution
pattern as our linear regression implementation

e Six versions of LOG:

- LOG-FP32: training datasets of 32-bit real values, Sigmoid
approximated with Taylor series

- LOG-INT32: 32-bit fixed-point representation, Taylor series
- LOG-INT32-LUT: Sigmoid calculation with a lookup table (LUT)
e LOG-INT32-LUT(MRAM): LUT in MRAM
e LOG-INT32-LUT(WRAM): LUT in WRAM
- LOG-HYB-LUT: hybrid precision (8-bit, 16-bit, 32-bit), LUT in WRAM

- LOG-BUI-LUT: custom multiplication based on 8-bit built-in
multiplication, LUT in WRAM
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LUT-based Sigmoid Calculation

* We take advantage of the fact that Sigmoid is symmetric
* The LUT size depends on the boundary (e.g., 20) and the number of bits
for the decimal part of the fixed-point representation (e.g., 10)
- 20 X 1024 entries (with 16-bit entries) = 40 KB

When —20 < x <0, LUT output =1 — LUT (—x)
A When 0 < x < 20, LUT output = LUT (x)

1 I ;
' [ sigmoid(x)
: I e LUT(x), MRAM
— , | LUT(x), WRAM
ke, , '
o |
g 0 5 | I
® : I
! I
! I
: I
|
° L |
-40 -30 * -20 -10 0 10 20 Y 30 40
x <20, LUT output =0 A x > 20, LUT output =1
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Decision Tree

* Decision trees (DTR) are tree-based methods used for classification and
regression, which partition the feature space into leaves, with a simple
prediction model in each leaf

* Our PIM implementation partitions the training set among PIM cores,
which compute partial Gini scores to evaluate the host’s split decisions
* The host sends commands to the PIM cores:
- Split commit to split a tree leaf
- Split evaluate to evaluate a split
- Min-max to query minimum/maximum values of a feature in a tree leaf

Dataset:

* Data layout in split commit to 5 points, 2 features: p0 = (0, 11); p1 = (8, 4);p2 = (7,9); p3 = (2,6):p4 =(5,2
maximize memory bandwidth Memory layout Decision tree
with streaming accesses e -

* This data layout also ensures Loaf0 Lest0
memory accesses in streaming . v e e fresee®
in split evaluate o2 s a7 n]el2]%]>

Leaf 1 Leaf 2 Leaf 1 Leaf 2
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K-Means Clustering

* K-means (KME) is an iterative clustering method used to find
groups in a dataset which have not been explicitly labeled

* Our PIM implementation distributes the dataset evenly over
the PIM cores

 PIM threads evaluate which centroid is the closest one to
each point of the training set

- Counter and accumulator per coordinate (per centroid)
* Then, the host recalculates the centroids

* Convergence to a local optimum when the updated
centroid’s coordinates are within a threshold (Frobenius

norm)
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Evaluation Methodology

* Synthetic and real datasets

ML Workload

Synthetic Datasets’

Strong Scaling (1 PIM core | 256-2048 PIM cores)

| Weak Scaling (per PIM core)

Real Datasets

Linear regression

2,048 samples, 16 attr. (0.125 MB) | 6,291,456 samples, 16 attr. (384 MB)

2,048 samples, 16 attr. (0.125 MB)

SUSY [232, 233]

Logistic regression

2,048 samples, 16 attr. (0.125 MB) | 6,291,456 samples, 16 attr. (384 MB)

2,048 samples, 16 attr. (0.125 MB)

Skin segmentation [234]

Decision tree

60,000 samples, 16 attr. (3.84 MB) | 153,600,000 samples, 16 attr. (9830 MB)

600,000 samples, 16 attr. (38.4 MB)

Higgs boson [232, 235] | Criteo [236]

K-Means

10,000 samples, 16 attr. (0.64 MB) | 25,600,000 samples, 16 attr. (1640 MB)

100,000 samples, 16 attr. (6.4 MB)

Higgs boson [232, 235] | Criteo [236]

T Format = Samples (dataset elements), Attributes (Size in MB).

* Evaluated systems

- UPMEM PIM system with 2,524 PIM cores (@ 425 MHz and 158 GB
of DRAM

- Intel Xeon Silver 4215 CPU
- NVIDIA A100 GPU

* We evaluate:
- Quality metrics
- Performance of PIM kernels
- Performance scaling
- Comparison to CPU and GPU

SAFARI
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2,560-DPU UPMEM PIM System

Main Memory
\\

A——————————

- Chip |\ Chip )| Chip |\ Chip || Chip || Chip || Chip || Chip
T e e e e e o o)
chip || chip )| chip || chip || chip || chip || chip )| chip

y

Host
CPU O

PIM-enabled Memory

Main Memory

)

