5.2. Two Approaches: Processing Using Memory (PUM) vs. Processing Near Memory (PNM)

Many recent works take advantage of the memory technology innovations that we discuss in Section 5.1 to enable and implement PIM. We find that these works generally take one of two approaches, which are categorized in Table 1: (1) processing using memory or (2) processing near memory. We briefly describe each approach here. Sections 6 and 7 will provide example approaches and more detail for both.

Table 1: Summary of enabling technologies for the two approaches to PIM used by recent works. Adapted from [341] and extended.

<table>
<thead>
<tr>
<th>Approach</th>
<th>Example Enabling Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing Using Memory</td>
<td>SRAM, DRAM, Phase-change memory (PCM), Magnetic RAM (MRAM), Resistive RAM (RRAM)/memristors</td>
</tr>
<tr>
<td>Processing Near Memory</td>
<td>Logic layers in 3D-stacked memory, Silicon interposers, Logic in memory controllers, Logic in memory chips (e.g., near bank), Logic in memory modules, Logic near caches, Logic near/in storage devices</td>
</tr>
</tbody>
</table>
PIM Becomes Real

• UPMEM, founded in January 2015, announces the first real-world PIM architecture in 2016

• UPMEM’s PIM-enabled DIMMs start getting commercialized in 2019

• In early 2021, Samsung announces FIMDRAM at ISSCC conference

• Samsung’s LP-DDR5 and DIMM-based PIM announced a few months later

• In early 2022, SK Hynix announces AiM and Alibaba announces HB-PNM at ISSCC conference
UPMEM PIM
UPMEM Processing-in-DRAM Engine (2019)

- Processing in DRAM Engine
 - Includes standard DIMM modules, with a large number of DPU processors combined with DRAM chips.

- Replaces standard DIMMs
 - DDR4 R-DIMM modules
 - 8GB+128 DPUs (16 PIM chips)
 - Standard 2x-nm DRAM process
 - Large amounts of compute & memory bandwidth

UPMEM DIMMs

- E19: 8 chips/DIMM (1 rank). DPUs @ 267 MHz
- P21: 16 chips/DIMM (2 ranks). DPUs @ 350 MHz
2,560-DPU Processing-in-Memory System

Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture

JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland
IZZAT EL HAJ, American University of Beirut, Lebanon
IVAN FERNANDEZ, ETH Zürich, Switzerland and University of Malaga, Spain
CHRISTINA CIAMPOUL, ETH Zürich, Switzerland and NTUA, Greece
GERALDO FO OLIVEIRA, ETH Zürich, Switzerland
ONUR MUTLU, ETH Zürich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a significant overhead in terms of both latency and energy. A major reason is that this communication happens through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound workloads is inefficient to amortize the cost of main memory access. Fundamentally addressing this data movement bottleneck requires a paradigm where the memory system assumes an active role in computing by integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-stacked memory technologies that integrate memory with a logic layer where processing elements can be easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware prototypes. In contrast, the UPNEM company has designed and manufactured the first publicly available real-world PIM architecture. The UPNEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called DRAM Processing Units (DPU), integrated in the same chip.

This paper provides the first comprehensive analysis of the first publicly available real-world PIM architecture. We make two key contributions. First, we conduct an experimental characterization of the UPNEM-based PIM system using microbenchmarks to assess various architecture limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present PIM (processing-in-memory benchmarks), a benchmark suite of 16 workloads from different application domains (e.g., dense-space linear algebra, databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we identify as memory-bound. We evaluate the performance and scaling characteristics of PIM benchmarks on the UPNEM PIM architecture, and compare their performance and energy consumption to their state-of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPNEM-based PIM systems with 480 and 2,560 DPUs provides new insights about suitability of different workloads to the PIM system, programming recommendations for software designers, and suggestions and hints for hardware and architecture designers of future PIM systems.

Understanding a Modern PIM Architecture

Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

JUAN GÓMEZ-LUNA1, IZZAT EL HAJJ2, IVAN FERNANDEZ1,3, CHRISTINA GIANNOULA1,4, GERALDO F. OLIVEIRA1, AND ONUR MUTLU1

1ETH Zürich
2American University of Beirut
3University of Malaga
4National Technical University of Athens

Corresponding author: Juan Gómez-Luna (e-mail: juang@ethz.ch).

https://github.com/CMU-SAFARI/prim-benchmarks
Memory Circuit with Integrated Processor

Upmem Patent

Abstract

A memory circuit having: a memory array including one or more memory banks; a first processor; and a processor control interface for receiving data processing commands directed to the first processor from a central processor, the processor control interface being adapted to indicate to the central processor when the first processor has finished accessing one or more of the memory banks of the memory array, these memory banks becoming accessible to the central processor.
FIG. 1 schematically illustrates a computing system comprising DRAM circuits having integrated processors according to an example embodiment.
UPMEM PIM System Organization (II)

- In a UPMEM-based PIM system UPMEM DIMMs coexist with regular DDR4 DIMMs
UPMEM PIM System Organization (III)

• A UPMEM DIMM contains 8 or 16 chips
 - Thus, 1 or 2 ranks of 8 chips each

• Inside each PIM chip there are:
 - 8 64MB banks per chip: Main RAM (MRAM) banks
 - 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per rank

![Diagram of UPMEM PIM System Organization (III) with Host CPU, Main Memory, PIM Chip, Control/Status Interface, and DDR4 Interface]
DRAM Processing Unit (I)

- **FIG. 4 schematically illustrates part of the computing system of FIG. 1 in more detail according to an example embodiment.**

SAFARI

DRAM Processing Unit (II)

PIM Chip

Control/Status Interface

DDR4 Interface

Dispatch

FETCH1

FETCH2

FETCH3

READOP1

READOP2

READOP3

FORMAT

ALU1

ALU2

ALU3

ALU4

MERGE1

MERGE2

24-KB IRAM

64-KB WRAM

DMA Engine

64-MB DRAM Bank (MRAM)

Pipeline

Register File

SAFARI
DPU Pipeline

• In-order pipeline
 - Up to 425 MHz
• Fine-grain multithreaded
 - 24 hardware threads
• 14 pipeline stages
 - DISPATCH: Thread selection
 - FETCH: Instruction fetch
 - READOP: Register file
 - FORMAT: Operand formatting
 - ALU: Operation and WRAM
 - MERGE: Result formatting
Fine-grained Multithreading
Fine-Grained Multithreading (I)

- Idea: Hardware has multiple thread contexts (PC+registers). Each cycle, fetch engine fetches from a different thread
 - By the time the fetched branch/instruction resolves, no instruction is fetched from the same thread
 - Branch/instruction resolution latency overlapped with execution of other threads’ instructions

+ No logic needed for handling control and data dependences within a thread
 -- Single thread performance suffers
 -- Extra logic for keeping thread contexts
 -- Does not overlap latency if not enough threads to cover the whole pipeline
Fine-Grained Multithreading (II)

- Idea: Switch to another thread every cycle such that no two instructions from a thread are in the pipeline concurrently.

- Tolerates the control and data dependence latencies by overlapping the latency with useful work from other threads.

- Improves pipeline utilization by taking advantage of multiple threads.

- Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964
- Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978
Lecture on Fine-Grained Multithreading

Fine-Grained Multithreading

- Idea: Hardware has multiple thread contexts (PC+registers). Each cycle, fetch engine fetches from a different thread.
 - By the time the fetched branch/instruction resolves, no instruction is fetched from the same thread.
 - Branch/instruction resolution latency overlapped with execution of other threads’ instructions.

+ No logic needed for handling control and data dependences within a thread
 -- Single thread performance suffers
 -- Extra logic for keeping thread contexts
 -- Does not overlap latency if not enough threads to cover the whole pipeline

Onur Mutlu - Digital Design & Comp Arch - Lecture 14: Pipelined Processor Design (Spring 2021)
DPU Pipeline

- **In-order pipeline**
 - Up to **425 MHz**
- **Fine-grain multithreaded**
 - 24 hardware threads
- **14 pipeline stages**
 - **DISPATCH**: Thread selection
 - **FETCH**: Instruction fetch
 - **READOP**: Register file
 - **FORMAT**:Operand formatting
 - **ALU**: Operation and WRAM
 - **MERGE**: Result formatting
DPU Instruction Set Architecture

• Specific 32-bit ISA
 - Aiming at scalar, in-order, and multithreaded implementation
 - Allowing compilation of 64-bit C code
 - LLVM/Clang compiler

https://sdk.upmem.com/2021.2.0/201_IS.html#
Microbenchmark for INT32 ADD Throughput

C-based code

```c
#define SIZE 256
int* bufferA = mem_alloc(SIZE * sizeof(int));
for(int i = 0; i < SIZE; i++){
    int temp = bufferA[i];
    temp += scalar;
    bufferA[i] = temp;
}
```

Compiled code (UPMEM DPU ISA)

```assembly
move r2, 0
.LBB0_1:       // Loop header
  lsl_add r3, r0, r2, 2     // Address calculation
  lw r4, r3, 0               // Load from WRAM
  add r4, r4, r1             // Add
  sw r3, 0, r4               // Store to WRAM
  add r2, r2, 1              // Index update
  jneq r2, 256, .LBB0_1      // Conditional jump
```
More on the UPMEM PIM Architecture

2,560-DPU System (1)

- UPMEM-based PIM system with 20 UPMEM DIMMs of 16 chips each (40 ranks)
 - P21 DIMMs
 - Dual x86 socket
 - UPMEM DIMMs coexist with regular DDR4 DIMMs
 - 2 memory controllers/socket (3 channels each)
 - 2 conventional DDR4 DIMMs on one channel of one controller

* There are 4 faulty DPUs in the system that we use in our experiments. Thus, the maximum number of DPUs we can use is 2,556.
Understanding a Modern PIM Architecture

Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

JUAN GÓMEZ-LUNA¹, IZZAT EL HAJJ², IVAN FERNANDEZ¹,³, CHRISTINA GIANNOULA¹,⁴, GERALDO F. OLIVEIRA¹, AND ONUR MUTLU¹

¹ETH Zürich
²American University of Beirut
³University of Malaga
⁴National Technical University of Athens

Corresponding author: Juan Gómez-Luna (e-mail: juang@ethz.ch).

https://github.com/CMU-SAFARI/prim-benchmarks
Key Takeaway 1

The throughput saturation point is as low as $\frac{1}{4}$ OP/B, i.e., 1 integer addition per every 32-bit element fetched.

KEY TAKEAWAY 1

The UPMEM PIM architecture is fundamentally compute bound. As a result, the most suitable workloads are memory-bound.
CPU/GPU: Performance Comparison

The UPMEM-based PIM system can outperform a state-of-the-art GPU on workloads with three key characteristics:
1. Streaming memory accesses
2. No or little inter-DPU synchronization
3. No or little use of integer multiplication, integer division, or floating point operations

These three key characteristics make a workload potentially suitable to the UPMEM PIM architecture.
KEY TAKEAWAY 2

The most well-suited workloads for the UPMEM PIM architecture use no arithmetic operations or use only simple operations (e.g., bitwise operations and integer addition/subtraction).
Key Takeaway 3

The most well-suited workloads for the UPMEM PIM architecture require little or no communication across DPUs (inter-DPU communication).
Key Takeaway 4

KEY TAKEAWAY 4

• UPMEM-based PIM systems *outperform state-of-the-art CPUs in terms of performance* (by 23.2× on 2,556 DPUs for 16 PrlM benchmarks) and *energy efficiency on most of PrlM benchmarks*.

• UPMEM-based PIM systems *outperform state-of-the-art GPUs on a majority of PrlM benchmarks* (by 2.54× on 2,556 DPUs for 10 PrlM benchmarks), and the outlook is even more positive for future PIM systems.

• UPMEM-based PIM systems are *more energy-efficient than state-of-the-art CPUs and GPUs on workloads that they provide performance improvements* over the CPUs and the GPUs.
PrIM Repository

- All microbenchmarks, benchmarks, and scripts
- https://github.com/CMU-SAFAIR/prim-benchmarks

PrIM (Processing-In-Memory Benchmarks)

PrIM is the first benchmark suite for a real-world processing-in-memory (PIM) architecture. PrIM is developed to evaluate, analyze, and characterize the first publicly-available real-world processing-in-memory (PIM) architecture, the UPMEM PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip.

PrIM provides a common set of workloads to evaluate the UPMEM PIM architecture with and can be useful for programming, architecture and system researchers all alike to improve multiple aspects of future PIM hardware and software. The workloads have different characteristics, exhibiting heterogeneity in their memory access patterns, operations and data types, and communication patterns. This repository also contains baseline CPU and GPU implementations of PrIM benchmarks for comparison purposes.

