Tutorial on Memory-Centric Computing: Processing-Using-Memory

> Geraldo F. Oliveira Prof. Onur Mutlu

> > ISCA 2024 29 June 2024

ETH zürich

- Introduction to Memory-Centric Computing Systems
- Invited Talk by Prof. Minsoo Rhu: "Memory-Centric Computing Systems – For AI and Beyond"
- Coffee Break
- Real-World Processing-Near-Memory Systems
- Processing-Using-Memory Architectures for Bulk Bitwise Op.
- Invited Talk by Prof. Saugata Ghose:
 "RACER and ReRAM PUM"
- PIM Programming & Infrastructure for PIM Research
- Closing Remarks

Processing in Memory: Two Approaches

Processing near Memory
 Processing using Memory

Starting Simple: Data Copy and Initialization

memmove & memcpy: 5% cycles in Google's datacenter [Kanev+ ISCA'15]

VM Cloning Deduplication

Many more

Page Migration

Today's Systems: Bulk Data Copy

Future Systems: In-Memory Copy

Brief Review: Inside A DRAM Chip

Inside a DRAM Chip

Inside a DRAM Chip: Another View

DRAM Cell Operation

DRAM Cell Operation (1/3)

DRAM Cell Operation (2/3)

DRAM Cell Operation (3/3)

Future Systems: In-Memory Copy

RowClone: In-DRAM Row Copy

RowClone: Intra-Subarray

RowClone: Latency and Energy Savings

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data," MICRO 2013.

More on RowClone

 Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry, "RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization" Proceedings of the <u>46th International Symposium on Microarchitecture</u>

(*MICRO*), Davis, CA, December 2013. [<u>Slides (pptx) (pdf)</u>] [<u>Lightning Session</u> <u>Slides (pptx) (pdf)</u>] [<u>Poster (pptx) (pdf)</u>]

RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin* Donghyuk Lee vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@c1f.net donghyuk1@cmu.edu Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo rachata@cmu.edu gpekhime@cs.cmu.edu yixinluo@andrew.cmu.edu Onur Mutlu Phillip B. Gibbons† Michael A. Kozuch† Todd C. Mowry onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu Carnegie Mellon University †Intel Pittsburgh ¹⁸

RowClone Extensions and Follow-Up Work

- Can we do faster inter-subarray copy?
 Yes, see LISA [Chang et al., HPCA 2016]
- Can we enable data movement at smaller granularities within a bank?
 - □ Yes, see FIGARO [Wang et al., MICRO 2020]
- Can we do better inter-bank copy?
 Yes, see Network-on-Memory [CAL 2020]
- Can similar ideas and DRAM properties be used to perform computation on data?
 - Yes, see Ambit [Seshadri et al., CAL 2015, MICRO 2017]

LISA: Increasing Connectivity in DRAM

 Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee, Moinuddin K. Qureshi, and Onur Mutlu,
 "Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in DRAM"
 Proceedings of the <u>22nd International Symposium on High-</u> <u>Performance Computer Architecture</u> (HPCA), Barcelona, Spain, March 2016.
 [Slides (pptx) (pdf)]
 [Source Code]

Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in DRAM

Kevin K. Chang[†], Prashant J. Nair^{*}, Donghyuk Lee[†], Saugata Ghose[†], Moinuddin K. Qureshi^{*}, and Onur Mutlu[†] [†]Carnegie Mellon University ^{*}Georgia Institute of Technology

Moving Data Inside DRAM?