N
(o —— ——

a.| | chip )\ chip )| chip | chip | chip )| chip )| chip )| chip
e e e e e e e )
chip )\ chip )| chip | chip || chip )| chip )| chip )| chip )} /

x2

A

Host
CPU 1

\\
S

(PIM PIM PIM PIM PIM PIM PIM
.| | chip || chip || chip ip || chip Chip || Chip
PIM PIM PIM PII PIM PIM PIM
Chip || Chip || Chip || Chi Chip Chip || Chip
¥ x10
0

PIM-enableigyM
160 GB

« 20 UPMEM DIMMs of 16
chips each (40 ranks)

* Dual x86 socket
o UPMEM DIMMs coexist with
regular DDR4 DIMMs

- 2 memory controllers/socket
(3 channels each)

- 2 conventional DDR4 DIMMs
on one channel of one
controller

PI/

A

* There are some faulty DPUs in the system that we use in our 1 2 3
SA FA R’ experiments. Thus, the maximum number of DPUs we can use is 2,524
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Evaluation: Quality Metrics: LIN

* Linear regression

_52.56 53.16 53.70
LIN Versions

HMH@WHMMW e

‘ H H H |o| |O flattens after
500
iterations

o N B O
I |

— o

i

o
o

o
~

o

o
[

o

Training Error Rate
(%)

LN
(@]

o
~

LN

o

LIN-INT32 LIN-HYB & LIN-BUI

LIN-FP32

[ Training error rate of LIN-FP32 is the same as the CPU version

For the integer versions, the training error rate remains
low and close to that of LIN-FP32
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Evaluation: Quality Metrics: LOG

* Logistic regression

LOG-INT32

LOG-FP32

LOG-INT32-LUT

(MRAM)

LOG-INT32-LUT

g ig : (a) LOG Versions nnnn_ 1412
=2 33H nnnm:-sumﬂnnnnﬁﬁuﬂﬂﬂnnnnﬁ-;uﬂﬂﬂnnnn;-su ”M
§  [ARERMAARAERARETRARETARE R

LOG-HYB-LUT

(WRAM)

(WRAM) & LOG-
BUI-LUT (WRAM)

20 4
15 -

Wi

10

(b)

O

TRREE

LOG-HYB-LUT

(WRAM) & LOG-
BUI-LUT (WRAM)

Training error rate of LOG-FP32 is the same as the CPU version

LUT-based versions obtain lower training error rates than
LOG-INT32, since they use exact values, not approximations

J

Reduced-precision datatypes increase the training error rate,

which heavily depends on the number of

decimal numbers of the samples (e.g., 4 in (a), 2 in (b))
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Evaluation: Quality Metrics

* Linear regression
- Training error rate of LIN-FP32 is the same as the CPU version
- Forinteger versions, it remains low and close to that of LIN-FP32
* Logistic regression
- LUT-based versions obtain lower training error rates that LOG-
INT32, since they use exact values, not approximations

* Decision tree
- Training accuracy only slightly lower than that of the CPU version

* K-means clustering

- Same Calinski-Harabasz score and adjusted Rand index of PIM and
CPU versions

We maintain the accuracy of all workloads
(or keep it close to the CPU baseline)
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Evaluation: Analysis of PIM Kernels (1)

* Linear regression

All versions saturate at 11 or
more PIM threads

Fixed-point representation
accelerates the kernel by an
order of magnitude over FP32

Key Takeaway 1. Workloads
with arithmetic operations or
datatypes not natively

supported by PIM cores run at
low performance due to
instruction emulation (e.g., FP
in UPMEM PIM).

60000

2 50000 {o (a) LIN-FP32

- 40000 - —O—LIN-FP32
£ 30000 -

= 20000 -

T 10000 - 4550

B 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
h4
s 123456 7 8 9101112131415161718192021222324
e Number of PIM Threads (per PIM Core)
5000 800
— (b) LIN INT Versions | e00 A 457
£ 4000 |
< —O— LINAINT32 400 1 324
§ 3000 - LIN-HYB 200 1
5 LIN-BUI 259
€ 2000 0+
2 /' 135 7 9111315171921 23
= 1000 - T
T RS S = = e
0

123456 7 8 9101112131415161718192021222324
Number of PIM Threads (per PIM Core)

Recommendation 1. Use fixed-
point representation, without

much accuracy loss, if PIM cores
do not support FP.
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Evaluation: Analysis of PIM Kernels (II)

* Linear regression

2 50000 {q (a) LIN-FP32
" 40000 + ~o—LIN-FP32
LIN-HYB is 41% faster than =z 0w |

LIN-INT32

LIN-BUI provides an
additional 25% speedup

Recommendation 2.
Quantization can take
advantage of native

hardware support.
Hybrid precision can
significantly improve
performance.