PrIM also includes a set of microbenchmarks can be used to assess various architecture limits such as compute throughput and memory bandwidth.
Samsung FIMDRAM
(aka HBM-PIM)
Samsung Develops Industry’s First High Bandwidth Memory with AI Processing Power

The new architecture will deliver over twice the system performance and reduce energy consumption by more than 70%

Samsung Electronics, the world leader in advanced memory technology, today announced that it has developed the industry’s first High Bandwidth Memory (HBM) integrated with artificial intelligence (AI) processing power — the HBM-PIM. The new processing-in-memory (PIM) architecture brings powerful AI computing capabilities inside high-performance memory, to accelerate large-scale processing in data centers, high performance computing (HPC) systems and AI-enabled mobile applications.

Kwangil Park, senior vice president of Memory Product Planning at Samsung Electronics stated, “Our groundbreaking HBM-PIM is the industry’s first programmable PIM solution tailored for diverse AI-driven workloads such as HPC, training and inference. We plan to build upon this breakthrough by further collaborating with AI solution providers for even more advanced PIM-powered applications.”
Samsung Function-in-Memory DRAM (2021)

- FIMDRAM based on HBM2

[3D Chip Structure of HBM with FIMDRAM]

Chip Specification

- 128DQ / 8CH / 16 banks / BL4
- 32 PCU blocks (1 FIM block/2 banks)
- 1.2 TFLOPS (4H)
- FP16 ADD / Multiply (MUL) / Multiply-Accumulate (MAC) / Multiply-and-Add (MAD)

ISSCC 2021 / SESSION 25 / DRAM / 25.4

25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learning Applications

Young-Choon Kwon, Suk Han Lee, Jaehoon Lee, Sang-Hyuk Kwon, Je Min Ryu, Jong-Pil Son, Seongil O, Hak-Soo Yu, Haesuk Lee, Soo Young Kim, Youngmin Choi, Jin Guk Kim, Jongyoon Choi, Hyun-Sung Shin, Jin Kim, BangSeng Phuah, HyongKim, Muyeong Jun Song, Ahn Choi, Daetho Kim, SooYoung Kim, Eun-Bong Kim, David Wang, Shinhaeng Kang, Yuhwan Ro, Seungwoo Seo, JoonHo Song, Jaeyoun Youn, Kyomin Sohn, Nam Sung Kim

1Samsung Electronics, Hwasung, Korea
2Samsung Electronics, San Jose, CA
3Samsung Electronics, Suwon, Korea
Samsung Function-in-Memory DRAM (2021)

Chip Implementation

- Mixed design methodology to implement FIMDRAM
 - Full-custom + Digital RTL

[Digital RTL design for PCU block]

ISSCC 2021 / SESSION 25 / DRAM / 25.4

25.4 A 72nm 6GB Function-in-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learning Applications

Young-Choo Keper, Suk Han Lee, Jinhoon Lee, Song-Hyuk Kim, Je Mi Rye, Jong Hyuk Boo, Dong-Hyeon Lee, Hae-eun Lee, Seo Young Kim, Kyosung Cho, Je Guk Kim, Yongseon Choi, Hyeon-Sun Shin, Jin Kim, Bangseong Phu, Hyoung Min Kim, Myung Jun Song, Ahn Choi, Daekeo Kim, Seo Young Kim, Eun-Bong Kim, Cande Woo, Ji Ho Chang, Yuhwan Ro, Sungwook Seo, Joohyeon Song, Jeyoun Yoon, Kyunmin Sohn, Nam Sung Kim

1Samsung Electronics, Hwasung, Korea
2Samsung Electronics, San Jose, CA
3Samsung Electronics, Suwon, Korea
FIMDRAM: System Organization

• PIM units respond to standard DRAM column commands (RD or WR)
 - Compliant with unmodified JEDEC controllers

• They execute one wide-SIMD operation commanded by a PIM instruction with deterministic latency in a lock-step manner

• A PIM unit can get 16 16-bit operands from IOSAs, a register, and/or the result bus
FIMDRAM: Instruction Ordering

- One challenge is that DRAM commands may be re-ordered, and using fences is costly performance-wise
- Solution: Address Aligned Mode (AAM)
 - 8 MAC operations with 2 PIM instructions
Samsung AxDIMM
Samsung AxDIMM (2021)

• DIMM-based PIM
 - DLRM recommendation system
The memory interface generator (MIG) supports the inter-DDR read/write commands to offload the NMP-instructions to the Rank-NMP modules and all the regular DRAM accesses from the embedding lookup and pooling operation inside the NMP instructions from the host side. With two Rank-NMP modules, two ranks (Rank-0 and Rank-1) are activated in parallel to load embedding entries between the Rank-NMP module and the DRAM devices and Psum buffer, the instruction decoder and deliver the final results. As shown in Figure 4.3, DDR4 slave PHY receives DRAM commands and NMP instructions (via DQ pins) from the host side.
40

AxDIMM Design: Execution Flow

[Diagram of AxDIMM Design: Execution Flow]
Lecture on AxDIMM

AxDIMM Design: Address Map

- Memory map of AxDIMM

AxDIMM Rank-0
- PSUM BUF
- Reserved
- CONF REG
- DDR RD
- DDR WR

AxDIMM Rank-1
- INST BUF
- DDR WR

Embedding Table

PIM Course: Lecture 7: Real-world PIM: Samsung AxDIMM - Fall 2022

846 views 4 months ago Livestream - P&S Data-Centric Architectures: Fundamentally Improving Performance and Energy (Fall 2022)
Projects & Seminars, ETH Zürich, Fall 2022
Data-Centric Architectures: Fundamentally Improving Performance and Energy
(https://safari.ethz.ch/projects_and_s_e...) Show more

https://youtu.be/SXdzQZAKG-Y
SK Hynix AiM
SK hynix Develops PIM, Next-Generation AI Accelerator

February 16, 2022

Seoul, February 16, 2022

SK hynix (or “the Company”, www.skhynix.com) announced on February 16 that it has developed PIM*, a next-generation memory chip with computing capabilities.

*PIM(Processing In Memory): A next generation technology that provides a solution for data congestion issues for AI and big data by adding computational functions to semiconductor memory.

It has been generally accepted that memory chips store data and CPU or GPU, like human brain, process data. SK hynix, following its challenge to such notion and efforts to pursue innovation in the next-generation smart memory, has found a breakthrough solution with the development of the latest technology.

SK hynix plans to showcase its PIM development at the world’s most prestigious semiconductor conference, 2022 ISSCC*, in San Francisco at the end of this month. The company expects continued efforts for innovation of this technology to bring the memory-centric computing, in which semiconductor memory plays a central role, a step closer to the reality in devices such as smartphones.

*ISSCC: The International Solid-State Circuits Conference will be held virtually from Feb. 20 to Feb. 24 this year with a theme of “Intelligent Silicon for a Sustainable World”

For the first product that adopts the PIM technology, SK hynix has developed a sample of GDDR6-AiM (Accelerator* in memory). The GDDR6-AiM adds computational functions to GDDR6* memory chips, which process data at 16Gbps. A combination of GDDR6-AiM with CPU or GPU instead of a typical DRAM makes certain computation speed 16 times faster. GDDR6-AiM is widely expected to be adopted for machine learning, high-performance computing, and big data computation and storage.

SK Hynix Accelerator-in-Memory (2022)

• 4 Gb AiM die with 16 processing units (PUs)

AiM Die Photograph

<table>
<thead>
<tr>
<th>BK 0</th>
<th>BK 1</th>
<th>BK 10</th>
<th>BK 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>PU</td>
<td>PU</td>
<td>PU</td>
<td>PU</td>
</tr>
<tr>
<td>BK 3</td>
<td>BK 2</td>
<td>BK 12</td>
<td>BK 13</td>
</tr>
<tr>
<td>PU</td>
<td>PU</td>
<td>PU</td>
<td>PU</td>
</tr>
<tr>
<td>BK 4</td>
<td>BK 5</td>
<td>BK 14</td>
<td>BK 15</td>
</tr>
<tr>
<td>PU</td>
<td>PU</td>
<td>PU</td>
<td>PU</td>
</tr>
<tr>
<td>BK 7</td>
<td>BK 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Process Unit (PU) Area

<table>
<thead>
<tr>
<th></th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0.19mm²</td>
</tr>
<tr>
<td>MAC</td>
<td>0.11mm²</td>
</tr>
<tr>
<td>Activation Function (AF)</td>
<td>0.02mm²</td>
</tr>
<tr>
<td>Reservoir Cap.</td>
<td>0.05mm²</td>
</tr>
<tr>
<td>Etc.</td>
<td>0.01mm²</td>
</tr>
</tbody>
</table>

- Reservoir Cap.: 26%
- MAC: 58%
- AF: 11%
- Etc.: 5%
SK Hynix AiM: System Organization (2022)

- GDDR6-based AiM architecture

Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep-Learning Applications, ISSCC 2022
Lecture on Accelerator-in-Memory

AiM: MAC Circuit

- 16 multipliers, adder tree, and accumulator
 - Bfloat16 (BF16) format

[Diagram of MAC Circuit]

PIM Course: Lecture 6: Real-world PIM: SK Hynix AiM (Spring 2023)

569 views 1 month ago Livestream - Data-Centric Architectures: Fundamentally Improving Performance and Energy (Spring 2023)
Projects & Seminars, ETH Zürich, Spring 2023
Data-Centric Architectures: Fundamentally Improving Performance and Energy

https://youtu.be/HUSrlKgR1cM
Alibaba HB-PNM
Alibaba HB-PNM: Overall Architecture (2022)

- 3D-stacked logic die and DRAM die vertically bonded by hybrid bonding (HB)
Alibaba HB-PNM: Compute Engines

- Match engine and neural engine for matching and ranking in a recommendation system
Lecture on HB-PNM

Neural Engine: GEMM

- 32x32 INT8 fully-pipelined systolic array
 - Partial sums accumulated in INT32 accumulator

GEMM:

- Weight Pre-loader
- GEMM Controller
- Staging FIFO-0
- Staging FIFO-1
- Staging FIFO-2
- 32 synaptic PE Array

PIM Course: Lecture 8: Real-world PIM: Alibaba HB-PNM - Fall 2022

Onur Mutlu Lectures
32.4K subscribers

438 views 4 months ago Livestream - P&S Data-Centric Architectures: Fundamentally Improving Performance and Energy (Fall 2022)
Projects & Seminars, ETH Zürich, Fall 2022
Data-Centric Architectures: Fundamentally Improving Performance and Energy
(https://safari.ethz.ch/projects_and_s...) Show more

https://youtu.be/8MM6_36LmWQ
More Real PIM
NeuroBladers build a processing-in-memory analytics chip and server

By Chris Mellor - October 6, 2021

An Israeli startup called NeuroBlade has exited stealth mode, built a processing-in-memory (PIM) analytics chip combining DRAM and thousands of cores, put four of them in an analytics accelerating server appliance box, and taken in $83 million in B-round funding.

