PiDRAM
An FPGA-based Framework

for End-to-end Evaluation
of Processing-in-DRAM Techniques

Ataberk Olgun
Juan Gomez Luna Konstantinos Kanellopoulos Behzad Salami

Hasan Hassan Oguz Ergin Onur Mutlu

SAFARI «<>kasirga
ETHz(irich /\ TOBBETU

Executive Summary

Motivation: Commodity DRAM based PiM techniques improve the performance
and energy efficiency of computing systems at no additional DRAM hardware cost
Problem: Challenges of integrating these PiM techniques into real systems are not solved

General-purpose computing systems, special-purpose testing platforms, and
system simulators cannot be used to efficiently study system integration challenges

Goal: Design and implement a flexible framework that can be used to:
* solve system integration challenges

 analyze trade-offs of end-to-end implementations
of commodity DRAM-based-PiM techniques

Key idea: PIDRAM, an FPGA-based framework that enables:
* system integration studies
* end-to-end evaluations of PIM techniques using real unmodified DRAM chips

Evaluation: End-to-end integration of two PiM techniques on PIDRAM’s FPGA prototype
Case Study #1 - RowClone: In-DRAM bulk data copy operations

e 119x speedup for copy operations compared to CPU-copy with system support
* 198 lines of Verilog and 565 lines of C++ code over PIDRAM'’s flexible codebase

Case Study #2 - D-RaNGe: DRAM-based random number generation technique
e 8.30 Mb/s true random number generator (TRNG) throughput, 220 ns TRNG latency
e 190 lines of Verilog and 78 lines of C++ code over PIDRAM'’s flexible codebase

SAFARI (—>kasirga PiDRAM: https://github.com/CMU-SAFARI/PiDRAM 2

Background
Commodity DRAM Based PiM Techniques

PiDRAM

Overview
Hardware & Software Components
FPGA Prototype

Case Studies

Case Study #1 - RowClone
Case Study #2 - D-RaNGe

Conclusion

SAFARI (<kasirga 3

Processing-in-Memory Techniques

Commodity DRAM chips can already perform:

[Gao+, MICRO’19]-[Gao+, MICRO’22]
1) Row-copy: In-DRAM bulk data copy

(or initialization) at DRAM row granularity

(e.g., [Kim+, HPCA'19]-[Olgun+, ISCA’21])
2) True random number generation

SAFARI (kasirga 4

Row-Copy: Key Idea (RowClone)

Sense Amplifiers

@ 1. Source row to sense amplifiers

2. Sense amplifiers to destination row

SAFARI (Ykaslrga [Seshadri+ MICRO’13] 5

RowClone in Real DRAM Chips

Key Idea: Use carefully created DRAM command sequences

« ACT - PRE = ACT command sequence
with greatly reduced DRAM timing parameters

 ComputeDRAM [Gao+, MICRO’19] demonstrates
in-DRAM copy operations in real DDR3 chips

“activate row S, precharge, then activate row D”

Standard
DRAM Timings

PRE

SAFARI (—kasirga 6

Row-copy in ComputeDRAM

@
—
ACT(R,)

| I

SAFARI (Kasirga [Gao+, MICRO’19] 7

More in ComputeDRAM

ComputeDRAM: In-Memory Compute Using Off-the-Shelf

DRAMs
Fei Gao Georgios Tziantzioulis David Wentzlaff
feig@princeton.edu georgios.tziantzioulis@princeton.edu wentzlaf@princeton.edu
Department of Electrical Engineering Department of Electrical Engineering Department of Electrical Engineering
Princeton University Princeton University Princeton University
Majority Function L.
jortty Row-copy/Majority

Characterization

EEH=DEXA D

]
R3=00,
Operand:1

R;=01,
Constant:0

7

Operand:0

|
R ESEES €S

Q—IK’I_
L]
.