60000 |

(O]
c
g 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
s 123456 7 8 9101112131415161718192021222324
e Number of PIM Threads (per PIM Core)
5000 800
— (b) LIN INT Versions | e00 A 457
£ 4000 |
< —O— LINAINT32 400 1 324
ig 3000 A LIN-HYB 200 -
5 LIN-BUI 259
€ 2000 0+
2 / 135 7 9111315171921 23
= 1000 - T
T RS S = = e
0

123456 7 8 9101112131415161718192021222324
Number of PIM Threads (per PIM Core)

Recommendation 3. Programmers/better
compilers can optimize code by leveraging

native instructions (e.g., 8-bit integer
multiplication in UPMEM) .
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Evaluation: Analysis of PIM Kernels (111)

e _p° . 500000
[ LOgIStIC regI’ESSIOn %:88888 Qij\iisions _o_LOG-FP321
. . £ 200000 - 40316 LOG-INT32
Very hlgh kernel time of T 100000 A N\ T
g o +—+—T-—T-——"-"r"—"T"""r——T—rr——rr——rr
LOG-FP32 and LOG- E 12345678 9101112131415161718192021222324
o o & Number of PIM Threads (per PIM Core)
INT32 due to Sigmoid —
5000
I 1 . & (b) LOG LUT Versi
P Emo \+M
£ 3000 || | ioo e et
LOG-INT32-LUT (MRAM) | =7 s e
is 53x faster N .
than LOG_INT32 e 0 I| © T < e = e N S S N ||

1234567 8 9101112131415161718192021222324
Number of PIM Threads (per PIM Core)

Recommendation 4. Convert

computation to memory accesses LOG-HYB-LUT is 28% faster

than LOG-INT32-LUT

by keeping pre-calculated
operation results (e.g., LUTs, LOG-BUI-LUT provides an
memoization) in memory. additional 43% speedup
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Evaluation: Analysis of PIM Kernels (1V)

* Linear regression, logistic regression, decision tree,
K-means clustering

| __ 60000 | __ 500000

£ 50000 (a) LIN-FP32 2 400000 <| (a) LOG 32-bit VersionI |
£ 40000 j(\ I o LIN-FP32 | E5 (\ —oLOG-FP32

The performance of all kernels saturates at 11 or more PIM
threads. In the UPMEM PIM architecture, this means that the
pipeline latency hides the memory latency

| TR A LIN-BUI [ | & L1 | A% — i EZ5 M |

As a result, these kernels are compute-bound
on the UPMEM PIM architecture

__ 40000 __ 30000

£ 30000 1 (a) DR £ (b) KWIE

> < 20000 -

£ 20000 A _O_DTR] £ —O—KME]
= [ .

= 10000 1 = 10000

< £

g 0 T T T T T T T T T T T T T & O T T T T T T T T T T T T T T T T

s 1234567 8 9101112131415161718192021222324 s 1234567 8 9101112131415161718192021222324
e DTR Number of PIM Threads (per PIM Core) e Number of PIM Threads (per PIM Core)
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Evaluation: Analysis of PIM Kernels (V)

Key Takeaway 2. ML workloads that are memory-
bound due to low arithmetic intensity in CPU/GPU
become compute-bound when running on PIM.

Recommendation 6. Maximize the utilization of
PIM cores by keeping their pipeline fully busy.
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Evaluation: Performance Scaling (1)

1to 64 PIM cores

* Weak scaling

PIM kernel time of LLIN,

LOG, and DTR scales
linearly with the
number of PIM cores

KME converges with
fewer iterations on a

larger dataset

The sum of CPU-PIM,

CPU takes less

Inter PIM core, and
than 7% of the total
execution time in all

PIM-

cases
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Evaluation: Performance Scaling (1)

* Strong scaling: 256 to 2,048 PIM cores

PIM-CPU ESSSIPIM-CPU e
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Evaluation: Performance Scaling (1)

* Strong scaling: 256 to 2,048 PIM cores

Key Takeaway 3. ML training workloads, which need
large training datasets, benefit from large PIM-
enabled memory with many PIM cores.
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Comparison to CPU and GPU (1)

* Linear regression and logistic regression LIN

c ___ 100000 100000 100000 100000 100000 100000 - = GPU-CPU
R [ H wol | oo | || [ ] |25
heaVIIy burdened £ 10004 1000 - 1000 - 1000 - 1000 - 1000 -
— EPIM-CPU
When they use 5 100 gr;ir_PPII'\IA\A 100 - 100 100 100 - 100 -
t. th t § 10| @PIM Kernel 10 A 10 A 10 A 10 4 10 4

operations tna 2 . . X . X )

are not natively LIN-FP32 LIN-INT32 LIN-HYB LIN-BUI CPU GPU

supported by the 100000 100000 100000 o~
pp y LOG 10000 - 10000 A 10000 4 10000 -
hardware ﬂ
Several optimizations reduce | Somcema] ﬂ
the execution time considerably L0GINT32  10GFP3y  'OGIELWT MG