Goal: Provide a new substrate to enable wide connectivity between subarrays

Key Idea and Applications

- Low-cost Inter-linked subarrays (LISA)
 - Fast bulk data movement between subarrays
 - Wide datapath via isolation transistors: 0.8% DRAM chip area

 LISA is a versatile substrate → new applications Fast bulk data copy: Copy latency 1.363ms→0.148ms (9.2x) → 66% speedup, -55% DRAM energy

In-DRAM caching: Hot data access latency 48.7ns→21.5ns (2.2x) → 5% speedup

Fast precharge: Precharge latency 13.1ns→5.0ns (2.6x) → 8% speedup

More on LISA

 Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee, Moinuddin K. Qureshi, and Onur Mutlu,
 "Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in DRAM"
 Proceedings of the <u>22nd International Symposium on High-</u> <u>Performance Computer Architecture</u> (HPCA), Barcelona, Spain, March 2016.
 [Slides (pptx) (pdf)]
 [Source Code]

Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in DRAM

Kevin K. Chang[†], Prashant J. Nair^{*}, Donghyuk Lee[†], Saugata Ghose[†], Moinuddin K. Qureshi^{*}, and Onur Mutlu[†] [†]Carnegie Mellon University ^{*}Georgia Institute of Technology

FIGARO: Fine-Grained In-DRAM Copy

 Yaohua Wang, Lois Orosa, Xiangjun Peng, Yang Guo, Saugata Ghose, Minesh Patel, Jeremie S. Kim, Juan Gómez Luna, Mohammad Sadrosadati, Nika Mansouri Ghiasi, and Onur Mutlu,
 "FIGARO: Improving System Performance via Fine-Grained In-DRAM Data Relocation and Caching"
 Proceedings of the <u>53rd International Symposium on</u> Microarchitecture (MICRO), Virtual, October 2020.

- FIGARO: Improving System Performance via Fine-Grained In-DRAM Data Relocation and Caching
- Yaohua Wang^{*} Lois Orosa[†] Xiangjun Peng^{\odot *} Yang Guo^{*} Saugata Ghose^{\diamond ‡} Minesh Patel[†] Jeremie S. Kim[†] Juan Gómez Luna[†] Mohammad Sadrosadati[§] Nika Mansouri Ghiasi[†] Onur Mutlu^{†‡}
- *National University of Defense Technology [†]ETH Zürich ^{\odot}Chinese University of Hong Kong ^{\diamond}University of Illinois at Urbana–Champaign [‡]Carnegie Mellon University [§]Institute of Research in Fundamental Sciences

Network-On-Memory: Fast Inter-Bank Copy

- Seyyed Hossein SeyyedAghaei Rezaei, Mehdi Modarressi, Rachata Ausavarungnirun, Mohammad Sadrosadati, Onur Mutlu, and Masoud Daneshtalab,
 - "NoM: Network-on-Memory for Inter-Bank Data Transfer in Highly-Banked Memories"

IEEE Computer Architecture Letters (CAL), to appear in 2020.

NoM: NETWORK-ON-MEMORY FOR INTER-BANK DATA TRANSFER IN HIGHLY-BANKED MEMORIES

Seyyed Hossein SeyyedAghaei Rezaei¹ Mehdi Modarressi^{1,3} Rachata Ausavarungnirun² Mohammad Sadrosadati³ Onur Mutlu⁴ Masoud Daneshtalab⁵

¹University of Tehran ²King Mongkut's University of Technology North Bangkok ³Institute for Research in Fundamental Sciences ⁴ETH Zürich ⁵Mälardalens University

(Truly) In-Memory Computation

- We can support in-DRAM AND, OR, NOT, MAJ
- At low cost
- Using analog computation capability of DRAM
 - Idea: activating multiple rows performs computation
- 30-60X performance and energy improvement
 - Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology," MICRO 2017.

- New memory technologies enable even more opportunities
 - Memristors, resistive RAM, phase change mem, STT-MRAM, ...
 - Can operate on data with minimal movement

In-DRAM AND/OR: Triple Row Activation

In-DRAM Bulk Bitwise AND/OR Operation

• BULKAND A, $B \rightarrow C$

- Semantics: Perform a bitwise AND of two rows A and B and store the result in row C
- R0 reserved zero row, R1 reserved one row
- D1, D2, D3 Designated rows for triple activation
- 1. RowClone A into D1
- 2. RowClone B into D2
- 3. RowClone R0 into D3
- 4. ACTIVATE D1,D2,D3
- 5. RowClone Result into C

More on In-DRAM Bulk AND/OR

 Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry,
 <u>"Fast Bulk Bitwise AND and OR in DRAM"</u> <u>IEEE Computer Architecture Letters</u> (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*, Michael A. Kozuch[†], Onur Mutlu*, Phillip B. Gibbons[†], Todd C. Mowry* *Carnegie Mellon University [†]Intel Pittsburgh

In-DRAM NOT: Dual Contact Cell

Figure 5: A dual-contact cell connected to both ends of a sense amplifier Idea: Feed the negated value in the sense amplifier into a special row

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology," MICRO 2017.