The idea is to take a GPU approach to big data-style analytics and AI software by employing a massively parallel core design, but take it further by layering the cores on DRAM with a wide I/O bus architecture design linking the cores and memory to speed processing even more. This design vastly reduces data movement between storage and memory and also accelerates data transfer between memory and processing cores.
Distributed processors and methods for compiling code for execution by distributed processors are disclosed. In one implementation, a distributed processor may include a substrate; a memory array disposed on the substrate; and a processing array disposed on the substrate. The memory array may include a plurality of discrete memory banks, and the processing array may include a plurality of processor subunits, each one of the processor subunits being associated with a corresponding, dedicated one of the plurality of discrete memory banks. The distributed processor may further include a first plurality of buses, each connecting one of the plurality of processor subunits to its corresponding, dedicated memory bank, and a second plurality of buses, each connecting one of the plurality of processor subunits to another of the plurality of processor subunits.
NeuroBlade Patent (II)
NeuroBlade: Xiphos

- PIM XRAM chip
 - IMPU (Intensive Memory Processing Unit)
- x86 CPU, 32 NVMe SSDs
- PCIe fabric: “Everything is connected on top of PCIe fabric.”
- Wide I/O bus: multiple x16 PCIe buses

[Image of Xiphos appliance]

[Website: https://www.neuroblade.com]
Variety of Current Real PIM Architectures

• Differences
 - Near-bank (UPMEM, FIMDRAM, AiM, HB-PNM) vs. near-chip (AxDIMM)
 - General-purpose (UPMEM) vs. special-function (FIMDRAM, AiM, HB-PNM)
 - FGMT (UPMEM) vs. SIMD (FIMDRAM, AiM, AxDIMM) vs. systolic array (HB-PNM)
 - Natively integer (UPMEM, HB-PNM) vs. floating point (FIMDRAM)
 • FP16 (FIMDRAM) vs. BF16 (AiM) vs. FP32 (AxDIMM)
 - DDR4 (UPMEM, AxDIMM) vs. LPDDR4 (HB-PNM) vs. HBM2 (FIMDRAM) vs. GDDR6 (AiM)
Common Characteristics

• These PIM systems have some common characteristics:

1. There is a host processor (CPU or GPU) with access to (1) standard main memory, and (2) PIM-enabled memory

2. PIM-enabled memory contains multiple PIM processing elements (PEs) with high bandwidth and low latency memory access

3. PIM PEs run only at a few hundred MHz and have a small number of registers and small (or no) cache/scratchpad

4. PIM PEs may need to communicate via the host processor
A State-of-the-Art PIM (PNM) System

- These PIM systems have some common characteristics:
 1. There is a host processor (CPU or GPU) with access to (1) standard main memory, and (2) PIM-enabled memory
 2. PIM-enabled memory contains multiple PIM processing elements (PEs) with high bandwidth and low latency memory access
 3. PIM PEs run only at a few hundred MHz and have a small number of registers and small (or no) cache/scratchpad
 4. PEs may need to communicate via the host processor
Programming a General-purpose PIM System
Accelerator Model (I)

• Integration of UPMEM DIMMs in a system follows an accelerator model

• UPMEM DIMMs coexist with conventional DIMMs

• UPMEM DIMMs can be seen as a loosely coupled accelerator
 - Explicit data movement between the main processor (host CPU) and the accelerator (UPMEM)
 - Explicit kernel launch onto the UPMEM processors

• This resembles GPU computing
GPU Computing

• Computation is **offloaded to the GPU**

• Three steps
 - CPU-GPU data transfer (1)
 - GPU kernel execution (2)
 - GPU-CPU data transfer (3)

https://www.youtube.com/watch?v=y40-tY5WJ8A
Accelerator Model (II)

- FIG. 6 is a flow diagram representing operations in a method of delegating a processing task to a DRAM processor according to an example embodiment.
System Organization

- FIG. 1 schematically illustrates a computing system comprising DRAM circuits having integrated processors according to an example embodiment.
First Programming Example: Vector Addition
Observations, Recommendations, Takeaways

GENERAL PROGRAMMING RECOMMENDATIONS

1. Execute on the **DRAM Processing Units (DPUs)** portions of parallel code that are as long as possible.
2. Split the workload into independent data blocks, which the DPUs operate on independently.
3. Use as many working DPUs in the system as possible.
4. Launch at least 11 **tasklets** (i.e., software threads) per DPU.

PROGRAMMING RECOMMENDATION 1

For data movement between the DPU’s MRAM bank and the WRAM, use large DMA transfer sizes when all the accessed data is going to be used.

KEY OBSERVATION 7

Larger CPU-DPU and DPU-CPU transfers between the host main memory and the DRAM Processing Unit’s Main memory (MRAM) banks result in higher sustained bandwidth.

KEY TAKEAWAY 1

The UPMEM PIM architecture is fundamentally compute bound. As a result, the most suitable work- loads are memory-bound.
Vector Addition (VA)

• Our first programming example
• We partition the input arrays across:
 - DPUs
 - Tasklets, i.e., software threads running on a DPU
User Manual

Getting started

- The UPMEM DPU toolchain
 - Notes before starting
 - The toolchain purpose
 - dpu-upmem-dpurte-clang
 - Limitations
 - The DPU Runtime Library
 - The Host Library
 - dpu-lldb
- Installing the UPMEM DPU toolchain
 - Dependencies
 - Python
 - Installation packages
 - Installation from tar.gz binary archive
 - Functional simulator
- Hello World! Example
 - Purpose
 - Writing and building the program
General Programming Recommendations

• From UPMEM programming guide*, presentations★, and white papers☆

GENERAL PROGRAMMING RECOMMENDATIONS

1. Execute on the DRAM Processing Units (DPUs) portions of parallel code that are as long as possible.
2. Split the workload into independent data blocks, which the DPUs operate on independently.
3. Use as many working DPUs in the system as possible.
4. Launch at least 11 tasklets (i.e., software threads) per DPU.

★ F. Devaux, "The true Processing In Memory accelerator," HotChips 2019. doi: 10.1109/HOTCHIPS.2019.8875680
☆ UPMEM, “Introduction to UPMEM PIM. Processing-in-memory (PIM) on DRAM Accelerator,” White paper
DPU Allocation

• `dpu_alloc()` allocates a number of DPUs
 - Creates a `dpu_set`

```c
struct dpu_set_t dpu_set, dpu;
uint32_t nr_of_dpus;

// Allocate DPUs
DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set));
DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));
printf("Allocated %d DPU(s)\n", nr_of_dpus);
```

Can we allocate different DPU sets over the course of a program?

Yes, we can. We show an example next

We deallocate a DPU set with `dpu_free()`
DPU Allocation: Needleman-Wunsch (NW)

• In NW we change the number of DPUs in the DPU set as computation progresses

```c
// Top-left computation on DPUs
for (unsigned int blk = 1; blk <= (max_cols-1)/BL; blk++) {

    // If nr_of_blocks are lower than max_dpus,
    // set nr_of_dpus to be equal with nr_of_blocks
    unsigned nr_of_blocks = blk;
    if (nr_of_blocks < max_dpus) {
        DPU_ASSERT(dpu_free(dpu_set));
        DPU_ASSERT(dpu_alloc(nr_of_blocks, NULL, &dpu_set));
        DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL));
        DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));
    } else if (nr_of_dpus == max_dpus) {
        ;
    } else {
        DPU_ASSERT(dpu_free(dpu_set));
        DPU_ASSERT(dpu_alloc(max_dpus, NULL, &dpu_set));
        DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL));
        DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));
    }

    ...
}
```
Load DPU Binary

• `dpu_load()` loads a program in all DPUs of a `dpu_set`

```c
// Define the DPU Binary path as DPU_BINARY here
#ifndef DPU_BINARY
#define DPU_BINARY "./bin/dpu_code"
#endif

...

// Load binary
DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL));
```

Is it possible to launch different kernels onto different DPUs?

Yes, it is possible. This enables:
• Workloads with **task-level parallelism**
• Different programs using different DPU sets
CPU-DPU/DPU-CPU Data Transfers

- CPU-DPU and DPU-CPU transfers
 - Between host CPU’s main memory and DPUs’ MRAM banks

 ![Diagram showing data transfers between CPU, DPU, and memory chips.]

 - **Serial CPU-DPU/DPU-CPU transfers:**
 - A single DPU (i.e., 1 MRAM bank)
 - **Parallel CPU-DPU/DPU-CPU transfers:**
 - Multiple DPUs (i.e., many MRAM banks)
 - **Broadcast CPU-DPU transfers:**
 - Multiple DPUs with a single buffer
Serial Transfers

- `dpu_copy_to();`
- `dpu_copy_from();`
- We transfer (part of) a buffer to/from each DPU in the `dpu_set`

DPU_MRAM_HEAP_POINTER_NAME: Start of the MRAM range that can be freely accessed by applications
 - We do not allocate MRAM explicitly
Parallel Transfers

- We push different buffers to/from a DPU set in one transfer
 - All buffers need to be of the same size

- First, prepare \texttt{(dpu_prepare_xfer)}; then, push \texttt{(dpu_push_xfer)}

- Direction:
 - \texttt{DPU_XFER_TO_DPU}
 - \texttt{DPU_XFER_FROM_DPU}
Broadcast Transfers

- `dpu_broadcast_to()`: Only CPU to DPU
- We transfer the same buffer to all DPUs in the `dpu_set`

```c
DPU_ASSERT(dpu_broadcast_to(dpu_set, DPU_MRAM_HEAP_POINTER_NAME, 0, bufferA, input_size_dpu * sizeof(T), DPU_XFER_DEFAULT));
```
Different Types of Transfers in a Program

- An example benchmark that uses both parallel and serial transfers
- Select (SEL)
 - Remove even values

```
<table>
<thead>
<tr>
<th>Input</th>
<th>DPU 0</th>
<th>DPU 1</th>
<th>DPU 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Predicate: True if it is even

<table>
<thead>
<tr>
<th>Output</th>
<th>DPU 0</th>
<th>DPU 1</th>
<th>DPU 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Parallel transfers
Serial transfers
```
Inter-DPU Communication

• There is no direct communication channel between DPUs

• Inter-DPU communication takes place via the host CPU using CPU-DPU and DPU-CPU transfers

• Example communication patterns:
 - Merging of partial results to obtain the final result
 • Only DPU-CPU transfers
 - Redistribution of intermediate results for further computation
 • DPU-CPU transfers and CPU-DPU transfers
How Fast are these Data Transfers?

- With a microbenchmark, we obtain the **sustained bandwidth** of all types of CPU-DPU and DPU-CPU transfers.

- Two experiments:
 - 1 DPU: variable CPU-DPU and DPU-CPU transfer size (8 bytes to 32 MB)
 - 1 rank: 32 MB CPU-DPU and DPU-CPU transfers to/from a set of 1 to 64 MRAM banks within the same rank

- Preliminary experiments with more than one rank
 - Channel-level parallelism

DDR4 bandwidth bounds the maximum transfer bandwidth.

The cost of the **transfers can be amortized**, if enough computation is run on the DPUs.
CPU-DPU/DPU-CPU Transfers: 1 DPU

• Data transfer size varies between 8 bytes and 32 MB

KEY OBSERVATION 7

Larger CPU-DPU and DPU-CPU transfers between the host main memory and the DRAM Processing Unit’s Main memory (MRAM) banks result in higher sustained bandwidth.
CPU-DPU/DPU-CPU Transfers: 1 Rank (I)

- CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)
- The number of DPUs varies between 1 and 64

KEY OBSERVATION 8

The sustained bandwidth of parallel CPU-DPU and DPU-CPU transfers between the host main memory and the DRAM Processing Unit’s Main memory (MRAM) banks increases with the number of DRAM Processing Units inside a rank.
CPU-DPU/DPU-CPU Transfers: 1 Rank (II)

- **CPU-DPU** (serial/parallel/broadcast) and **DPU-CPU** (serial/parallel)
- The number of DPUs varies between 1 and 64

KEY OBSERVATION 9

The sustained bandwidth of parallel CPU-DPU transfers is higher than the sustained bandwidth of parallel DPU-CPU transfers due to different implementations of CPU-DPU and DPU-CPU transfers in the UPMEM runtime library.

The sustained bandwidth of broadcast CPU-DPU transfers (i.e., the same buffer is copied to multiple MRAM banks) is higher than that of parallel CPU-DPU transfers (i.e., different buffers are copied to different MRAM banks) due to higher temporal locality in the CPU cache hierarchy.
“Transposing” Library

The library feeds DPUs with correct data

Eight 64-bit “horizontal” words are turned into 8 vertical words, feeding 8 different DRAM chips. This way DPUs see full 64-bit words, not chunk of them.

The transformation, a 8x8 matrix transposition, is done by the library inside a 64-byte cache line, thus very efficiently.

Copyright UPMEM® 2019

F. Devaux, "The true Processing In Memory accelerator," HotChips 2019. doi: 10.1109/HOTCHIPS.2019.8875680
Microbenchmark: CPU-DPU

- CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)
DPU Kernel Launch

- `dpu_launch()` launches a kernel on a `dpu_set`
 - `DPU_SYNCHRONOUS` suspends the application until the kernel finishes
 - `DPUASYNCHRONOUS` returns the control to the application
 - `dpu_sync` or `dpu_status` to check kernel completion

```c
printf("Run program on DPU(s) \n");
// Run DPU kernel
DPU_ASSERT(dpu_launch(dpu_set, DPUASYNCHRONOUS));
```

What does the asynchronous execution enable?

Some ideas:
- **Task-level parallelism**: concurrent execution of different kernels on different DPU sets
- Concurrent **heterogeneous computation** on CPU and DPUs
How to Pass Parameters to the Kernel?