Execution Time (ms)

(LIN/LOG up to 10x/3.9x faster than CPU) gljooowoz ljooomoz- 1:0000002 : 12: - ;jﬁjﬁ‘dl
and close the gap with GPU g o 100 100 o0 1| 0 kerne
performance g ﬂ N ﬂ N R
(LIN/LOG still 4x/16x slower than GPU) s L] L1l ;
(WRAM) (WRAM) CPU GPU
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Comparison to CPU and GPU (II)

e Decision tree and K-means with Higgs boson dataset

100000 | EOPIM Kernel | 100000 100000 100000 100000 100000
. EICPU-PIM -
€ 10000 g:,’}f\jfm 10000 - 10000 - € 10000 —— 10000 - 10000 { [
g 1000 1000 4 1000 A qé 1000 4 1000 A 1000 A
: l; OPIM Kernel
'8 100 - 100 A 100 - ‘8 100 A gﬁiﬁ;Pglle 100 - 100 e
10 ] 0| acwor | |8 5o fRPMOU o 0 | | Bouer
L C1GPU Kernel i
1 1 1 ‘—l—l—, 1 1 1
DTR CPU GPU KME CPU GPU
DTR (a) Decision Tree KME (b) K-means
PIM version of DTR is 27x PIM version of KME is 2.8x
faster than the CPU faster than the CPU
version and 1.34x faster version and 3.2x faster
than the GPU version than the GPU version
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Long arXiv Version

* Additional implementation details
* More evaluation results

* Extended observations, takeaways, and
recommendations

An Experimental Evaluation of Machine Learning Training
on a Real Processing-in-Memory System

Juan Gémez-Luna! Yuxin Guo! Sylvan Brocard® Julien Legriel?
Remy Cimadomo? Geraldo F. Oliveira! Gagandeep Singh! Onur Mutlu!

'ETH Ziirich UPMEM

https://arxiv.org/pdf/2207.07886.pdf
Source code: https://github.com/CMU-SAFARI/pim-ml
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Comparison to CPU and GPU (lII)

e Decision tree and K-means with Criteo 1TB dataset
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PIM version of DTR is 62x

faster than the CPU
version and 4.5x faster
than the GPU version

SAFARI

PIM version of KME is 2.7x
faster than the CPU

version and 3.2x faster
than the GPU version
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Comparison to CPU and GPU (1V)

Key Takeaway 4. ML workloads that require mainly
operations natively supported by the PIM architecture,

such as decision tree and K-means clustering,
outperform their CPU and GPU counterparts.
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Long arXiv Version

* Additional implementation details
* More evaluation results

* Extended observations, takeaways, and
recommendations

An Experimental Evaluation of Machine Learning Training
on a Real Processing-in-Memory System

Juan Gémez-Luna! Yuxin Guo! Sylvan Brocard® Julien Legriel?
Remy Cimadomo? Geraldo F. Oliveira! Gagandeep Singh! Onur Mutlu!

'ETH Ziirich UPMEM

https://arxiv.org/pdf/2207.07886.pdf
Source code: https://github.com/CMU-SAFARI/pim-ml
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Short arXiv Version

* Presented at ISVLSI 2022

Machine Learning Training on
a Real Processing-in-Memory System

Juan Gémez-Luna! Yuxin Guo! Sylvan Brocard® Julien Legriel®

Remy Cimadomo? Geraldo F. Oliveira! Gagandeep Singh! Onur Mutlu!
'ETH Ziirich 2UPMEM

https://arxiv.org/pdf/2206.06022.pdf
Source code: https://github.com/CMU-SAFARI/pim-ml
https://youtu.be/CVX8n-X-5wl
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ISPASS 2023 Version

* Presented at ISPASS 2023

Evaluating Machine Learning Workloads
on Memory-Centric Computing Systems

Juan Gémez-Luna! Yuxin Guo' Sylvan Brocard’* Julien Legriel®

Remy Cimadomo? Geraldo F. Oliveira! Gagandeep Singh! Onur Mutlu!
IETH Zirich 2UPMEM

https://people.inf.ethz.ch/omutlu/pub/MLonUPMEM-PIM ispass23.pdf
Source code: https://github.com/CMU-SAFARI/pim-ml
https://youtu.be/60pkal5AeM4
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@ CMU-SAFARI/ pim-ml ' Public X Edit Pins + ®Unwatch 2 - %

Source Code

<> Code O lIssues 11 Pullrequests ® Actions [ Projects © Security |~ Insights @& S

. main - g 1branch © 0 tags otofile  Add file~
 https://github.com/ ~— "7 i
. g el1goluj readme 7d7289d 2 days ago ) 16 commits
CMU-SAFARI/pim-m]| ™™ S

m Linear_Regression upload regression code 2 days ago
m Logistic_Regression upload regression code 2 days ago
B3 dpu_kmeans @ 728518 submodules 2 days ago
scikit-dpu @ 1ddeb5d submodules 2 days ago
[ .gitmodules submodules 2 days ago
[ LICENSE readme 2 days ago
[ README.md readme 2 days ago
‘= README.md y

PIM-ML

PIM-ML is a benchmark for training machine learning algorithms on the UPMEM architecture,
which is the first publicly-available real-world processing-in-memory (PIM) architecture. The
UPMEM architecture integrates DRAM memory banks and general-purpose in-order cores,
called DRAM Processing Units (DPUs), in the same chip.