In-DRAM NOT Operation

Figure 5: Bitwise NOT using a dual contact capacitor

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology," MICRO 2017.

Performance: In-DRAM Bitwise Operations

Figure 9: Throughput of bitwise operations on various systems.

	Design	not	and/or	nand/nor	xor/xnor
DRAM &	DDR3	93.7	137.9	137.9	137.9
Channel Energy	Ambit	1.6	3.2	4.0	5.5
(nJ/KB)	(\downarrow)	59.5X	43.9X	35.1X	25.1X

Table 3: Energy of bitwise operations. (\downarrow) indicates energy reduction of Ambit over the traditional DDR3-based design.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology," MICRO 2017.

Bulk Bitwise Operations in Workloads

SAFARI

[1] Li and Patel, BitWeaving, SIGMOD 2013[2] Goodwin+, BitFunnel, SIGIR 2017

In-DRAM Acceleration of Database Queries

Figure 11: Speedup offered by Ambit over baseline CPU with SIMD for BitWeaving

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology," MICRO 2017.

More on Ambit

 Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry,
 <u>"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using</u> <u>Commodity DRAM Technology"</u> *Proceedings of the <u>50th International Symposium on</u> <u>Microarchitecture</u> (MICRO), Boston, MA, USA, October 2017.*

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology

Vivek Seshadri^{1,5} Donghyuk Lee^{2,5} Thomas Mullins^{3,5} Hasan Hassan⁴ Amirali Boroumand⁵ Jeremie Kim^{4,5} Michael A. Kozuch³ Onur Mutlu^{4,5} Phillip B. Gibbons⁵ Todd C. Mowry⁵

¹Microsoft Research India ²NVIDIA Research ³Intel ⁴ETH Zürich ⁵Carnegie Mellon University
In-DRAM Bulk Bitwise Execution

 Vivek Seshadri and Onur Mutlu,
 "In-DRAM Bulk Bitwise Execution Engine" Invited Book Chapter in Advances in Computers, to appear in 2020.
 [Preliminary arXiv version]

In-DRAM Bulk Bitwise Execution Engine

Vivek Seshadri Microsoft Research India visesha@microsoft.com Onur Mutlu ETH Zürich onur.mutlu@inf.ethz.ch

SIMDRAM Framework

 Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu, "SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM" Proceedings of the 26th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
 [2-page Extended Abstract]
 [Short Talk Slides (pptx) (pdf)]
 [Talk Slides (pptx) (pdf)]
 [Short Talk Video (5 mins)]
 [Full Talk Video (27 mins)]

SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM

*Nastaran Hajinazar^{1,2} Nika Mansouri Ghiasi¹ Juan Gómez-Luna¹ Sven Gregorio¹ Mohammed Alser¹ Onur Mutlu¹ João Dinis Ferreira¹ Saugata Ghose³

¹ETH Zürich

²Simon Fraser University

³University of Illinois at Urbana–Champaign

SIMDRAM Framework: Overview

SIMDRAM Framework: Step 1

Memory Controller

Step 1: Naïve MAJ/NOT Implementation

Naïvely converting AND/OR/NOT-implementation to MAJ/NOT-implementation leads to an unoptimized circuit

Step 1: Efficient MAJ/NOT Implementation

Step 1 generates an optimized MAJ/NOT-implementation of the desired operation

⁴ L. Amarù et al, "Majority-Inverter Graph: A Novel Data-Structure and Algorithms for Efficient Logic Optimization", DAC, 2014.