L

=
]
Do =11

o o 9 0 32 DDR3 Modules
————
ey " ~256 DRAM Chips

SAFARI (<kasirga 8

In-DRAM TRNG: Key Idea (D-RaNGe)

High % chance to fail 50% chance Low % chance to fail
with reduced to fail with reduced
access latency access latency

Row Decoder

SA SA SA SA SA SA SA

Commodity DRAM chips can already perform D-RaNGe

SAFARI (Ykaslrga [Kim+ HPCA'19] 9

System Support for PIM

System Software
SW/HW Interface

Row Buffer
DRAM Chip

SAFARI (Kasirga 10

PiDRAM

Bridge the “system gap”
with customizable
HW/SW components

in doing so,
allow users to

rapidly implement PiM techniques,
solve system integration challenges,
analyze end-to-end implementations

Row Buffer

DRAM Chip

SAFARI (Kasirga 11

PIDRAM: Key Components

Control PiM
operation

PiM
Operations
Controller

PiM
Operations
Library

~

Interface for
Applications

SAFARI (<kasirga

Supervisor

Memory controller for
custom timing parameters

PiDRAM
Memory
Controller

Custom

Software

91eM}j0oS 9lempJe FN

/

Supervisor software
for basic system support

12

PiDRAM: System Design

Key components attached to a real computing system

User Application PiM Ops. @ PiDRAM ©®
A~ Controller Memory Controller
System Calls (POC)
v 8
Custom Supervisor Software s A €
~ 3¢
Function Calls FlagRegister | I~ Gommand =
: | Scheduler € §
Data Register r
>
=
o

Memory Bus

SAFARI (Kasirga 13

PiM Operations Controller (POC)

Receive instructions over memory-mapped interface

Simple interface to the PIDRAM memory controller
(i) send request, (ii) wait until completion, (iii) read results

User Appliction Rocket PiM Ops. @ PiDRAM ©®
oF Chip Controller Memory Controller Qo
: + System Ca (POC) S
N RISC-V — 8 s
Custom Supervisor Softwa CPU Core Instruction Register - DDR3 S
~ Qe—

Function Calls i Flag Register ommand k= Interface 5

r ¢ > ®
pimolib 6 e Data Register Scheduler % DD:

>

pimolib function / £

Memory Bus

SAFARI (Kasirga 14

PIDRAM Memory Controller

+ I Easily replicate a state machine to implement a new operation I

h

PiDRAM ©®
Memory Controller
Q
(&)
(3]
T | ppR3
| 1 e «— ,
Command =
Scheduler €-—> -g
2
=
o

SAFARI (<kasirga 15

PiIM Operations Library (pimolib)

Contains customizable functions that interface with the POC

Software interface for performing PiM operations

Executes LOAD & STORE requests to communicate with the POC

Rocket

SAFARI (Kasirga 16

Custom Supervisor Software

Exposes PiM operations to the user application via system calls

Contains the necessary OS primitives to develop end-to-end PiM techniques
(e.g., memory management and allocation for RowClone)

User Application Rocket PiM Ops. @ PiDRAM ©
o Chip Controller Memory Controller
: 1+ System Calls (POC)
FY (4 RISC-V - 8
Custom Supervisor Software CPU Core Instruction Register |— &l ooms
N | : L—
; Function Ca"s STORE Instruction Flag Register Command 5 Interface

V2 —T —> ®
plmOIIb 6 LOAD Instruction | Data Register €J Scheduler :—);

e

o

pimolib function

DRAM Module

SAFARI (Kkaslrga

17

PiM Operation Execution Flow

Copy () function called by the user to perform a RowClone-Copy operation in DRAM

o Application makes a system call:

a Custom Supervisor Software calls the pimolib function

b (S. D) S: source DRAM row
PY 4 D: destination DRAM row

User Application
S

i (D SystemCalls
Vv

Custom Supervisor Software

SAFARI (kasirga 18

PiM Operation Execution Flow

9 Copy (S, D) executes two store instructions in the CPU

e The first store updates the instruction register with Copy (S, D)

e The second store sets the “Start” flag in the flag register

Start (S)
1 Start the execution of PiM operation

User Application Rocket

A (@ System Calls el

: RISC-V
Custom Supervisor Software CPU Core

/:\ E @ COpy(S, D) flflll; ----- o-n
: &, S:source D: destination - E—— L
pimolib ’

L4
&
s
W'

SAFARI (Kasirga 19

PiIM Operation Execution Flow

@ POC instructs the memory controller to perform RowClone

@ POC resets the “Start” flag, and sets the “Ack” flag

@ PiDRAM memory controller issues commands
with violated timing parameters to the DDR3 module