PIM-ML is designed to understand the potential of modern general-purpose PIM
architectures to accelerate machine learning training. PIM-ML implements several
representative classic machine learning algorithms:

® Linear Regression
® |ogistic Regression
® Decision Tree

e K-means Clustering
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Executive Summary

* Training machine learning (ML) algorithms is a computationally expensive
grocess, frequently memory-bound due to repeatedly accessing large training
atasets

* Memory-centric computing systems, i.e., with Processing-in-Memory (PIM)
capabilities, can alleviate this data movement bottleneck

* Real-world PIM systems have only recently been manufactured and
commercialized
- UPMEM has designed and fabricated the first publicly-available real-world PIM
architecture
* Our goal is to understand the potential of modern general-purpose PIM
architectures to accelerate machine learning training

* Our main contributions:
- PIM implementation of several classic machine learning algorithms: linear
regression, logistic regression, decision tree, K-means clustering
- Workload characterization in terms of quality, performance, and scaling
- Comparison to their counterpart implementations on processor-centric systems
(CPU and GPU)
* PIM version of DTRis 27x [ 1.34x faster than the CPU | GPU version, respectively

* PIM version of KME is 2.8x [ 3.2x faster than the CPU / GPU version, respectively
- Source code: https://github.com/CMU-SAFARI/pim-m|

* Experimental evaluation on a real-world PIM system with 2,524 PIM cores @
425 MHz and 158 GB of DRAM memory

* Key observations, takeaways, and recommendations for ML workloads on
general-purpose PIM systems
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Lecture on PIM-ML

Evaluation: Analysis of PIM Kernels (II)

[ETH zirich
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advantage of native

hardware support.

Hybrid precision can

significantly improve

performance.

Recommendation 3. Programmers/better
compilers can optimize code by leveraging
native instructions (e.g., 8-bit integer
multiplication in UPMEM) .
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Executive Summary

* Processing-in-Memory (PIM) promises to alleviate the data movement
bottleneck

* However, current real-world PIM systems have very constrained hardware,
which results in limited instruction sets
- Difficulty/impossibility of computing complex operations, such as

transcendental functions (e.g., trigonometric, exp, log) and other hard-to-
calculate functions (e.g., square root)

- These functions are important for modern workloads, e.g., activation functions
in machine learning applications

* TransPimLib is the first library for transcendental and other hard-to-
calculate functions on general-purpose PIM systems

- CORDIC-based and LUT-based methods for trigonometric functions, hyperbolic
functions, exponentiation, logarithm, square root, etc.

- Source code: https://github.com/CMU-SAFARI/transpimlib

* We implement TransPimLib for the UPMEM PIM architecture and evaluate
its methods in terms of performance, accuracy, memory requirements, and
setup time

- Three real workloads (Blackscholes, Sigmoid, Softmax)
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How to Calculate Transcendental Functions
in a PIM System?

* Three possible alternatives

[ [Transcen.dental]
) Unit
Host : :
function

N
' ~

Time

N\ !

PIM
kernel

Transcendental
PIM
kernel

function
Pd

rd

vy 7

Host
function

(a) Transcendental
function executed in
special PIM unit
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How to Calculate Transcendental Functions

in a PIM System?

* Three possible alternatives

Time
ceu | piv core Transcen.dental
Unit
Host
function

N
' ~ '
\ .

PIM
kernel

Transcendental
PIM
kernel

rd
rd

.
.
.
vy 7
i

(a) Transcendental
function executed in
special PIM unit

Host
function

_ function 5 -~ CORDIC- and LUT-based
function methods for trigonometric

Host
V function

(b) Transcendental
function executed
in host CPU

Time

CPU |PIM Core CPU | PIM Core

TransPimLib

An open-source library with

functions, hyperbolic
functions, exponentiation,
logarithm...

the transcendental
function in the PIM core

(c) Transcendental
function executed
in PIM core
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TransPimLib: Implementation

* Various methods to calculate transcendental functions:
- Taylor approximation, minimax polynomials, CORDIC, LUTs

* CORDICis aniterative method that uses bit-shifts, additions, and
table lookups

- In rotation mode, CORDIC computes the function value for an input © by
rotating a vector [1, o] iteratively