• We can use serial and parallel transfers
• We pass them directly to the scratchpad memory of the DPU
 - Working RAM (WRAM): 64KB per DPU
• This is useful for input parameters and some results

```c
// In DPU WRAM (dpu/task.c)
__host dpu_arguments_t DPU_INPUT_ARGUMENTS;
__host dpu_results_t DPU_RESULTS[NR_TASKLETS];

// Host code (host/app.c)
#ifdef SERIAL
    DPU_FOREACH (dpu_set, dpu) {
        DPU_ASSERT(dpu_copy_to(dpu, "DPU_INPUT_ARGUMENTS", 0, (const void *)&input_arguments[i], sizeof(input_arguments[0])));
        i++;
    }
#else
    DPU_FOREACH(dpu_set, dpu, i) {
        DPU_ASSERT(dpu_prepare_xfer(dpu, &input_arguments[i]));
    }
    DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, "DPU_INPUT_ARGUMENTS", 0, sizeof(input_arguments[0]), DPU_XFER_DEFAULT));
#endif
```
Recall: Vector Addition (VA)

• Our first programming example
• We partition the input arrays across:
 - DPUs
 - Tasklets, i.e., software threads running on a DPU
Programming a DPU Kernel (I)

- Vector addition

```c
// Vector addition kernel
int main_kernel1() {
    unsigned int tasklet_id = me();
    uint32_t input_size_dpu_bytes = DPU_INPUT_ARGUMENTS.size;
    // Input size per DPU in bytes
    uint32_t input_size_dpu_bytes_transfer = DPU_INPUT_ARGUMENTS.transfer_size;
    // Transfer input size per DPU in bytes

    // Address of the current processing block in MRAM
    uint32_t base_tasklet = tasklet_id << BLOCK_SIZE LOG2;
    uint32_t mram_base_addr_A = (uint32_t)DPU_MRAM_HEAP_POINTER;
    uint32_t mram_base_addr_B = (uint32_t)(DPU_MRAM_HEAP_POINTER + input_size_dpu_bytes_transfer);

    // Initialize a local cache to store the MRAM block
    T *cache_A = (T *) mem_alloc(BLOCK_SIZE);
    T *cache_B = (T *) mem_alloc(BLOCK_SIZE);

    for(unsigned int byte_index = base_tasklet; byte_index < input_size_dpu_bytes; byte_index += BLOCK_SIZE * NR_TASKLETS){
        // Bound checking
        uint32_t l_size_bytes = (byte_index + BLOCK_SIZE >= input_size_dpu_bytes) ? (input_size_dpu_bytes - byte_index) : BLOCK_SIZE;

        // Load cache with current MRAM block
        mram_read((__mram_ptr void const*)(mram_base_addr_A + byte_index), cache_A, l_size_bytes);
        mram_read((__mram_ptr void const*)(mram_base_addr_B + byte_index), cache_B, l_size_bytes);

        // Vector addition (see next slide)
        vector_addition(cache_B, cache_A, l_size_bytes >> DIV);

        // Write cache to current MRAM block
        mram_write(cache_B, (__mram_ptr void*)(mram_base_addr_B + byte_index), l_size_bytes);
    }

    return 0;
}
```
Programming a DPU Kernel (II)

• Vector addition

```c
// vector_addition: Computes the vector addition of a cached block
static void vector_addition(T *bufferB, T *bufferA, unsigned int l_size) {
    for (unsigned int i = 0; i < l_size; i++){
        bufferB[i] += bufferA[i];
    }
}
```
Intra-DPU Synchronization
Synchronization Primitives

- A **tasklet** is the software abstraction of a hardware thread
- Each tasklet can have its own memory space in WRAM
 - Tasklets can also share data in WRAM by sharing pointers
- Tasklets within the same DPU can **synchronize**
 - Mutual exclusion
 - `mutex_lock();` `mutex_unlock();`
 - Handshakes
 - `handshake_wait_for();` `handshake_notify();`
 - Barriers
 - `barrier_wait();`
 - Semaphores
 - `sem_give();` `sem_take();`
Parallel Reduction (I)

- Tasklets in a DPU can work together on a parallel reduction
Parallel Reduction (II)

• Each tasklet computes a local sum
Parallel Reduction (III)

• Each tasklet computes a local sum

```c
for(unsigned int byte_index = base_tasklet; byte_index < input_size_dpu_bytes; byte_index += BLOCK_SIZE * NR_TASKLETS){
    // Bound checking
    uint32_t l_size_bytes = (byte_index + BLOCK_SIZE >= input_size_dpu_bytes) ? (input_size_dpu_bytes - byte_index) : BLOCK_SIZE;
    // Load cache with current MRAM block
    mram_read((__mram_ptr void const*)(mram_base_addr_A + byte_index), cache_A, l_size_bytes);
    // Reduction in each tasklet
    l_count += reduction(cache_A, l_size_bytes >> DIV);
    // Copy local count to shared array in WRAM
    message[tasklet_id] = l_count;
}
```
Final Reduction

- A single tasklet can perform the final reduction

```c
for(unsigned int byte_index = base_tasklet; byte_index < input_size_dpu_bytes; byte_index += BLOCK_SIZE * NR_TASKLETS){

    // Bound checking
    uint32_t l_size_bytes = (byte_index + BLOCK_SIZE >= input_size_dpu_bytes) ? (input_size_dpu_bytes - byte_index) : BLOCK_SIZE;

    // Load cache with current MRAM block
    mram_read((__mram_ptr void const*)(mram_base_addr_A + byte_index), cache_A, l_size_bytes);

    // Reduction in each tasklet
    l_count += reduction(cache_A, l_size_bytes >> DIV);
}

// Copy local count to shared array in WRAM
message[tasklet_id] = l_count;

// Single-thread reduction
// Barrier
barrier_wait(&my_barrier);

if(tasklet_id == 0){
    #pragma unroll
    for (unsigned int each_tasklet = 1; each_tasklet < NR_TASKLETS; each_tasklet++){
        message[0] += message[each_tasklet];
    }
}

// Total count in this DPU
result->t_count = message[0];
```
Using Barriers: Tree-Based Reduction

- Multiple tasklets can perform a tree-based reduction
 - After every iteration tasklets synchronize with a barrier
 - Half of the tasklets retire at the end of an iteration

```c
// Barrier
barrier_wait(&my_barrier);

#pragma unroll
for (unsigned int offset = 1; offset < NR_TASKLETS; offset <<= 1){
  if((tasklet_id & (2*offset - 1)) == 0){
    message[tasklet_id] += message[tasklet_id + offset];
  }
}

// Barrier
barrier_wait(&my_barrier);
```

A **handshake-based tree-based reduction** is also possible.
We can compare single-tasklet, barrier-based, and handshake-based versions*

*Gómez-Luna et al., “Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture,”
Tree-Based Reduction on UPMEM PIM (I)

- Single-thread vs. Barrier-based vs. Handshake-based on 1 DPU

High cost of intra-DPU synchronization (especially, barrier synchronization) when there is small amount of computation
Tree-Based Reduction on UPMEM PIM (II)

- Single-thread vs. Barrier-based vs. Handshake-based on 1 DPU

Charts

2K elements

<table>
<thead>
<tr>
<th>#Tasklets</th>
<th>Execution Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>98200, 98416, 98265</td>
</tr>
<tr>
<td>4</td>
<td>50849, 52011, 51060</td>
</tr>
<tr>
<td>8</td>
<td>29196, 32681, 29412</td>
</tr>
<tr>
<td>16</td>
<td>23780, 35036, 24334</td>
</tr>
</tbody>
</table>

2M elements

<table>
<thead>
<tr>
<th>#Tasklets</th>
<th>Execution Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9.9E+07, 9.9E+07, 9.9E+07</td>
</tr>
<tr>
<td>4</td>
<td>5.0E+07, 5.0E+07, 5.0E+07</td>
</tr>
<tr>
<td>8</td>
<td>2.5E+07, 2.5E+07, 2.5E+07</td>
</tr>
<tr>
<td>16</td>
<td>1.7E+07, 1.7E+07, 1.7E+07</td>
</tr>
</tbody>
</table>

Cost of intra-DPU synchronization gets amortized when there is large amount of computation.
Parallel Reduction on GPU

Over 85 different versions possible!
Prefix-Sum (Scan)

Input

| 1 | 2 | 3 | 4 | 1 | 1 | 1 | 1 | 0 | 1 | 2 | 3 | 2 | 2 | 2 | 2 |

Output (Exclusive Scan)

```java
out[0] = 0; // Identity value
for (int i = 1; i < n; i++)
    out[i] = out[i-1] + in[i-1];
```

| 0 | 1 | 3 | 6 | 10 | 11 | 12 | 13 | 14 | 14 | 15 | 17 | 20 | 22 | 24 | 26 |

Output (Inclusive Scan)

```java
out[0] = in[0];
for (int i = 1; i < n; i++)
    out[i] = out[i-1] + in[i];
```

| 1 | 3 | 6 | 10 | 11 | 12 | 13 | 14 | 14 | 15 | 17 | 20 | 22 | 24 | 26 | 28 |
Hierarchical (Inclusive) Scan: 1 DPU

Input

<table>
<thead>
<tr>
<th>Input</th>
<th>Tasklet 0</th>
<th>Tasklet 1</th>
<th>Tasklet 2</th>
<th>Tasklet 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4</td>
<td>1 1 1 1</td>
<td>0 1 2 3</td>
<td>2 2 2 2</td>
<td></td>
</tr>
</tbody>
</table>

Per-tasklet (Inclusive) Scan

<table>
<thead>
<tr>
<th>Input</th>
<th>Tasklet 0</th>
<th>Tasklet 1</th>
<th>Tasklet 2</th>
<th>Tasklet 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 6 10</td>
<td>1 2 3 4</td>
<td>0 1 3 6</td>
<td>2 4 6 8</td>
<td></td>
</tr>
</tbody>
</table>

Output (Inclusive Scan)

<table>
<thead>
<tr>
<th>Input</th>
<th>Tasklet 0</th>
<th>Tasklet 1</th>
<th>Tasklet 2</th>
<th>Tasklet 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 6 10 22 26 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAFARI
Per-DPU (Inclusive) Scan (I)

- Each tasklet computes scan locally

```c
// Load cache with current MRAM block
mram_read((const __mram_ptr void*)(mram_base_addr_A + byte_index), cache_A, BLOCK_SIZE);

// Scan in each tasklet
T l_count = scan(cache_B, cache_A); // Per-tasklet scan

// Sync with adjacent tasklets
T p_count = handshake_sync(l_count, tasklet_id);

// Add in each tasklet
add(cache_B, p_count);

// Write cache to current MRAM block
mram_write(cache_B, (__mram_ptr void*)(mram_base_addr_B + byte_index), BLOCK_SIZE);

// Scan in each tasklet
static T scan(T *output, T *input){
    output[0] = input[0];
    #pragma unroll
    for(unsigned int j = 1; j < REGS; j++) {
        output[j] = output[j - 1] + input[j];
    }
    return output[REGS - 1];
}
```
Per-DPU (Inclusive) Scan (II)

- Each tasklet communicates with adjacent tasklets

```c
// Load cache with current MRAM block
mram_read((const __mram_ptr void*)(mram_base_addr_A + byte_index), cache_A, BLOCK_SIZE);

// Scan in each tasklet
T l_count = scan(cache_B, cache_A);
Per-tasklet scan

// Sync with adjacent tasklets
T p_count = handshake_sync(l_count, tasklet_id);
Handshake-based synchronization

// Add in each tasklet
add(cache_B, p_count);

// Write cache to current MRAM block
mram_write(cache_B, __mram_ptr void);
```

```c
// Handshake with adjacent tasklets
static T handshake_sync(T l_count, unsigned int tasklet_id){
    T p_count;

    // Wait and read message
    if(tasklet_id != 0){
        handshake_wait_for(tasklet_id - 1);
        p_count = message[tasklet_id];
    }
    else
        p_count = 0;

    // Write message and notify
    if(tasklet_id < NR_TASKLETS - 1){
        message[tasklet_id + 1] = p_count + l_count;
        handshake_notify();
    }
    return p_count;
}
```
Per-DPU (Inclusive) Scan (III)

- Each tasklet adds an offset to each own element

```c
// Load cache with current MRAM block
mram_read((const __mram_ptr void*)(mram_base_addr_A + byte_index), cache_A, BLOCK_SIZE);

// Scan in each tasklet
T l_count = scan(cache_B, cache_A);

// Sync with adjacent tasklets
T p_count = handshake_sync(l_count, tasklet_id);

// Add in each tasklet
add(cache_B, p_count);

// Write cache to current MRAM block
mram_write(cache_B, (const __mram_ptr void*)(mram_base_addr_B + byte_index), BLOCK_SIZE);

// Add in each tasklet
static void add(T *output, T p_count){
    #pragma unroll
    for(unsigned int j = 0; j < REGS; j++) {
        output[j] += p_count;
    }
}
```
Scan-Scan-Add (SSA)

<table>
<thead>
<tr>
<th>Input</th>
<th>DPU 0</th>
<th>DPU 1</th>
<th>DPU 2</th>
<th>DPU 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4</td>
<td>1 1 1 1</td>
<td>0 1 2 3</td>
<td>2 2 2 2</td>
<td></td>
</tr>
</tbody>
</table>