User Application Rocket POC PiDRAM

™ Chi - < Memory Controller
i @ System Cali P @ T ry

RISC-V
Custom Supervisor Software cpu Core ® su&(la Ack (A) Elp)l

’:\ 5 @ copy(S, D) (YN 0

®

Physical Interface

P inati JCommand

v & S:source D: destination B e

Y plilrl;molib e — Scheduler €
PUERREERNEFREEEEENEER NN | -" H
b copy (S, D) .-

SAFARI (<kasirga 20

PiIM Operation Execution Flow

@ The memory controller sets the “Fin.” flag

@ Copy (S, D) periodically checks either “Ack” or “Fin.” flags
using LOAD instructions

Copy (S, D)returns when the periodically checked flag is set

User Application Rocket POC PiDRAM
~ Chip @ Memory Controller L)
t i (@ System Calls » copy (S, D) =)
4 : Rlsc_v § -g
C/l\Js-tom Sé)perws(;r ;oftware CPUCore E DDR3 S
' Copyts, on £ | Interf

i & S:source D: destination -s-TPﬂE'mﬂ- Command = rieriace E

pimolib — Scheduler <) K

a
SAFARI (—kasirga 21

PiIM Operation Execution Flow

Data Register is not used in RowClone operations
because the result is stored in memory

It is used to read true random numbers generated by D-RaNGe

9[Data Register |(-T

SAFARI (<kasirga 22

PIDRAM Components Summary

Four key components orchestrate PiM operation execution

User Application Rocket PiM Ops. @ PiDRAM ©

A Chip Controller Memory Controller L
: 1+ System Calls (POC) =)
4 (4] RISC-V — 8 E:
Custom Supervisor Software CPU Core —| Instruction Register — € DDR3 S
/E\ E Function Calls STORE Instruction H Flag Register | Command E Interface E

RV) —> ®
pimolib ',' LOAD Instruction -_>| Data Register Scheduler _% o
2 a]

................... ’ Memory Bus =

SAFARI (Kasirga 23

PiIDRAM's FPGA Prototype

Full system prototype on Xilinx ZC706 FPGA board

« RISC-V System: In-order, pipelined RISC-V Rocket CPU core, L1D/1$, TLB
 PiM-Enabled DIMM (Commodity): Micron MT8]TF12864, 1 GiB, 8 banks

— Host Machine

e —— ———-

FPGA Board

/’ ,) . ,:E‘ ‘ E=)
/ VAL -’ ~ = :.” . ' ; ; -
& s AN

-4 PpiM-Enabled DIMM x

umnmn_ =TTe

SAFARI (<kasirga 24

Background
Commodity DRAM Based PiM Techniques

PiDRAM

Overview
Hardware & Software Components
FPGA Prototype

Case Studies

Case Study #1 - RowClone
Case Study #2 - D-RaNGe

Conclusion

SAFARI (Kasirga 25

RowClone Implementation
=

“activate row S, precharge, then activate row D”

Standard
DRAM Timings

PRE

@ Extend the PIDRAM memory controller
to support the DRAM command sequence

@ Expose the operation to pimolib
by implementing the copy () PIDRAM instruction

[

SAFARI (Kasirga 26

RowClone System Integration

[dentify two challenges in end-to-end RowClone

[@ Memory allocation (intra-subarray operation) J

@ Memory coherency (computation in DRAM)

Implement CLFLUSH instruction in the RISC-V CPU
Evict a cache block from the CPU caches to the DRAM module

SAFARI (Kasirga 27

RowClone Memory Allocation (I)

Memory allocation requirements

o Operands must occupy DRAM rows fully

SAFARI (Kasirga 28

RowClone Memory Allocation (I)

Memory allocation requirements
BANK X

| DRAMROW |
SA W | BV

k

e Operands must be placed at the same offset

SAFARI (Kasirga 29

RowClone Memory Allocation (I)

Memory allocation requirements

Source 1

Target 1 | A

Source 3

Target 3
SAZ |

9 Operands must be placed in the same subarray

SAFARI (Kasirga 30

RowClone Memory Allocation (I)

Memory allocation requirements

{@ Satisfies all three requirements }

SAFARI (Kasirga 31

RowClone Memory Allocation (II)

Implement a new memory allocation function
to overcome the memory allocation challenges

Goal: Allocate virtual memory pages that are
mapped to the same DRAM subarray and aligned with each other

virtual address = alloc _align(int size, int id)
size: # of bytes allocated
id: allocations with the same id go to the same subarray

alloc align(@ Subal‘ray @

4 KiB, —_— Mapplng

Page

Table

“Subarray 07)