- The rotation is done by multiplying the vector and a matrix
- The matrix represents the rotation angle, which decreases in each iteration

* Fuzzy Lookup Tables (LUTs) return an (approximate) output f(x)
for each input x

- A function a(x) returns an address to access the LUT
- The table returns LUT(a(x)) = f(x)

- To generate the LUT, we need a helper function a’(), such that x = a(a’'(x))
- LUTs’ accuracy improves with interpolation:

f(x) =~ LUT(a(x)) + LUT(a(x)+1) - LUT(a(x))-A
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TransPimLib: CORDIC-based Methods

* TransPimLib contains
CORDIC implementations
of trigonometric (sin, cos,
tan) and hyperbolic (sinh,
cosh, tanh) functions,
exponentiation,
logarithm, and square
root

* Example: Sine function

SAFARI

[-00, 0]

Range reduction

[0, 27]

Floating point to fixed point

[0, 2]
Quadrant in

0, /2
y [0l
CORDIC

0, 1
Vo]

Quadrant out

['1’1]

Fixed point to floating point

1]

-

[0, 3]
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TransPimLib: LUT-based Methods

Map interval [0, 5] to a 12-entry LUT

 Multiplication-based LUT (M-LUT)

- Regular spacing between table entries
- a(x) =round((x - p) - k), where k represents the
LUT density 012345638

Inpu
- LDEXP-based LUT (L-LUT) P
- Multiplication is cheaper if we multiply by 2"

Density
O~ N Wk

- Idexp(arg, exp) to perform arg - 2¢xp
- a(x) =round((x-p) - 2")

* kis a power-of-two, which results in less precision 012345678
. T Input
but avoids multiplication

Density
O = DN Wk

* Direct Float Conversion-based LUT (D-LUT) 4
>
- d(x) uses the last n bits of the exponent and p Z g
bits of the mantissa A1
- Piece-wise linear density: 2" steps of 2P 012345678

Tnput
addresses Py
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TransPimLib: Combined Methods

* Direct Float Conversion L M-LUT
+ LDEXP-based LUT 21
012345678
(DL-LUT) A nput
23 4 L-LUT
- Uses an L-LUT between £ ? g3
A a1
0 and the smallest 0} ey S rryray
exponent and a D-LUT Input |

A4

for larger inputs

Density
O~ N W

012345678
Input

e CORDIC+L-LUT (CORDIC+LUT)
- Replaces the first few iterations of CORDIC with a LUT

- Flexible tradeoff between computing cost, table size, and
precision

SAFARI



TransPimLib: Supported Functions

Supported Functions

Implementation . .
P sin cos | tan  sinh | cosh | tanh exp log | sqrt GELU

Method

CORDIC v |V |V |V V|V VYV

M-LUT v | V|V v | V|V
M-LUT+Interp. v v v v v v

L-LUT v | V|V v | V|V
L-LUT+Interp. v v v v v v
D-LUT+Interp. v v v
DL-LUT+Interp. v v v
CORDIC+LUT v |V |V V|V |V |V

Based on our preliminary analysis, we provide the most suitable methods for each of the
supported functions (other than sine).
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Evaluation Methodology

* Evaluated systems

- LDJFF;IX\I\IE‘M PIM system with 2,545 PIM cores (@ 350 MHz and 159 GB of

- 2-socket Intel Xeon CPU (32 cores)

* Microbenchmarks
- Performance evaluation
* We measure execution cycles
Accuracy evaluation

* Root-mean-square absolute error (RMSE) with respect to the CPU with the
standard math library

Setup time

* Generation on the host CPU and transfers to the PIM side
Memory consumption

* All tables and variables allocated in the DRAM bank of a PIM core
We use sine, as a representative function

* Real-world Benchmarks
- Blackscholes: exp, log, sqrt, cumulative normal distribution (CNDF)
- Sigmoid
- Softmax

SAFARI
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Microbenchmark Results: Performance (1)

* We measure the execution cycles for an accuracy range between
104 and 1079

* LUT-based versions place the LUT in either the PIM core’s DRAM
bank (MRAM) or the scratchpad (WRAM)

i CORDIC H D-LUT (Interp.) <= Fix. L-LUT (Interp.) @ L-LUT (Interp.) M-LUT (Interp.) = MRAM
= CORDIC+LUT & DL-LUT (Interp.) @ Fix. L-LUT (Not interp.) & L-LUT (Not interp.) A M-LUT (Not interp.) =  WRAM

(Performance of\ i :izzz
LUT-based
methods is

independent of

the accuracy

\ ) 2000

[0]
(=]

4000 -

Execu

Root-Mean-Square Absolute Error

\

(Fixed-point version of the L-LUT

* Interp. Fix. L-LUT doubles the
performance of inter. L-LUT due to
faster fixed-point multiplication

 Execution cycles depend on the number of multiplications:
: 2 FP multiplications

* Non-interp. M-LUT and inter. L-LUT: 1 FP multiplication

*  Non-interp. L-LUT: No FP multiplication JAR

.