Per-DPU (Inclusive) Scan

| 1 3 6 10 | 1 2 3 4 | 0 1 3 6 | 2 4 6 8 |

Scan Partial Sums

| 10 4 6 8 |

Add

| 10 14 20 28 |

Output (Inclusive Scan)

| 1 3 6 10 11 12 13 14 14 15 17 20 22 24 26 28 |
SSA: Memory Accesses

• Scan
 - First kernel reads **input array** (N elements) and writes array with **per-DPU prefix sums** (N elements)

• Scan
 - Second kernel reads and writes N / PER_DPU_SIZE elements

• Add
 - Third kernel reads array with **per-DPU prefix sums** (N elements) and writes **output** (N elements)

• **4N elements** are read/written
Reduce-Scan-Scan (RSS)

Input

<table>
<thead>
<tr>
<th></th>
<th>DPU 0</th>
<th>DPU 1</th>
<th>DPU 2</th>
<th>DPU 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Per-DPU Reduction

<table>
<thead>
<tr>
<th></th>
<th>DPU 0</th>
<th>DPU 1</th>
<th>DPU 2</th>
<th>DPU 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Scan Partial Sums

<table>
<thead>
<tr>
<th></th>
<th>DPU 0</th>
<th>DPU 1</th>
<th>DPU 2</th>
<th>DPU 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>14</td>
<td>20</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

Per-DPU Scan

Output (Inclusive Scan)

<table>
<thead>
<tr>
<th></th>
<th>DPU 0</th>
<th>DPU 1</th>
<th>DPU 2</th>
<th>DPU 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>17</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

Add

DPU kernel termination
RSS: Memory Accesses

• Reduce
 - First kernel reads input array (N elements) and writes per-DPU reduction (N / PER_DPU_SIZE elements)

• Scan
 - Second kernel reads and writes N / PER_DPU_SIZE elements

• Scan
 - Third kernel reads input array (N elements) and scan partial sums (N / PER_DPU_SIZE elements), and writes output (N elements)

• 3N elements are read/written
SCAN-SSA vs. SCAN-RSS on UPMEM PIM

- SCAN-SSA vs. SCAN-RSS on 1 DPU

The cost of intra-DPU synchronization in RSS (in Reduce step) may be noticeable for small arrays. For large arrays, RSS is faster than SSA, since it saves memory accesses.

Parallel Prefix-Sum (Scan) on GPU

Work Efficiency

- Recall: Kogge-Stone
 - \(\log(N)\) steps
 - \(O(N \times \log(N))\) operations

- Brent-Kung
 - Reduction step:
 - \(\log(N)\) steps
 - \(1 + 2 + 4 + \ldots + N/2 = N-1\) operations
 - Post-Reduction step:
 - \(\log(N) - 1\) steps
 - \((2-1) + (4-1) + \ldots + (N/2-1) = (N-2) - (\log(N)-1)\)
 - Total:
 - \(2 \times \log(N) - 1\) steps
 - \((N-1) + (N-2) - (\log(N)-1) = 2N - \log(N) - 2 = O(N)\) operations

Brent-Kung takes more steps but is more work-efficient

HetSys Course: Lecture 10: Parallel Patterns: Prefix Sum (Scan) (Fall 2022)

https://youtu.be/SG0gvcbf2eo
User Manual

Getting started

- The UPMEM DPU toolchain
 - Notes before starting
 - The toolchain purpose
 - dpu-upmem-dpurte-clang
 - Limitations
 - The DPU Runtime Library
 - The Host Library
 - dpu-lldb
- Installing the UPMEM DPU toolchain
 - Dependencies
 - Python
 - Installation packages
 - Installation from tar.gz binary archive
 - Functional simulator
- Hello World! Example
 - Purpose
 - Writing and building the program

https://sdk.upmem.com/2023.1.0/
Programming UPMEM PIM (I)

“Transposing” Library

The library feeds DPUs with correct data

Eight 64-bit “horizontal” words are turned into 8 vertical words, feeding 8 different DRAM chips
This way DPUs see full 64-bit words, not chunk of them

The transformation, a 8x8 matrix transposition, is done by the library inside a 64-byte cache line, thus very efficiently.

PIM Course: Lecture 9: Programming PIM Architectures - Fall 2022

https://youtu.be/zF70xuhesME
Computer Architecture
Lecture 10: Programming a Real-world PIM Architecture

Dr. Juan Gómez Luna
Prof. Onur Mutlu
ETH Zürich
Fall 2022
28 October 2022

Livestream - Computer Architecture - ETH Zürich (Fall 2022)
Computer Architecture - Lecture 10: Real Processing in Memory Systems: UPMEM Case Study (Fall 2022)

Onur Mutlu Lectures
29.4K subscribers

830 views Streamed live on Oct 28, 2022
Computer Architecture, ETH Zürich, Fall 2022 (https://safari.ethz.ch/architecture/football/)

Lecture 10: Real Processing in Memory Systems: UPMEM Case Study

https://youtu.be/pHEHdLsnNdk
Microbenchmarking of UPMEM PIM
DPU Pipeline

- In-order pipeline
 - Up to 425 MHz
- Fine-grain multithreaded
 - 24 hardware threads
- 14 pipeline stages
 - DISPATCH: Thread selection
 - FETCH: Instruction fetch
 - READOP: Register file
 - FORMAT: Operand formatting
 - ALU: Operation and WRAM
 - MERGE: Result formatting
Arithmetic Throughput: Microbenchmark

• Goal
 - Measure the maximum arithmetic throughput for different datatypes and operations

• Microbenchmark
 - We stream over an array in WRAM and perform read-modify-write operations
 - Experiments on one DPU
 - We vary the number of tasklets from 1 to 24
 - Arithmetic operations: add, subtract, multiply, divide
 - Datatypes: int32, int64, float, double

• We measure cycles with an accurate cycle counter that the SDK provides
 - We include WRAM accesses (including address calculation) and arithmetic operation
Microbenchmark for INT32 ADD Throughput

C-based code

```
#define SIZE 256
int* bufferA = mem_alloc(SIZE * sizeof(int));
for(int i = 0; i < SIZE; i++){
    int temp = bufferA[i];
    temp += scalar;
    bufferA[i] = temp;
}
```

Compiled code (UPMEM DPU ISA)

```
move r2, 0
.LBB0_1:    // Loop header
    lsl_add r3, r0, r2, 2 // Address calculation
    lw r4, r3, 0        // Load from WRAM
    add r4, r4, r1      // Add
    sw r3, 0, r4        // Store to WRAM
    add r2, r2, 1       // Index update
    jneq r2, 256, .LBB0_1 // Conditional jump
```
Arithmetic Throughput: 11 Tasklets

KEY OBSERVATION 1

The arithmetic throughput of a DRAM Processing Unit saturates at 11 or more tasklets.

This observation is consistent for different datatypes (INT32, INT64, UINT32, UINT64, FLOAT, DOUBLE) and operations (ADD, SUB, MUL, DIV).
Arithmetic Throughput: ADD/SUB

Can we explain the peak throughput?

Peak throughput at 11 tasklets. One instruction retires every cycle when the pipeline is full.

Arithmetic Throughput (in OPS) = \(\frac{\text{frequency}_{\text{DPU}}}{\#\text{instructions}} \)
Arithmetic Throughput: #Instructions

- Compiler explorer: https://dpu.dev

```c
#define BLOCK_SIZE 1024

typedef int T;

void Benchmark_32bits(T *cache_A, T scalar) {
    for (int i = 0; i < BLOCK_SIZE / sizeof(T); i++){
        // // // WRAM READ // // //
        T temp = cache_A[i];

        temp += scalar; // ADD

        // // // WRAM WRITE // // //
        cache_A[i] = temp;
    }
}

typedef long T_long;

void Benchmark_64bits(T_long *cache_A, T_long scalar) {
    for (int i = 0; i < BLOCK_SIZE / sizeof(T_long); i++){
        // // // WRAM READ // // //
        T_long temp = cache_A[i];

        temp += scalar; // ADD
    }
}
```

6 instructions in the **32-bit** ADD/SUB microbenchmark
7 instructions in the **64-bit** ADD/SUB microbenchmark
Arithmetic Throughput: ADD/SUB

Can we explain the peak throughput?

Peak throughput at 11 tasklets.

One instruction retires every cycle when the pipeline is full.

Arithmetic Throughput (in OPS) = \(\frac{\text{frequency}_{DPU}}{\#\text{instructions}} \)

64-bit ADD/SUB: 7 instructions → 50.00 MOPS

at \(\text{frequency}_{DPU} = 350 \) MHz

INT32 ADD/SUB are 17% faster than INT64 ADD/SUB
Arithmetic Throughput: MUL/DIV

(a) INT32 (1 DPU)
(b) INT64 (1 DPU)
(c) FLOAT (1 DPU)
(d) DOUBLE (1 DPU)

Huge throughput difference between ADD/SUB and MUL/DIV

DPUs do not have a 32-bit multiplier

MUL/DIV implementation is based on an instruction that performs bit shifting and addition in 1 cycle (MUL/DIV take a maximum of 32 instructions)
Arithmetic Throughput: Native Support

KEY OBSERVATION 2

- DPUs provide native hardware support for 32- and 64-bit integer addition and subtraction, leading to high throughput for these operations.

- DPUs do not natively support 32- and 64-bit multiplication and division, and floating point operations. These operations are emulated by the UPMEM runtime library, leading to much lower throughput.
Microbenchmark: Arithmetic Throughput

• Arithmetic throughput for different operations and datatypes
DPU: WRAM Bandwidth

PIM Chip

- Control/Status Interface
- DDR4 Interface
- 24-KB IRAM
- DMA Engine
- 64-MB DRAM Bank (MRAM)
- 64-KB WRAM
- Register File
- Pipeline
- DISPATCH
- FETCH1
- FETCH2
- FETCH3
- READOP1
- READOP2
- READOP3
- FORMAT
- ALU1
- ALU2
- ALU3
- ALU4
- MERGE1
- MERGE2

SAFARI
WRAM Bandwidth: Microbenchmark

• Goal
 - Measure the WRAM bandwidth for the STREAM benchmark

• Microbenchmark
 - We implement the four versions of STREAM: COPY, ADD, SCALE, and TRIAD
 - The operations performed in ADD, SCALE, and TRIAD are addition, multiplication, and addition+multiplication, respectively
 - We vary the number of tasklets from 1 to 16
 - We show results for 1 DPU

• We do not include accesses to MRAM
STREAM Benchmark in WRAM

// COPY
for(int i = 0; i < SIZE; i++){
 bufferB[i] = bufferA[i];
}

// ADD
for(int i = 0; i < SIZE; i++){
 bufferC[i] = bufferA[i] + bufferB[i];
}

// SCALE
for(int i = 0; i < SIZE; i++){
 bufferB[i] = scalar * bufferA[i];
}

// TRIAD
for(int i = 0; i < SIZE; i++){
 bufferC[i] = bufferA[i] + scalar * bufferB[i];
}
WRAM Bandwidth: STREAM

How can we estimate the bandwidth?

Assuming that the pipeline is full, and Bytes is the number of bytes read and written:

\[
\text{WRAM Bandwidth (in \frac{B}{S})} = \frac{\text{Bytes} \times \text{frequency}_{\text{DPU}}}{\#\text{instructions}}
\]
WRAM Bandwidth: COPY

STREAM (WRAM, INT64, 1DPU)

- **COPY** executes 2 instructions (WRAM load and store).
- With 11 tasklets, \(11 \times 16\) bytes in 22 cycles:

\[
\text{WRAM Bandwidth} \left(\frac{B}{S} \right) = 2,800 \frac{MB}{s} \text{ at } 350 \text{ MHz}
\]
WRAM Bandwidth: ADD

\[
\text{WRAM Bandwidth} \left(\frac{B}{S} \right) = \frac{\text{Bytes} \times \text{frequency}_{\text{DPU}}}{\# \text{instructions}}
\]

ADD executes **5 instructions** (2 `ld`, `add`, `addc`, `sd`).

With 11 tasklets, \(11 \times 24\) bytes in **55 cycles**:

\[
\text{WRAM Bandwidth} \left(\frac{B}{S} \right) = 1,680 \frac{MB}{s} \text{ at } 350 \text{ MHz}
\]
WRAM Bandwidth: Access Patterns

• All 8-byte **WRAM loads and stores take one cycle** when the DPU pipeline is full

KEY OBSERVATION 3

The sustained bandwidth provided by the DPU’s internal Working memory (WRAM) is **independent of the memory access pattern** (either streaming, strided, or random access pattern).

All 8-byte WRAM loads and stores take one cycle, when the DPU’s pipeline is full (i.e., with 11 or more tasklets).