Table

@ Get physical address pointing to a DRAM row in subarray 0

@ Update the page table to map virtual address to subarray 0

SAFARI (Kasirga 32

RowClone Memory Allocation (II)

https://arxiv.org/abs/2111.00082

Evaluation: Methodology

Table 2: PIDRAM system configuration

CPU: 50 MHz; in-order Rocket core [16]; TLB 4 entries DTLB; LRU policy

L1 Data Cache: 16 KiB, 4-way; 64 B line; random replacement policy
DRAM Memory: 1 GiB DDR3; 800MT/s; single rank| 8 KiB row size

in-DRAM copy/initialization

Microbenchmarks granularity

CPU-Copy (using LOAD /STORE instructions)

RowClone-Copy (using in-DRAM copy operations) with and without CLFLUSH
Copy/Initialization Heavy Workloads

forkbench (copy)

compile (initialization)
SPEC2006 libquantum: replace “calloc()” with in-DRAM initialization

SAFARI (<kasirga 34

Microbenchmark Copy/Initialization
Throughput Improvement

P L2l [Initialize O Copy

g_ﬂéloo

% O

s 8 Soﬂil

c 2 0

'_g e BB B B o O B b X g oD
c T T T T T T s 5 5 5
E S B SRl N =

1 N LN

Array Size

In-DRAM Copy and Initialization

improve throughput by 119x and 89x, respectively

SAFARI (kasirga 35

CLFLUSH Overhead

15
§_ ‘qé; 12 @Copy DOlnitialize
$5 9
8 2 6
= gl 3

0

0% Dirty §25% Dirty 50% Dirty 75% Dirtyf 100% Dirty
Dirty Cache Block Proportion

CLFLUSH dramatically reduces

the potential throughput improvement

SAFARI (kasirga 36

Other Workloads

forkbench (copy-heavy workload)

1.5 T
_%- 14 | E==3RowClone Speedup 0.8 E
$ 13 - Fraction of Time Spent on memcpy() 0.6 ;
(% 1.2 04 &
o 1.1 l 0.2 CE>
S 1 . o g
(&)
= \(\?) N\ o o A2 o Qb‘%
K A AT T o\ ,\O&’(L \o<“" ‘\O(\(\»’\ \0(\(\«? Performance
improvement

Fork Configurations i
Increases

compile (initialization-heavy workload)

* 9% execution time reduction by in-DRAM initialization
- 17% of compile’s execution time is spent on initialization

SPEC2006 libquantum

* 1.3% end-to-end execution time reduction
- 2.3% of libquantum’s time is spent on initialization

SAFARI (<kasirga 37

Background
Commodity DRAM Based PiM Techniques

PiDRAM

Overview
Hardware & Software Components
FPGA Prototype

Case Studies

Case Study #1 - RowClone
Case Study #2 - D-RaNGe

Conclusion

SAFARI (Kasirga 38

Recall: D-RaNGe Key Idea

High % chance to fail 50% chance Low % chance to fail
with reduced to fail with reduced
access latency access latency

Row Decoder

SA SA SA SA SA SA SA

Commodity DRAM chips can already perform D-RaNGe

SAFARI (> kasirga [Kim+ HPCA'19] 39

D-RaNGe Implementation

[dentify four DRAM cells that fail
randomly in a cache block

RNG Cell

[sA |

SAFARI (—kasirga [Kim+ HPCA'19] 40

D-RaNGe Implementation

Periodically generate true random numbers
by accessing the identified cache block

* Reduce access latency
1 KiB random number buffer in POC

* Programmers read random numbers from the
data register using the rand dram () function call

| |

SAFARI (Ykaslrga 41

Methodology: Microbenchmark
that reads true random numbers

\

220 350 480 610 740 870 1000
TRNG Period (ns)

=
o

90000009

TRNG Throughput (Mb/s)
o N H (@)} 00

PiDRAM'’s D-RaNGe generates true random

numbers at 8.30 Mb/s throughput

SAFARI (>kasirga 42

Background
Commodity DRAM Based PiM Techniques

PiDRAM

Overview
Hardware & Software Components
FPGA Prototype

Case Studies

Case Study #1 - RowClone
Case Study #2 - D-RaNGe

Conclusion

SAFARI (Ykaslrga 43

Executive Summary

Motivation: Commodity DRAM based PiM techniques improve the performance
and energy efficiency of computing systems at no additional DRAM hardware cost
Problem: Challenges of integrating these PiM techniques into real systems are not solved