\.
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Microbenchmark Results: Performance (1)

* We measure the execution cycles for an accuracy range between

104 and 1079

* CORDIC-based methods take more execution cycles to provide

higher accuracy

i CORDIC
= CORDIC+LUT & DL-LUT (Interp.) @ Fix. L-LUT (Not interp.

CORDIC accuracy
increases with

cle

12000 -

» 10 -

¥X D-LUT (Interp.) < Fix. L-LUT (Interp.)

® L-LU
) @ L-LUT (Notinterp.) 2 M-LUT (Not interp.)

T (Interp.) M-LUT (Interp.)

= MRAM
= WRAM

each iteration of
the CORDIC
algorithm

Executio

- J

IS
o
o
o

Root-Mean-Square Absolute Error

r

CORDIC, as it replaces the
initial iterations with an
kL-LUT query

CORDIC+LUT runs faster than |

(At some point (~109), further

increasing the LUT size or
CORDIC iterations does not
kimprove accuracy

\

(" Little benefit from placing

LUTs in the scratchpad
(WRAM) instead of the DRAM

_bank (MRAM)

\

J
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Microbenchmark Results: Performance (lll)

Key Takeaway 1
Interpolated L-LUT methods (lookup table
with LDEXP operation)

offer the best tradeoff in terms of
performance and accuracy
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Microbenchmark Results: Setup Time (1)

* The setup time can also impact the decision of what
method to use

i CORDIC H D-LUT (Interp.) @ L-LUT (Interp.) M-LUT (Interp.)
= CORDIC+LUT # DL-LUT (Interp.) & L-LUT (Notinterp.) 2 M-LUT (Not interp.)

[ ForLUT-based | oo

methods, setup 0.025-
times increase
k Wlth LUT Size y

o
o
[¥]
o

Setup Time (s)
o
e
[6)]

\

4 )
CORDIC methods

have flat setup
times 0.000

o
o
=
o

\. J

Root-Mean-Square Absolute Error

2 CORDIC methods can provide higher overall performance R
(i.e., setup time + PIM kernel time) than LUT-based methods
when the total number of transcendental functions in a workload is low.

\ For example, we estimate ~40 sine operations (see paper)
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Microbenchmark Results: Setup Time (II)

Key Takeaway 2
CORDIC-based methods are preferable

when a PIM kernel needs to execute just a
few transcendental functions due to their
low setup time in the host CPU
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Microbenchmark Results: Memory (1)

* We also obtain the memory consumption (in bytes) in
the DRAM bank of a PIM core

(Accuracy of non-\
. i CORDIC H D-LUT (Interp.) = Fix. L-LUT (Interp.) @ L-LUT (Interp.) M-LUT (Interp.)
mterp, LUT = CORDIC+LUT 8 DL-LUT (Interp.) €> Fix. L-LUT (Not interp.) & L—-LUT (Notinterp.) A M-LUT (Not interp.)
methods is = X
limited by the
\available memory

5

ek

(=]
=)
1

yte

—

o
o
1

-

o
ES
1

—

o
w
1

4 Memory N
consumption of
CORDIC methods
does not increase

\_ exponentially )

Memory Consumption (B

\ 1
\

—

o

©

—

o

@©

—
o
™

1077 107° 107° 107
Root-Mean—Bquare Absolute Error

Interpolation is an effective way of increasing accuracy
without increasing LUT size
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Microbenchmark Results: Memory (lI)

Key Takeaway 3

Interpolated L-LUT methods offer a good
tradeoff in terms of accuracy, execution cycles,
and memory consumption.

However, CORDIC and CORDIC+LUT methods
are recommended for applications that require
high accuracy, where the available memory is
limited (e.g., needed for large datasets)
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Other Supported Functions (1)

* The general trends for other functions supported by
TransPimLib are similar to those of the sine function

* Some major differences:
1. Tangent calculation takes around 2-3 times more cycles than
sine calculation, as it requires
a) Calculation of sine and cosine
b) A floating-point division
2. Some supported functions require range reduction and/or
range extension

a) The cost differs between functions, , 15000

n

as it depends on specific 3
mathematical identity needed for 3 10000 -

the conversion s
, L 3 5000

b) Butrange reduction/extensionis 3
only necessary depending on the (i 0.

actual range of input values sin exp log sqrt
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Other Supported Functions (II)

* Some major differences:

3. Activation functions tanh and GELU do not require range
reduction/extension and are approximately linear in most
parts

Key Takeaway 4
D-LUT and DL-LUT methods are well-suited for

activation functions, such as tanh and GELU, which
(1) do not require range extension, and (2) are

approximately linear in most parts.