• Microbenchmark: c[a[i]] = b[a[i]];
 - Unit-stride: a[i] = a[i-1] + 1;
 - Strided: a[i] = a[i-1] + stride;
 - Random: a[i] = rand();
Microbenchmark: STREAM and WRAM

- STREAM benchmark and WRAM access patterns
DPU: MRAM Latency and Bandwidth

PIM Chip

Control/Status Interface

DDR4 Interface

Dispatch
Fetch1
Fetch2
Fetch3
Readop1
Readop2
Readop3
Format
Alu1
Alu2
Alu3
Alu4
Merge1
Merge2

24-KB IRAM

DMA Engine

64-KB WRAM

64-MB DRAM Bank (MRAM)

Register File
Pipeline

64 bits
MRAM Bandwidth

• Goal
 - Measure MRAM bandwidth for different access patterns

• Microbenchmarks
 - **Latency of a single DMA transfer** for different transfer sizes
 • mram_read(); // MRAM–WRAM DMA transfer
 • mram_write(); // WRAM–MRAM DMA transfer
 - **STREAM** benchmark
 • COPY, COPY-DMA
 • ADD, SCALE, TRIAD
 - **Strided** access pattern
 • Coarse-grain strided access
 • Fine-grain strided access
 - **Random** access pattern (GUPS)

• We do include accesses to MRAM
We can model the MRAM latency with a linear expression

$$\text{MRAM Latency (in cycles)} = \alpha + \beta \times \text{size}$$

In our measurements, β equals 0.5 cycles/byte.
Theoretical maximum MRAM bandwidth = 700 MB/s at 350 MHz.
KEY OBSERVATION 4

- The DPU’s **Main memory (MRAM)** bank access latency increases linearly with the transfer size.
- The maximum theoretical MRAM **bandwidth is 2 bytes per cycle**.
Read and write accesses to MRAM are symmetric.

The sustained MRAM bandwidth increases with data transfer size.

PROGRAMMING RECOMMENDATION 1

For data movement between the DPU’s MRAM bank and the WRAM, use large DMA transfer sizes when all the accessed data is going to be used.
MRAM Read and Write Latency (IV)

MRAM latency changes slowly between 8 and 128 bytes.

For small transfers, the fixed cost (α) dominates the variable cost ($\beta \times \text{size}$).

PROGRAMMING RECOMMENDATION 2

For small transfers between the MRAM bank and the WRAM, fetch more bytes than necessary within a 128-byte limit. Doing so increases the likelihood of finding data in WRAM for later accesses (i.e., the program can check whether the desired data is in WRAM before issuing a new MRAM access).
Larger transfers require more WRAM, which may limit the number of tasklets.

PROGRAMMING RECOMMENDATION 3

Choose the data transfer size between the MRAM bank and the WRAM based on the program’s WRAM usage, as it imposes a tradeoff between the sustained MRAM bandwidth and the number of tasklets that can run in the DPU (which is dictated by the limited WRAM capacity).
MRAM Bandwidth

• Goal
 - Measure MRAM bandwidth for different access patterns

• Microbenchmarks
 - Latency of a single DMA transfer for different transfer sizes
 • mram_read(); // MRAM–WRAM DMA transfer
 • mram_write(); // WRAM–MRAM DMA transfer
 - STREAM benchmark
 • COPY, COPY-DMA
 • ADD, SCALE, TRIAD
 - Strided access pattern
 • Coarse-grain strided access
 • Fine-grain strided access
 - Random access pattern (GUPS)

• We do include accesses to MRAM
STREAM Benchmark in MRAM

// COPY
// Load current MRAM block to WRAM
mram_read((__mram_ptr void const*)mram_address_A, bufferA,
SIZE * sizeof(uint64_t));

for(int i = 0; i < SIZE; i++){
 bufferB[i] = bufferA[i];
}

// Write WRAM block to MRAM
mram_write(bufferB, (__mram_ptr void*)mram_address_B,
SIZE * sizeof(uint64_t));

// COPY-DMA
// Load current MRAM block to WRAM
mram_read((__mram_ptr void const*)mram_address_A, bufferA,
SIZE * sizeof(uint64_t));

// Write WRAM block to MRAM
mram_write(bufferA, (__mram_ptr void*)mram_address_B,
SIZE * sizeof(uint64_t));
The sustained bandwidth of COPY-DMA is close to the theoretical maximum (700 MB/s): \(~1.6 \text{ TB/s for 2,556 DPUs}\)

COPY-DMA saturates with two tasklets, even though the DMA engine can perform only one transfer at a time.

Using two or more tasklets guarantees that there is always a DMA request enqueued to keep the DMA engine busy.
STREAM Benchmark: Bandwidth Saturation (I)

- **COPY and ADD** saturate at **4 and 6 tasklets**, respectively.
- **SCALE and TRIAD** saturate at **11 tasklets**.

The **latency of MRAM accesses becomes longer** than the pipeline latency after 4 and 6 tasklets for **COPY and ADD**, respectively.

The pipeline latency of **SCALE and TRIAD** is **longer** than the MRAM latency for any number of tasklets (both use costly MUL).
KEY OBSERVATION 5

- **When the access latency to an MRAM bank** for a streaming benchmark (COPY-DMA, COPY, ADD) is larger than the **pipeline latency** (i.e., execution latency of arithmetic operations and WRAM accesses), the performance of the DPU saturates at a number of tasklets smaller than 11. This is a memory-bound workload.

- **When the pipeline latency** for a streaming benchmark (SCALE, TRIAD) is larger than the **MRAM access latency**, the performance of a DPU saturates at 11 tasklets. This is a compute-bound workload.
MRAM Bandwidth

• Goal
 - Measure MRAM bandwidth for different access patterns

• Microbenchmarks
 - Latency of a single DMA transfer for different transfer sizes
 • mram_read(); // MRAM–WRAM DMA transfer
 • mram_write(); // WRAM–MRAM DMA transfer
 - STREAM benchmark
 • COPY, COPY-DMA
 • ADD, SCALE, TRIAD
 - Strided access pattern
 • Coarse-grain strided access
 • Fine-grain strided access
 - Random access pattern (GUPS)

• We do include accesses to MRAM
Strided and Random Access to MRAM

// COARSE-GRAINED STRIDED ACCESS
// Load current MRAM block to WRAM
void mram_read(void const* const * mram_address_A, bufferA, const void* const* mram_address_B, bufferB)

for(int i = 0; i < SIZE; i += stride){
 bufferB[i] = bufferA[i];
}

// Write WRAM block to MRAM
void mram_write(bufferB, void const* mram_address_B)

// FINE-GRAINED STRIDED & RANDOM ACCESS
for(int i = 0; i < SIZE; i += stride){
 int index = i * sizeof(uint64_t);
 // Load current MRAM element to WRAM
 mram_read void const* mram_address_A + index, bufferA, sizeof(uint64_t));

 // Write WRAM element to MRAM
 mram_write(bufferA, void const* mram_address_B + index, sizeof(uint64_t));
}
Large difference in maximum sustained bandwidth between coarse-grained and fine-grained DMA

Coarse-grained DMA uses 1,024-byte transfers, while fine-grained DMA uses 8-byte transfers

Random access achieves very similar maximum sustained bandwidth to fine-grained strided approach
Strided and Random Accesses (II)

The sustained MRAM bandwidth of coarse-grained DMA decreases as the stride increases.

The effective utilization of the transferred data decreases as the stride becomes larger (e.g., a stride 4 means that only one fourth of the transferred data is used).
For a stride of 16 or larger, the fine-grained DMA approach achieves higher bandwidth.

With stride 16, only one sixteenth of the maximum sustained bandwidth (622.36 MB/s) of coarse-grained DMA is effectively used, which is lower than the bandwidth of fine-grained DMA (72.58 MB/s).
Strided and Random Accesses (IV)

PROGRAMMING RECOMMENDATION 4

- For strided access patterns with a **stride smaller than 16 8-byte elements**, fetch a large contiguous chunk (e.g., 1,024 bytes) from a DPU’s MRAM bank.
- For strided access patterns with **larger strides and random access patterns**, fetch only the data elements that are needed from an MRAM bank.
Microbenchmark: Strided and Random

- Strided and random accesses to MRAM
DPU: Arithmetic Throughput vs. Operational Intensity

PIM Chip

- Control/Status Interface
- DDR4 Interface
- Register File
- Pipeline
- Dispatch
 - FETCH1
 - FETCH2
 - FETCH3
 - READOP1
 - READOP2
 - READOP3
 - FORMAT
 - ALU1
 - ALU2
 - ALU3
 - ALU4
 - MERGE1
 - MERGE2
- 24-KB IRAM
- DMA Engine
- 64-KB WRAM
- 64-MB DRAM Bank (MRAM)
- 64 bits
- x8
Arithmetic Throughput vs. Operational Intensity (I)

- **Goal**
 - Characterize memory-bound regions and compute-bound regions for different datatypes and operations

- **Microbenchmark**
 - We load one chunk of an MRAM array into WRAM
 - Perform a variable number of operations on the data
 - Write back to MRAM

- The experiment is inspired by the **Roofline model**

- We define **operational intensity** (OI) as the number of arithmetic operations performed per byte accessed from MRAM (OP/B)

- The pipeline latency changes with the operational intensity, but the MRAM access latency is fixed

int repetitions = input_repeat >= 1.0 ? (int)input_repeat : 1;

int stride = input_repeat >= 1.0 ? 1 : (int)(1 / input_repeat);

// Load current MRAM block to WRAM
mram_read((__mram_ptr void const*)mram_address_A, bufferA, SIZE * sizeof(T));

// Update
for (int r = 0; r < repetitions; r++){
 for (int i = 0; i < SIZE; i+=stride){
 #ifdef ADD
 bufferA[i] += scalar; // ADD
 #elif SUB
 bufferA[i] -= scalar; // SUB
 #elif MUL
 bufferA[i] *= scalar; // MUL
 #elif DIV
 bufferA[i] /= scalar; // DIV
 #endif
 }
}

// Write WRAM block to MRAM
mram_write(bufferA, (__mram_ptr void*)mram_address_B, SIZE * sizeof(T));

input_repeat greater or equal to 1 indicates the (integer) number of repetitions per input element

input_repeat smaller than 1 indicates the fraction of elements that are updated
We show results of arithmetic throughput vs. operational intensity for
(a) 32-bit integer ADD, (b) 32-bit integer MUL,
(c) 32-bit floating-point ADD, and (d) 32-bit floating-point MUL
(results for other datatypes and operations show similar trends)
Arithmetic Throughput vs. Operational Intensity (IV)

In the memory-bound region, the arithmetic throughput increases with the operational intensity.

In the compute-bound region, the arithmetic throughput is flat at its maximum.

The throughput saturation point is the operational intensity where the transition between the memory-bound region and the compute-bound region happens.

The throughput saturation point is as low as $\frac{1}{4}$ OP/B, i.e., 1 integer addition per every 32-bit element fetched.
Arithmetic Throughput vs. Operational Intensity (V)

KEY OBSERVATION 6

The arithmetic throughput of a DRAM Processing Unit (DPU) saturates at low or very low operational intensity (e.g., 1 integer addition per 32-bit element). Thus, the DPU is fundamentally a compute-bound processor. We expect most real-world workloads be compute-bound in the UPMEM PIM architecture.
Microbenchmark: Arithmetic Throughput vs. Operational Intensity

• Arithmetic Throughput versus Operational Intensity
Benchmarking and Workload Suitability
PrIM Benchmarks

• Goal
 - A common set of workloads that can be used to
 • evaluate the UPMEM PIM architecture,
 • compare software improvements and compilers,
 • compare future PIM architectures and hardware

• Two key selection criteria:
 - Selected workloads from different application domains
 - Memory-bound workloads on processor-centric architectures

• 14 different workloads, 16 different benchmarks*

*There are two versions for two of the workloads (HST, SCAN).
PrIM Benchmarks: Application Domains