SIMDRAM Framework: Step 2

Memory Controller

Step 2: µProgram Generation

- **µProgram:** A series of microarchitectural operations (e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM operation in DRAM
- **Goal of Step 2**: To generate the µProgram that executes the desired SIMDRAM operation in DRAM

Task 1: Allocate DRAM rows to the operands

Task 2: Generate µProgram

SIMDRAM Framework: Step 3

Step 3: µProgram Execution

- **SIMDRAM control unit:** handles the execution of the μProgram at runtime
- Upon receiving a **bbop instruction**, the control unit:
 - 1. Loads the μ Program corresponding to SIMDRAM operation
 - 2. Issues the sequence of DRAM commands (ACT/PRE) stored in the μProgram to SIMDRAM subarrays to perform the in-DRAM operation

More in the Paper

Handling limited subarray size

Security implications

Limitations of our framework

SIMDRAM Key Results

Evaluated on:

- 16 complex in-DRAM operations
- 7 commonly-used real-world applications

SIMDRAM provides:

- 88× and 5.8× the throughput of a CPU and a high-end GPU, respectively, over 16 operations
- 257× and 31× the energy efficiency of a CPU and a high-end GPU, respectively, over 16 operations
- 21× and 2.1× the performance of a CPU an a high-end GPU, over seven real-world applications

More on SIMDRAM

 Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu, "SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM" Proceedings of the <u>26th International Conference on Architectural Support for Programming</u> <u>Languages and Operating Systems</u> (ASPLOS), Virtual, March-April 2021.
 [2-page Extended Abstract]
 [Short Talk Slides (pptx) (pdf)]
 [Talk Slides (pptx) (pdf)]
 [Short Talk Video (5 mins)]
 [Full Talk Video (27 mins)]

SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM

*Nastaran Hajinazar^{1,2} Nika Mansouri Ghiasi¹ Juan Gómez-Luna¹ Sven Gregorio¹ Mohammed Alser¹ Onur Mutlu¹ João Dinis Ferreira¹ Saugata Ghose³

¹ETH Zürich

²Simon Fraser University

³University of Illinois at Urbana–Champaign

SIMDRAM: Follow-Ups

Limitations of current substrate?

- Computing granularity
- Data layout conversion
- High-latency bit-serial operations
- Assembly-like programming model
- Application scope
- ...

- We are working on even better processing-using-memory substrates
 - One step at a time!

Limitations of PUD Systems: Overview

PUD systems suffer from three sources of inefficiency due to the large and rigid DRAM access granularity

SIMD Underutilization

- due to data parallelism variation within and across applications
- leads to throughput and energy waste

2 Limited Computation Support

- due to a lack of low-cost interconnects across columns
- limits PUD operations to only parallel map constructs

3 Challenging Programming Model

- due to a lack of compiler support for PUD systems
- creates a burden on programmers, limiting PUD adoption

Problem & Goal

DRAM's hierarchical organization can enable <u>fine-grained access</u>

Fine-Grained DRAM:

segments the global wordline to access individual DRAM mats

Fine-Grained DRAM:

segments the global wordline to access individual DRAM mats

global sense amplifier

Fine-grained DRAM for energy-efficient DRAM access:

[Cooper-Balis+, 2010]: Fine-Grained Activation for Power Reduction in DRAM
[Udipi+, 2010]: Rethinking DRAM Design and Organization for Energy-Constrained Multi-Cores
[Zhang+, 2014]: Half-DRAM
[Ha+, 2016]: Improving Energy Efficiency of DRAM by Exploiting Half Page Row Access
[O'Connor+, 2017]: Fine-Grained DRAM
[Olgun+, 2024]: Sectored DRAM

Fine-grained DRAM for processing-using-DRAM:

1 Improves SIMD utilization

for a single PUD operation, only access the DRAM mats with target data

Fine-grained DRAM for processing-using-DRAM:

1 Improves SIMD utilization

- for a single PUD operation, only access the DRAM mats with target data
- for multiple PUD operations, execute independent operations concurrently
 → multiple instruction, multiple data (MIMD) execution model

segmented global wordline

global sense amplifier

Fine-grained DRAM for processing-using-DRAM:

Improves SIMD utilization

for a single PUD operation, only access the DRAM mats with target data

for multiple PUD operations, execute independent operations concurrently
 → multiple instruction, multiple data (MIMD) execution model

2 Enables low-cost interconnects for vector reduction

- global and local data buses can be used for inter-/intra-mat communication

Fine-grained DRAM for processing-using-DRAM:

Improves SIMD utilization

- for a single PUD operation, only access the DRAM mats with target data
- for multiple PUD operations, execute independent operations concurrently
 → multiple instruction, multiple data (MIMD) execution model
- **2** Enables low-cost interconnects for vector reduction
 - global and local data buses can be used for inter-/intra-mat communication

3 Eases programmability

- SIMD parallelism in a DRAM mat is on par with vector ISAs' SIMD width **SAFARI**

MIMDRAM: Overview

MIMDRAM is a hardware/software co-designed PUD system that enables fine-grained PUD computation at low cost and programming effort

Main components of MIMDRAM:

1 Hardware

- DRAM array modification to enable fine-grained PUD computation
- inter- and intra-mat interconnects to enable PUD vector reduction
- control unit design to orchestrate PUD execution

2 Software

- compiler support to transparently generate PUD instructions
- system support to map and execute PUD instructions

MIMDRAM: Modifications to DRAM Chip

MIMDRAM: Control Unit Design

The control unit schedules and orchestrates the execution of multiple PUD operations transparently

MIMDRAM: Compiler Support

Transparently: <u>extract</u> SIMD parallelism from an application, and <u>schedule</u> PUD instructions while maximizing <u>utilization</u>

Three new LLVM-based passes targeting PUD execution

Evaluation:

Single Application Analysis - Energy Efficiency

MIMDRAM significantly improves energy efficiency compared to CPU (30.6x), GPU (6.8x), and SIMDRAM (14.3x)

More on MIMDRAM

 Geraldo F. Oliveira, Ataberk Olgun, Abdullah Giray Yağlıkçı, F. Nisa Bostancı, Juan Gómez-Luna, Saugata Ghose, and Onur Mutlu

" MIMDRAM: An End-to-End Processing-Using-DRAM System for High-Throughput, Energy-Efficient and Programmer-Transparent Multiple-Instruction Multiple-Data Computing"

Proceedings of the <u>30th International Symposium on High-</u> <u><i>Performance Computer Architecture (HPCA)</u>, Edinburgh, Scotland, March 2024.

MIMDRAM: An End-to-End Processing-Using-DRAM System for High-Throughput, Energy-Efficient and Programmer-Transparent Multiple-Instruction Multiple-Data Processing

Geraldo F. Oliveira[†] Ataberk Olgun[†] Abdullah Giray Yağlıkçı[†] F. Nisa Bostancı[†] Juan Gómez-Luna[†] Saugata Ghose[‡] Onur Mutlu[†]

[†] ETH Zürich [‡] Univ. of Illinois Urbana-Champaign

AFARI https://arxiv.org/pdf/2402.19080.pdf

In-DRAM Physical Unclonable Functions

 Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu, "The DRAM Latency PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM <u>Devices"</u> Proceedings of the <u>24th International Symposium on High-Performance Computer</u> <u>Architecture</u> (HPCA), Vienna, Austria, February 2018.

 [Lightning Talk Video]
 [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
 [Full Talk Lecture Video (28 minutes)]

The DRAM Latency PUF:

Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices

> Jeremie S. Kim^{†§} Minesh Patel[§] Hasan Hassan[§] Onur Mutlu^{§†} [†]Carnegie Mellon University [§]ETH Zürich

In-DRAM True Random Number Generation

 Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu, "D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput" Proceedings of the <u>25th International Symposium on High-Performance Computer</u> Architecture (HPCA), Washington, DC, USA, February 2019. [Slides (pptx) (pdf)] [Full Talk Video (21 minutes)] [Full Talk Lecture Video (27 minutes)] Top Picks Honorable Mention by IEEE Micro.