General-purpose computing systems, special-purpose testing platforms, and
system simulators cannot be used to efficiently study system integration challenges

Goal: Design and implement a flexible framework that can be used to:
* solve system integration challenges

* analyze trade-offs of end-to-end implementations
of commodity DRAM-based-PiM techniques

Key idea: PIDRAM, an FPGA-based framework that enables:
* system integration studies
* end-to-end evaluations of PIM techniques using real unmodified DRAM chips

Evaluation: End-to-end integration of two PiM techniques on PIDRAM’s FPGA prototype
Case Study #1 - RowClone: In-DRAM bulk data copy operations

e 119x speedup for copy operations compared to CPU-copy with system support
* 198 lines of Verilog and 565 lines of C++ code over PIDRAM'’s flexible codebase

Case Study #2 - D-RaNGe: DRAM-based random number generation technique
* 8.30 Mb/s true random number generator (TRNG) throughput, 220 ns TRNG latency
e 190 lines of Verilog and 74 lines of C++ code over PIDRAM’s flexible codebase

SAFARI (—Ykasirga PiDRAM: https://github.com/CMU-SAFARI/PiDRAM 44

PiIDRAM is Open Source

https://qgithub.com/CMU-SAFARI/PiDRAM

B CMU-SAFARI/ PiDRAM (X editpins ~ | [@Wateh @) ~ | [¥ Fork @ | [% sar @) | - |

<> Code (© Issues §% Pullrequests ® Actions [Projects [wiki @ Security 1 Insights €83 Settings

¥ 2 branches © 0 tags [Go to file] [Add file ~] About Q3

() PiDRAM is the first flexible end-to-end
olgunataberk Fix small mistake in README 46522cc on Dec 5,2021) 11 commits framework that enables system
integration studies and evaluation of real
B controller-hardware Add files via upload 7 months ago Processing-using-Memory techniques.
B fpga-zynq Adds instructions to reproduce two key results 7 months ago -Prototype Sima RG] racks! Chl.p sys-tem
implemented on an FPGA. Described in
[README.md Fix small mistake in README 7 months ago our preprint:
https://arxiv.org/abs/2111.00082
‘= README.md / m Readme
¢ 21stars
PiDRAM ® 3vatchng
¥ 2 forks

PIDRAM is the first flexible end-to-end framework that enables system integration studies and evaluation of real
Processing-using-Memory (PuM) techniques. PIDRAM, at a high level, comprises a RISC-V system and a custom
memory controller that can perform PuM operations in real DDR3 chips. This repository contains all sources Releases
required to build PIDRAM and develop its prototype on the Xilinx ZC706 FPGA boards.

No releases published
Create a new release

SAFARI (Ykaslrga 45

https://github.com/CMU-SAFARI/PiDRAM

Extended Version on ArXiv
https://arxiv.org/abs/2111.00082

Search... All fields Search
Help | Advanced Search

a I‘ <1V > cs > arXiv:2111.00082

(o ter Sci > Hard Architect
omputer Science > Hardware Architecture Download:
[Submitted on 29 Oct 2021 (v1), last revised 19 Dec 2021 (this version, v3)] « PDF
PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-DRAM » Other formats
Ataberk Olgun, Juan Gomez Luna, Konstantinos Kanellopoulos, Behzad Salami, Hasan Hassan, Oguz Ergin, Onur Mutlu Current browse context:
cs.AR
<prev | next>

Processing-using-memory (PuM) techniques leverage the analog operation of memory cells to perform computation. Several recent works have demonstrated
PuM techniques in off-the-shelf DRAM devices. Since DRAM is the dominant memory technology as main memory in current computing systems, these PuM
techniques represent an opportunity for alleviating the data movement bottleneck at very low cost. However, system integration of PuM techniques imposes
non-trivial challenges that are yet to be solved. Design space exploration of potential solutions to the PuM integration challenges requires appropriate tools to
develop necessary hardware and software components. Unfortunately, current specialized DRAM-testing platforms, or system simulators do not provide the
flexibility and/or the holistic system view that is necessary to deal with PuM integration challenges.