<table>
<thead>
<tr>
<th>Domain</th>
<th>Benchmark</th>
<th>Short name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense linear algebra</td>
<td>Vector Addition</td>
<td>VA</td>
</tr>
<tr>
<td></td>
<td>Matrix-Vector Multiply</td>
<td>GEMV</td>
</tr>
<tr>
<td>Sparse linear algebra</td>
<td>Sparse Matrix-Vector Multiply</td>
<td>SpMV</td>
</tr>
<tr>
<td>Databases</td>
<td>Select</td>
<td>SEL</td>
</tr>
<tr>
<td></td>
<td>Unique</td>
<td>UNI</td>
</tr>
<tr>
<td>Data analytics</td>
<td>Binary Search</td>
<td>BS</td>
</tr>
<tr>
<td></td>
<td>Time Series Analysis</td>
<td>TS</td>
</tr>
<tr>
<td>Graph processing</td>
<td>Breadth-First Search</td>
<td>BFS</td>
</tr>
<tr>
<td>Neural networks</td>
<td>Multilayer Perceptron</td>
<td>MLP</td>
</tr>
<tr>
<td>Bioinformatics</td>
<td>Needleman-Wunsch</td>
<td>NW</td>
</tr>
<tr>
<td>Image processing</td>
<td>Image histogram (short)</td>
<td>HST-S</td>
</tr>
<tr>
<td></td>
<td>Image histogram (large)</td>
<td>HST-L</td>
</tr>
<tr>
<td>Parallel primitives</td>
<td>Reduction</td>
<td>RED</td>
</tr>
<tr>
<td></td>
<td>Prefix sum (scan-scan-add)</td>
<td>SCAN-SSA</td>
</tr>
<tr>
<td></td>
<td>Prefix sum (reduce-scan-scan)</td>
<td>SCAN-RSS</td>
</tr>
<tr>
<td></td>
<td>Matrix transposition</td>
<td>TRNS</td>
</tr>
</tbody>
</table>
Roofline Model

- Intel Advisor on an Intel Xeon E3-1225 v6 CPU

All workloads fall in the memory-bound area of the Roofline
PrIM Benchmarks: Diversity

- PrIM benchmarks are diverse:
 - Memory access patterns
 - Operations and datatypes
 - Communication/synchronization

<table>
<thead>
<tr>
<th>Domain</th>
<th>Benchmark</th>
<th>Short name</th>
<th>Memory access pattern</th>
<th>Computation pattern</th>
<th>Communication/synchronization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datasets</td>
<td>Vector Addition</td>
<td>VA</td>
<td>Yes</td>
<td>add</td>
<td>int32_t</td>
</tr>
<tr>
<td></td>
<td>Matrix-Vector Multiply</td>
<td>GEMV</td>
<td>Yes</td>
<td>add, mul</td>
<td>uint32_t</td>
</tr>
<tr>
<td>Sparse linear algebra</td>
<td>Sparse Matrix-Vector Multiply</td>
<td>SpMV</td>
<td>Yes, Yes</td>
<td>add, compare</td>
<td>int64_t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>handshake, barrier</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Databases</td>
<td>Select</td>
<td>SEL</td>
<td>Yes</td>
<td>add, compare</td>
<td>int64_t</td>
</tr>
<tr>
<td></td>
<td>Unique</td>
<td>UNI</td>
<td>Yes</td>
<td>add, compare</td>
<td>int64_t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>handshake, barrier</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Data analytics</td>
<td>Binary Search</td>
<td>BS</td>
<td>Yes</td>
<td>add, compare</td>
<td>int64_t</td>
</tr>
<tr>
<td></td>
<td>Time Series Analysis</td>
<td>TS</td>
<td>Yes</td>
<td>add, sub, mul, div</td>
<td>int32_t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graph processing</td>
<td>Breadth-First Search</td>
<td>BFS</td>
<td>Yes</td>
<td>bitwise logic</td>
<td>uint64_t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>barrier, mutex</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Neural networks</td>
<td>Multilayer Perceptron</td>
<td>MLP</td>
<td>Yes</td>
<td>add, mul, compare</td>
<td>int32_t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioinformatics</td>
<td>Needleman-Wunsch</td>
<td>NW</td>
<td>Yes, Yes</td>
<td>add, sub, compare</td>
<td>int32_t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>barrier</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Image processing</td>
<td>Image histogram (short)</td>
<td>HST-S</td>
<td>Yes</td>
<td>add</td>
<td>uint32_t</td>
</tr>
<tr>
<td></td>
<td>Image histogram (long)</td>
<td>HST-L</td>
<td>Yes</td>
<td>add</td>
<td>uint32_t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>barrier</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Parallel primitives</td>
<td>Reduction</td>
<td>RED</td>
<td>Yes, Yes</td>
<td>add</td>
<td>int64_t</td>
</tr>
<tr>
<td></td>
<td>Prefix sum (scan-scan-add)</td>
<td>SCAN-SSA</td>
<td>Yes</td>
<td>add</td>
<td>int64_t</td>
</tr>
<tr>
<td></td>
<td>Prefix sum (reduce-scan-scan)</td>
<td>SCAN-RSS</td>
<td>Yes</td>
<td>add</td>
<td>int64_t</td>
</tr>
<tr>
<td></td>
<td>Matrix transposition</td>
<td>TRNS</td>
<td>Yes</td>
<td>add, sub, mul</td>
<td>int64_t</td>
</tr>
</tbody>
</table>

SAFARI
PrIM Benchmarks: Inter-DPU Communication

Inter-DPU communication

Result merging:
- SEL, UNI, HST-S, HST-L, RED
- Only DPU-CPU transfers

Redistribution of intermediate results:
- BFS, MLP, NW, SCAN-SSA, SCAN-RSS
- DPU-CPU and CPU-DPU transfers

<table>
<thead>
<tr>
<th>Domain</th>
<th>Benchmark</th>
<th>Short name</th>
<th>Memory access pattern</th>
<th>Computation pattern</th>
<th>Communication/synchronization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sequential</td>
<td>Strided</td>
<td>Random</td>
</tr>
<tr>
<td>Dense linear algebra</td>
<td>Vector Addition</td>
<td>VA</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matrix-Vector Multiply</td>
<td>GEMV</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sparse linear algebra</td>
<td>Sparse Matrix-Vector Multiply</td>
<td>SpMV</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Databases</td>
<td>Select</td>
<td>SEL</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unique</td>
<td>UNI</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data analytics</td>
<td>Binary Search</td>
<td>BS</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time Series Analysis</td>
<td>TS</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Graph processing</td>
<td>BFS</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neural networks</td>
<td>MLP</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bioinformatics</td>
<td>NW</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Image processing</td>
<td>HST-S</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCAN-RSS</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAFARI
PrIM Benchmarks

• 16 benchmarks and scripts for evaluation

• https://github.com/CMU-SAFARI/prim-benchmarks
Outline

- Introduction
 - Accelerator Model
 - UPMEM-based PIM System Overview

- UPMEM PIM Programming
 - Vector Addition
 - CPU-DPU Data Transfers
 - Inter-DPU Communication
 - CPU-DPU/DPU-CPU Transfer Bandwidth

- DRAM Processing Unit
 - Arithmetic Throughput
 - WRAM and MRAM Bandwidth

- PrIM Benchmarks
 - Roofline Model
 - Benchmark Diversity

- Evaluation
 - Strong and Weak Scaling
 - Comparison to CPU and GPU

- Key Takeaways
Evaluation Methodology

• We evaluate the 16 PrIM benchmarks on two UPMEM-based systems:
 - 2,556-DPU system
 - 640-DPU system

• Strong and weak scaling experiments on the 2,556-DPU system
 - 1 DPU with different numbers of tasklets
 - 1 rank (strong and weak)
 - Up to 32 ranks

Strong scaling refers to how the execution time of a program solving a particular problem varies with the number of processors for a fixed problem size

Weak scaling refers to how the execution time of a program solving a particular problem varies with the number of processors for a fixed problem size per processor
Evaluation Methodology

- We evaluate the 16 PrIM benchmarks on two UPMEM-based systems:
 - 2,556-DPU system
 - 640-DPU system

- Strong and weak scaling experiments on the 2,556-DPU system
 - 1 DPU with different numbers of tasklets
 - 1 rank (strong and weak)
 - Up to 32 ranks

- Comparison of both UPMEM-based PIM systems to state-of-the-art CPU and GPU
 - Intel Xeon E3-1240 CPU
 - NVIDIA Titan V GPU
2,560-DPU System

- UPMEM-based PIM system with 20 UPMEM DIMMs of 16 chips each (40 ranks)
 - P21 DIMMs
 - Dual x86 socket
 - UPMEM DIMMs coexist with regular DDR4 DIMMs
 - 2 memory controllers/socket (3 channels each)
 - 2 conventional DDR4 DIMMs on one channel of one controller

* There are 4 faulty DPUs in the system that we use in our experiments. Thus, the maximum number of DPUs we can use is 2,556.
640-DPU System

- UPMEM-based PIM system with 10 UPMEM DIMMs of 8 chips each (10 ranks)
 - E19 DIMMs
 - x86 socket
 - 2 memory controllers (3 channels each)
 - 2 conventional DDR4 DIMMs on one channel of one controller
Datasets

- Strong and weak scaling experiments

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Strong Scaling Dataset</th>
<th>Weak Scaling Dataset</th>
<th>MRAM-WRAM Transfer Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA</td>
<td>1 DPU-1 rank: 2.5M elem. (10 MB)</td>
<td>2.5M elem./DPU (10 MB)</td>
<td>1024 bytes</td>
</tr>
<tr>
<td>GEMV</td>
<td>1 DPU-1 rank: 8192 × 1024 elem. (32 MB)</td>
<td>1024 × 2048 elem./DPU (8 MB)</td>
<td>1024 bytes</td>
</tr>
<tr>
<td>SpMV</td>
<td>bcsstk30 [253] (12 MB)</td>
<td>bcsstk30 [253]</td>
<td>64 bytes</td>
</tr>
<tr>
<td>SEL</td>
<td>1 DPU-1 rank: 3.8M elem. (30 MB)</td>
<td>3.8M elem./DPU (30 MB)</td>
<td>1024 bytes</td>
</tr>
<tr>
<td>UNI</td>
<td>1 DPU-1 rank: 3.8M elem. (30 MB)</td>
<td>3.8M elem./DPU (30 MB)</td>
<td>1024 bytes</td>
</tr>
<tr>
<td>BS</td>
<td>2M elem. (16 MB), 1 DPU-1 rank: 256K queries. (2 MB)</td>
<td>2M elem. (16 MB), 256K queries./DPU (2 MB)</td>
<td>8 bytes</td>
</tr>
<tr>
<td>TS</td>
<td>256 elem. query, 1 DPU-1 rank: 512K elem. (2 MB)</td>
<td>512K elem./DPU (2 MB)</td>
<td>256 bytes</td>
</tr>
<tr>
<td>BFS</td>
<td>loc-gowalla [254] (22 MB)</td>
<td>rMat [255] (=100K vertices and 1.2M edges per DPU)</td>
<td>8 bytes</td>
</tr>
<tr>
<td>MLP</td>
<td>3 fully-connected layers, 1 DPU-1 rank: 2K neurons (32 MB)</td>
<td>3 fully-connected layers, 1K neur./DPU (4 MB)</td>
<td>1024 bytes</td>
</tr>
<tr>
<td>NW</td>
<td>1 DPU-1 rank: 2560 bps (50 MB), large/small sub-block=(\frac{2560}{DPU})</td>
<td>512 bps/DPU (2MB), l/s = (\frac{512}{2})</td>
<td>8, 16, 32, 40 bytes</td>
</tr>
<tr>
<td>HST-S</td>
<td>1 DPU-1 rank: 1536 × 1024 input image [256] (6 MB)</td>
<td>1536 × 1024 input image [256]/DPU (6 MB)</td>
<td>1024 bytes</td>
</tr>
<tr>
<td>HST-L</td>
<td>1 DPU-1 rank: 1536 × 1024 input image [256] (6 MB)</td>
<td>1536 × 1024 input image [256]/DPU (6 MB)</td>
<td>1024 bytes</td>
</tr>
<tr>
<td>RED</td>
<td>1 DPU-1 rank: 6.3M elem. (50 MB)</td>
<td>6.3M elem./DPU (50 MB)</td>
<td>1024 bytes</td>
</tr>
<tr>
<td>SCAN-SSA</td>
<td>1 DPU-1 rank: 3.8M elem. (30 MB)</td>
<td>3.8M elem./DPU (30 MB)</td>
<td>1024 bytes</td>
</tr>
<tr>
<td>SCAN-RSS</td>
<td>1 DPU-1 rank: 3.8M elem. (30 MB)</td>
<td>3.8M elem./DPU (30 MB)</td>
<td>1024 bytes</td>
</tr>
<tr>
<td>TRNS</td>
<td>1 DPU-1 rank: 12288 × 16 × 64 × 8 (768 MB)</td>
<td>12288 × 16 × 1 × 8/DPU (12 MB)</td>
<td>128, 1024 bytes</td>
</tr>
</tbody>
</table>

The PrIM benchmarks repository includes all datasets and scripts used in our evaluation

https://github.com/CMU-SAFARI/prim-benchmarks
Strong Scaling: 1 DPU (I)

- **Strong scaling experiments on 1 DPU**
 - We set the number of tasklets to 1, 2, 4, 8, and 16
 - We show the breakdown of execution time:
 - **DPU**: Execution time on the DPU
 - **Inter-DPU**: Time for inter-DPU communication via the host CPU
 - **CPU-DPU**: Time for CPU to DPU transfer of input data
 - **DPU-CPU**: Time for DPU to CPU transfer of final results
 - Speedup over 1 tasklet
Strong Scaling: 1 DPU (II)

- VA, GEMV, SpMV, SEL, UNI, TS, MLP, NW, HST-S, RED, SCAN-SSA (Scan kernel), SCAN-RSS (both kernels), and TRNS (Step 2 kernel), the best performing number of tasklets is 16.