D-LUT and DL-LUT are faster than
interpolated L-LUT, while providing similar accuracy
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Real-world Benchmark Results (1)

2.0
i 1 & 32 CPU Cores P 1.6 .CPUBaseIine
%1.5- = i:m Bj\_srelinep_ "
L ° £ w/ TransPimLi
* PIM baseline: Polynomial ...
g Blackscholes
= Blackscholes,\ 3 0% 0.25 ﬁ A
TranSPIleb = 5- 00 1 Core 32 Cores Polynomial ~ M-LUT T FP L-LUT
12x faster than ”o
\the PIM basellne) - 1,63
£ : :
" Fretbming LLUT | 519 Sigmoid
is 92% faster than /g:gﬂ 0.39
the 32-thread ik — 5 E
CPU b I 00 1C 32? Pol ial CORDIC+LUT M-LUT LL-UT
ase Ine ore ores (0] 1a + - -
. J
4 For Sigmoid and Softmax,
TransPimLib outperforms the PIM Softmax
baseline and shows that it can save
data movement from executing 029 028 027

\activation functions in the host CPU

1 Core

32 Cores  Polynomial CORDIC+LUT M-LUT L-LUT
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Real-world Benchmark Results (II)
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Key Takeaway 5
TransPimLib can reduce data
movement from PIM cores
to the CPU (Fig. (b)) for
applications running on the
PIM cores.

As a result, the execution of
transcendental functions in
the PIM cores (Fig. (c)) could
be 6-8x faster than the
execution in the host CPU
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More in the Paper

* Background on CORDIC and Fuzzy Lookup Tables
* How to use TransPimLib (APIs)

* Additional observations and takeaways

TransPimLib: Efficient Transcendental Functions
for Processing-in-Memory Systems

Maurus Item Juan Gomez-Luna Yuxin Guo
Geraldo F. Oliveira Mohammad Sadrosadati Onur Mutlu
ETH Zurich

https://people.inf.ethz.ch/omutlu/pub/TransPIMLib ispass23.pdf
https://arxiv.org/pdf/2304.01951.pdf
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TransPimLib: arXiv Version

TransPimLib: A Library for Efficient Transcendental Functions
on Processing-in-Memory Systems

Maurus Item Juan Gémez-Luna Yuxin Guo
Geraldo F. Oliveira Mohammad Sadrosadati Onur Mutlu
ETH Ziirich

https://arxiv.org/pdf/2304.01951.pdf
Source code: https://github.com/CMU-SAFARI/transpimlib
https://youtu.be/lgaf4eaakE4
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TransPimLib: A Library for Efficient Transcendental
Functions on Processing-in-Memory Systems

Processing-in-memory (PIM) promises to alleviate the data movement bottleneck in modern computing
systems. However, current real-world PIM systems have the inherent disadvantage that their hardware is
more constrained than in conventional processors (CPU, GPU), due to the difficulty and cost of building
processing elements near or inside the memory. As a result, general-purpose PIM architectures support fairly
limited instruction sets and struggle to execute complex operations such as transcendental functions and
other hard-to-calculate operations (e.g., square root). These operations are particularly important for some
modern workloads, e.g., activation functions in machine learning applications.

To provide support for transcendental (and other hard-to-calculate) functions in general-purpose PIM
systems, TransPimLib is a library that provides CORDIC-based and LUT-based methods for trigonometric
functions, hyperbolic functions, exponentiation, logarithm, square root, etc. The first implementation of

TransPimLib is for the UPMEM PIM architecture.
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Executive Summary

* Processing-in-Memory (PIM) promises to alleviate the data movement
bottleneck

* However, current real-world PIM systems have very constrained hardware,
which results in limited instruction sets
- Difficulty/impossibility of computing complex operations, such as

transcendental functions (e.g., trigonometric, exp, log) and other hard-to-
calculate functions (e.g., square root)

- These functions are important for modern workloads, e.g., activation functions
in machine learning applications

* TransPimLib is the first library for transcendental and other hard-to-
calculate functions on general-purpose PIM systems

- CORDIC-based and LUT-based methods for trigonometric functions, hyperbolic
functions, exponentiation, logarithm, square root, etc.

- Source code: https://github.com/CMU-SAFARI/transpimlib

* We implement TransPimLib for the UPMEM PIM architecture and evaluate
its methods in terms of performance, accuracy, memory requirements, and
setup time

- Three real workloads (Blackscholes, Sigmoid, Softmax)
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TransPimLib: Combined Methods
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Input
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exponent and a D-LUT Input
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for larger inputs g

* CORDIC+L-LUT (CORDIC+LUT) .
- Replaces the first few iterations of CORDIC with a LUT

- Flexible tradeoff between computing cost, table size, and
precision
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