We design and develop PIDRAM, the first flexible end-to-end framework that enables system integration studies and evaluation of real PuM techniques.
PiDRAM provides software and hardware components to rapidly integrate PuM techniques across the whole system software and hardware stack (e.g.,
necessary modifications in the operating system, memory controller). We implement PIDRAM on an FPGA-based platform along with an open-source RISC-V
system. Using PIDRAM, we implement and evaluate two state-of-the-art PuM techniques: in-DRAM (i) copy and initialization, (ii) true random number
generation. Our results show that the in-memory copy and initialization techniques can improve the performance of bulk copy operations by 12.6x and bulk
initialization operations by 14.6x on a real system. Implementing the true random number generator requires only 190 lines of Verilog and 74 lines of C code

using PIDRAM's software and hardware components.

Comments: 15 pages, 12 figures

Subjects: Hardware Architecture (cs.AR)

Cite as: arXiv:2111.00082 [cs.AR]
(or arXiv:2111.00082v3 [cs.AR] for this version)
https://doi.org/10.48550/arXiv.2111.00082 Q

SAFARI (<kasirga

new | recent | 2111

Change to browse by:
cs

References & Citations

« NASAADS
¢ Google Scholar
* Semantic Scholar

DBLP - CS Bibliography
listing | bibtex

Juan Gémez-Luna
Behzad Salami
Hasan Hassan
Oguz Ergin

Onur Mutlu

Export Bibtex Citation

Bookmark

46

https://arxiv.org/abs/2111.00082

Long Talk + Tutorial on Youtube
https://voutu.be/s z S6FYpC8

Alloc_align Example

A = alloc_align(16*1024, 0); B = alloc_align(16*1024, 0

Array A Array B
16 KBs 16 KBs

Virtual Addresses: 0x0000 0x1000 0x2000

Processing in Memory Course: Meeting 6: End-to-end Framework for Processing-using-Memory - Fall’21

615 views - Streamed live on 9 Nov 2021 « Project & Seminar, ETH Ziirich, Fall 202 Show more e 25 OGP Dislike > Share L Download 3¢ Clip =+ Save

2 Onur Mutlu Lectures
SA ‘ A Q 25.7K subscribers SUBSCRIBED Q 4 7

https://youtu.be/s_z_S6FYpC8

PiDRAM
An FPGA-based Framework

for End-to-end Evaluation
of Processing-in-DRAM Techniques

Ataberk Olgun
Juan Gomez Luna Konstantinos Kanellopoulos Behzad Salami

Hasan Hassan Oguz Ergin Onur Mutlu

SAFARI «<>kasirga
ETHz(irich /\ TOBBETU

BACKUP SLIDES

Accessing a DRAM Cell

wordline
capacitor bitline
v access
transistor
enable

SAFARI (kasirga [Seshadri+ MICRO’'17] 50

Accessing a DRAM Cell

enable o1 dline

wordline 4T

capacitor

access
transistor

G enable enable

sense amp

SAFARI (kasirga [Seshadri+ MICRO’'17]

o deviation in
_--- bitline voltage

7
/

4
Vo¥Ypp + O

bitline
A

connects cell
to bitline

~
5___

51

alloc align () function

SubArray Mapping Table (SAMT) enables alloc align ()

SAMT
Physical addresses
Subarray 0 of DRAM rows

Subarray 1

Subarray N

alloc align(@ @
4 KiB, > SAMT > Page
“Subarray 0”) Table

@ Retrieve a physical address pointing to a DRAM row in subarray 0

@ Update the page table to map programmer-allocated address to subarray 0

SAFARI (kasirga 52

Initializing SAMT

SAMT
SAMT Physical addresses
Subarray 0 Entry of DRAM rows

Subarray 1

Subarray N

Perform in-DRAM copy using every DRAM row address
as source and destination rows

If the in-DRAM copy operation succeeds
source and destination rows are in the same subarray

SAFARI (kasirga 53

Allocate 128 KiB A and B to same subarray

o

Initialize Subarray
Mapping Table

Allocation
ID Table

A = alloc_align(128*1024, 0);
B = alloc_align(128*1024, 0);
Bank 0
VA 400 >
— Bank >
A H
L]
Bank 7|\
VAps1 | >
VAne BankO>
Array .
B

n
L]
:I_I Bank 7|

Arrays are splitinto 4KB blocks

Subarray
Mapping Table

Characterize RowClone
Success Rate

PA,, PA;, PA, PA,,

DRAM ROW

@ Copy 128 KiBs from A to B

rcc(A, B, 128*1024);

Access page table to find
source and destination

DRAM rows

Page Table
Physical Address
B0 SA0OROWO

B1 SAOROWO
B2 SAOROWO

Virt. Addr.