- Speedups 1.5-2.0x as we double the number of tasklets from 1 to 8. Speedups 1.2-1.5x from 8 to 16, since the pipeline throughput saturates at 11 tasklets.

- **KEY OBSERVATION 10**
 A number of tasklets greater than 11 is a good choice for most real-world workloads we tested (16 kernels out of 19 kernels from 16 benchmarks), as it fully utilizes the DPU’s pipeline.
Strong Scaling: 1 DPU (III)

- VA, GEMV, SpMV, BS, TS, MLP, HST-S do not use intra-DPU synchronization primitives
- In SEL, UNI, NW, RED, SCAN-SSA (Scan kernel), SCAN-RSS (both kernels), synchronization is lightweight
- BFS, HST-L, TRNS (Step 3) use mutexes, which cause contention when accessing shared data structures
Strong Scaling: 1 DPU (IV)

VA, GEMV, SpMV, BS, TS, MLP, HST-S do not use intra-DPU synchronization primitives

In SEL, UNI, NW, RED, SCAN-SSA (Scan kernel), SCAN-RSS (both kernels), synchronization is lightweight

BFS, HST-L, TRNS (Step 3) use mutexes, which cause contention when accessing shared data structures

KEY OBSERVATION 11

Intensive use of intra-DPU synchronization across tasklets (e.g., mutexes, barriers, handshakes) may limit scalability, sometimes causing the best performing number of tasklets to be lower than 11.

Intra-DPU synchronization structures do not use intra-DPU synchronization across tasklets (e.g., mutexes, barriers, handshakes) may limit scalability, sometimes causing the best performing number of tasklets to be lower than 11.
Strong Scaling: 1 DPU (V)

SCAN-SSA (Add kernel) is not compute-intensive. Thus, performance saturates with less that 11 tasklets (recall STREAM ADD). BS shows similar behavior.

KEY OBSERVATION 12

Most real-world workloads are in the compute-bound region of the DPU (all kernels except SCAN-SSA (Add kernel) and BS), i.e., the pipeline latency dominates the MRAM access latency.
Strong Scaling: 1 DPU (VI)

The amount of time spent on CPU-DPU and DPU-CPU transfers is low compared to the time spent on DPU execution.

TRNS performs step 1 of the matrix transposition via the CPU-DPU transfer.

Using small transfers (8 elements) does not exploit full CPU-DPU bandwidth.

KEY OBSERVATION 13

Transferring large data chunks from/to the host CPU is preferred for input data and output results due to higher sustained CPU-DPU/DPU-CPU bandwidths.
Strong Scaling: 1 Rank (I)

- Strong scaling experiments on 1 rank
 - We set the number of tasklets to the best performing one
 - The number of DPUs is 1, 4, 16, 64
 - We show the breakdown of execution time:
 - **DPU**: Execution time on the DPU
 - **Inter-DPU**: Time for inter-DPU communication via the host CPU
 - **CPU-DPU**: Time for CPU to DPU transfer of input data
 - **DPU-CPU**: Time for DPU to CPU transfer of final results
 - Speedup over 1 DPU
Strong Scaling: 1 Rank (II)

VA, GEMV, SpMV, SEL, UNI, BS, TS, MLP, HST-S, HSTS-L, RED, SCAN-SSA (both kernels), SCAN-RSS (both kernels), and TRNS (both kernels) scale linearly with the number of DPUs.

Scaling is sublinear for BFS and NW.

BFS suffers load imbalance due to irregular graph topology.

NW computes a diagonal of a 2D matrix in each iteration. More DPUs does not mean more parallelization in shorter diagonals.
Strong Scaling: 1 Rank (III)

- VA, GEMV, SpMV, BS, TS, TRNS do not need inter-DPU synchronization.
- SEL, UNI, HST-S, HST-L, RED, SCAN-SSA, SCAN-RSS need inter-DPU synchronization but 64 DPUs still obtain the best performance.
- BFS, MLP, NW require heavy inter-DPU synchronization, involving DPU-CPU and CPU-DPU transfers.
Strong Scaling: 1 Rank (IV)

VA, GEMV, TS, MLP, HST-S, HST-L, RED, SCAN-SSA, SCAN-RSS, TRNS use parallel transfers. CPU-DPU and DPU-CPU transfer times decrease as we increase the number of DPUs.

BS, NW use parallel transfers but do not reduce transfer times:
- BS transfers a complete array to all DPUs.
- NW does not use all DPUs in all iterations.

SpMV, SEL, UNI, BFS cannot use parallel transfers, as the transfer size per DPU is not fixed.

PROGRAMMING RECOMMENDATION 5

Parallel CPU-DPU/DPU-CPU transfers inside a rank of DPUs are recommended for real-world workloads when all transferred buffers are of the same size.
• Strong scaling experiments on 32 ranks
 - We set the number of tasklets to the best performing one
 - The number of DPUs is 256, 512, 1024, 2048
 - We show the breakdown of execution time:
 • DPU: Execution time on the DPU
 • Inter-DPU: Time for inter-DPU communication via the host CPU
 • We do not show CPU-DPU/DPU-CPU transfer times
 - Speedup over 256 DPUs
Strong Scaling: 32 Ranks (II)

VA, GEMV, SEL, UNI, BS, TS, MLP, HST-S, HSTS-L, RED, SCAN-SSA (both kernels), SCAN-RSS (both kernels), and TRNS (both kernels) scale linearly with the number of DPUs.

SpMV, BFS, NW do not scale linearly due to load imbalance.

KEY OBSERVATION 14

Load balancing across DPUs ensures linear reduction of the execution time spent on the DPUs for a given problem size, when all available DPUs are used (as observed in strong scaling experiments).
Strong Scaling: 32 Ranks (III)

KEY OBSERVATION 15

The overhead of merging partial results from DPUs in the host CPU is tolerable across all PrIM benchmarks that need it.

KEY OBSERVATION 16

Complex synchronization across DPUs (i.e., inter-DPU synchronization involving two-way communication with the host CPU) imposes significant overhead, which limits scalability to more DPUs.

SEL, UNI, HST-S, HST-L, RED only need to merge final results

BFS, MLP, NW, SCAN-SSA, SCAN-RSS have more complex communication
Weak Scaling: 1 Rank

KEY OBSERVATION 17

Equally-sized problems assigned to different DPUs and little/no inter-DPU synchronization lead to linear weak scaling of the execution time spent on the DPUs (i.e., constant execution time when we increase the number of DPUs and the dataset size accordingly).

KEY OBSERVATION 18

Sustained bandwidth of parallel CPU-DPU/DPU-CPU transfers inside a rank of DPUs increases sublinearly with the number of DPUs.
CPU/GPU: Evaluation Methodology

• Comparison of both UPMEM-based PIM systems to state-of-the-art CPU and GPU
 - Intel Xeon E3-1240 CPU
 - NVIDIA Titan V GPU

• We use state-of-the-art CPU and GPU counterparts of PrIM benchmarks
 - https://github.com/CMU-SAFARI/prim-benchmarks

• We use the largest dataset that we can fit in the GPU memory

• We show overall execution time, including DPU kernel time and inter DPU communication
The 2,556-DPU and the 640-DPU systems outperform the CPU for all benchmarks except SpMV, BFS, and NW.

The 2,556-DPU and the 640-DPU are, respectively, $93.0x$ and $27.9x$ faster than the CPU for 13 of the PrIM benchmarks.
The 2,556-DPU outperforms the GPU for 10 PrIM benchmarks with an average of 2.54x.

The performance of the 640-DPU is within 65% the performance of the GPU for the same 10 PrIM benchmarks.
The UPMEM-based PIM system can outperform a state-of-the-art GPU on workloads with three key characteristics:

1. Streaming memory accesses
2. No or little inter-DPU synchronization
3. No or little use of integer multiplication, integer division, or floating point operations

These three key characteristics make a workload potentially suitable to the UPMEM PIM architecture.
The 640-DPU system consumes on average 1.64x less energy than the CPU for all 16 PrIM benchmarks.

For 12 benchmarks, the 640-DPU system provides energy savings of 5.23x over the CPU.
KEY OBSERVATION 20

The UPMEM-based PIM system provides large energy savings over a state-of-the-art CPU due to higher performance (thus, lower static energy) and less data movement between memory and processors.

The UPMEM-based PIM system provides energy savings over a state-of-the-art CPU/GPU on workloads where it outperforms the CPU/GPU. This is because the source of both performance improvement and energy savings is the same: the significant reduction in data movement between the memory and the processor cores, which the UPMEM-based PIM system can provide for PIM-suitable workloads.
Key Takeaway 1

The UPMEM PIM architecture is fundamentally compute bound. As a result, the most suitable workloads are memory-bound.
Key Takeaway 2

The most well-suited workloads for the UPMEM PIM architecture use no arithmetic operations or use only simple operations (e.g., bitwise operations and integer addition/subtraction).
KEY TAKEAWAY 3

The most well-suited workloads for the UPMEM PIM architecture require little or no communication across DPUs (inter-DPU communication).
Key Takeaway 4

KEY TAKEAWAY 4

- UPMEM-based PIM systems **outperform state-of-the-art CPUs in terms of performance** (by 23.2× on 2,556 DPUs for 16 PrIM benchmarks) and **energy efficiency on most of PrIM benchmarks**.

- UPMEM-based PIM systems **outperform state-of-the-art GPUs on a majority of PrIM benchmarks** (by 2.54× on 2,556 DPUs for 10 PrIM benchmarks), and the outlook is even more positive for future PIM systems.

- UPMEM-based PIM systems are **more energy-efficient than state-of-the-art CPUs and GPUs on workloads that they provide performance improvements** over the CPUs and the GPUs.
Understanding a Modern PIM Architecture

Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

JUAN GÓMEZ-LUNA¹, IZZAT EL HAJJ², IVAN FERNANDEZ¹,³, CHRISTINA GIANNOULA¹,⁴, GERALDO F. OLIVEIRA¹, AND ONUR MUTLU¹

¹ETH Zürich
²American University of Beirut
³University of Malaga
⁴National Technical University of Athens

Corresponding author: Juan Gómez-Luna (e-mail: juang@ethz.ch).

https://github.com/CMU-SAFARI/prim-benchmarks
Benchmarking Memory-Centric Computing Systems: Analysis of Real Processing-in-Memory Hardware

Juan Gómez-Luna
ETH Zürich

Izzat El Hajj
American University of Beirut

Ivan Fernandez
University of Malaga

Christina Giannoula
National Technical University of Athens

Geraldo F. Oliveira
ETH Zürich

Onur Mutlu
ETH Zürich

https://github.com/CMU-SAFARI/prim-benchmarks
Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture

Juan Gómez-Luna1 Izzat El Hajj2 Ivan Fernandez1,3 Christina Giannoula1,4 Geraldo F. Oliveira1 Onur Mutlu1

1ETH Zürich \quad 2American University of Beirut \quad 3University of Malaga \quad 4National Technical University of Athens

https://github.com/CMU-SAFARI/prim-benchmarks
PrIM Repository

- All microbenchmarks, benchmarks, and scripts
- https://github.com/CMU-SAFARI/prim-benchmarks

PrIM (Processing-In-Memory Benchmarks)

PrIM is the first benchmark suite for a real-world processing-in-memory (PIM) architecture. PrIM is developed to evaluate, analyze, and characterize the first publicly-available real-world processing-in-memory (PIM) architecture, the UPMEM PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip.

PrIM provides a common set of workloads to evaluate the UPMEM PIM architecture with and can be useful for programming, architecture and system researchers alike to improve multiple aspects of future PIM hardware and software. The workloads have different characteristics, exhibiting heterogeneity in their memory access patterns, operations and data types, and communication patterns. This repository also contains baseline CPU and GPU implementations of PrIM benchmarks for comparison purposes.

PrIM also includes a set of microbenchmarks can be used to assess various architecture limits such as compute throughput and memory bandwidth.
Processing-Near-Memory
Real PNM Architectures
Programming General-purpose PIM

Dr. Juan Gómez Luna
Professor Onur Mutlu

ETH Zürich
SAFARI

Sunday, June 18, 2023