B1 SA0ROWO

B0 SAOROW4
B1 SA0ROW4

Consecutive blocks are assigned to DRAM rows in different DRAM banks

Table 1: PuM techniques that can be studied using PIDRAM. PuM techniques that we implement in this work are highlighted in bold

PuM Technique

Description

Integration Challenges

RowClone [91]

Bulk data-copy and initializa-
tion within DRAM

(1) memory allocation and alignment mechanisms that map source & destination operands of a copy operation into
same DRAM subarray; (ii) memory coherence, i.e., source & destination operands must be up-to-date in DRAM.

D-RaNGe [62]

True random number genera-
tion using DRAM

(i) periodic generation of true random numbers; (ii) memory scheduling policies that minimize the interference
caused by random number requests.

Ambit [89]

Bitwise operations in DRAM

(1) memory allocation and alignment mechanisms that map operands of a bitwise operation into same DRAM sub-
array; (ii) memory coherence, i.e., operands of the bitwise operations must be up-to-date in DRAM.

SIMDRAM [43]

Arithmetic operations in
DRAM

(1) memory allocation and alignment mechanisms that map operands of an arithmetic operation into same DRAM
subarray; (ii) memory coherence, i.e., operands of the arithmetic operations must be up-to-date in DRAM; (iii) bit
transposition, i.e., operand bits must be laid out vertically in a single DRAM bitline.

DL-PUF [61]

Physical unclonable functions
in DRAM

memory scheduling policies that minimize the interference caused by generating PUF responses.

QUAC-TRNG [82]

True random number genera-
tion using DRAM

(i) periodic generation of true random numbers; (ii) memory scheduling policies that minimize the interference
caused by random number requests; (iii) efficient integration of the SHA-256 cryptographic hash function.

Memory

Operands Blocks DRAM Device

Figure 6: Overview of our memory allocation mechanism

Physical

AddrESS Physical Page Number Page OffSEt
29 12 11 5
E(ﬁlj:el\s/[s Row Bank | Column [Byte Offset

29 16 15 1312 3 9 0

Figure 8: Physical address to DRAM address mapping in
PiDRAM. Byte offset is used to address the byte in the DRAM
burst.

500

P — @ RowClone-Copy @ RowClone-Initialize

= Q@ 375

2 E 25

oo Y

S 3 125

o =

— 0

c a

= £ M@ © @ @ @ @ @ @ @ o
©® 8 9§ I ¥ 8B § 4 «~ «

i N LN

Array Size

Figure 9: RowClone-Copy and RowClone-Initialize over tradi-
tional CPU-copy and -initialization for the Bare-Metal config-
uration

Table 4: Comparison of PIDRAM with related state-of-the-art prototyping and evaluation platforms

| Platforms H Interface with real DRAM chips ’ Flexible MC for PuM | System software support | Open-source |
Silent-PIM [78] X X v X
SoftMC [60] v/ (DDR3) X X v
ComputeDRAM [44] v (DDR3) X X X
MEG [174] v (HBM) X v v
PiMulator [119] X v X v
Commercial platforms (e.g., ZYNQ [166]) v'(DDR3/4) X v X
Simulators [18, 35,90, 132, 140, 169, 170, 175] X v v (potentially) v

| PIDRAM (this work) I v'(DDR3) v v v

DRAM Organization

Wordline
Drivers

DRAM Subarray

DRAM
MAT

Sense Amplifiers

Wordline

Drivers

Sense Amplifiers

Wordline

Drivers

1

Capacitor

DRAM

SAFARI (Kkaslrga

[Olgun+ ISCA'21]

60

DRAM Operation

(Activation Latency)
(Precharge Latency)

DRAM Command Sequence

(m)(m}(m)cm)@@(m)

time
SAFARI (Ykaslrga [Kim+ HPCA’19] 61