D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput

Jeremie S. Kim^{‡§}

Minesh Patel[§] Hasan Hassan[§] Lois Orosa[§] Onur Mutlu^{§‡} [‡]Carnegie Mellon University [§]ETH Zürich

In-DRAM True Random Number Generation

 Ataberk Olgun, Minesh Patel, A. Giray Yaglikci, Haocong Luo, Jeremie S. Kim, F. Nisa Bostanci, Nandita Vijaykumar, Oguz Ergin, and Onur Mutlu, <u>"QUAC-TRNG: High-Throughput True Random Number Generation Using</u> <u>Quadruple Row Activation in Commodity DRAM Chips"</u> *Proceedings of the <u>48th International Symposium on Computer Architecture</u> (<i>ISCA*), Virtual, June 2021.
 [Slides (pptx) (pdf)]
 [Short Talk Slides (pptx) (pdf)]
 [Talk Video (25 minutes)]
 [SAFARI Live Seminar Video (1 hr 26 mins)]

QUAC-TRNG: High-Throughput True Random Number Generation Using Quadruple Row Activation in Commodity DRAM Chips

Ataberk OlgunMinesh PatelA. Giray YağlıkçıHaocong LuoJeremie S. KimF. Nisa BostancıNandita VijaykumarOğuz ErginOnur Mutlu§ETH Zürich†TOBB University of Economics and TechnologyOUniversity of Toronto

In-DRAM True Random Number Generation

F. Nisa Bostanci, Ataberk Olgun, Lois Orosa, A. Giray Yaglikci, Jeremie S. Kim, Hasan Hassan, Oguz Ergin, and Onur Mutlu,
 "DR-STRaNGe: End-to-End System Design for DRAM-based True Random Number Generators"
 Proceedings of the <u>28th International Symposium on High-Performance Computer</u>
 <u>Architecture</u> (HPCA), Virtual, April 2022.
 [Slides (pptx) (pdf)]
 [Short Talk Slides (pptx) (pdf)]

DR-STRaNGe: End-to-End System Design for DRAM-based True Random Number Generators

F. Nisa Bostanci^{†§} Ataberk Olgun^{†§} Lois Orosa[§] A. Giray Yağlıkçı[§]
 Jeremie S. Kim[§] Hasan Hassan[§] Oğuz Ergin[†] Onur Mutlu[§]

[†]TOBB University of Economics and Technology

[§]ETH Zürich

SAFARI

https://arxiv.org/pdf/2201.01385.pdf

In-DRAM Lookup-Table Based Execution

João Dinis Ferreira, Gabriel Falcao, Juan Gómez-Luna, Mohammed Alser, Lois Orosa, Mohammad Sadrosadati, Jeremie S. Kim, Geraldo F. Oliveira, Taha Shahroodi, Anant Nori, and Onur Mutlu, "pLUTo: Enabling Massively Parallel Computation in DRAM via Lookup Tables" *Proceedings of the <u>55th International Symposium on Microarchitecture</u> (<i>MICRO*), Chicago, IL, USA, October 2022. [Slides (pptx) (pdf)] [Longer Lecture Slides (pptx) (pdf)] [Lecture Video (26 minutes)] [arXiv version] [Source Code (Officially Artifact Evaluated with All Badges)] *Officially artifact evaluated as available, reusable and reproducible.*

pLUTo: Enabling Massively Parallel Computation in DRAM via Lookup Tables

João Dinis Ferreira§Gabriel Falcao†Juan Gómez-Luna§Mohammed Alser§Lois Orosa§▽Mohammad Sadrosadati§Jeremie S. Kim§Geraldo F. Oliveira§Taha Shahroodi‡Anant Nori*Onur Mutlu§§ETH Zürich†IT, University of Coimbra∇Galicia Supercomputing Center‡TU Delft

SAFARI

https://arxiv.org/pdf/2104.07699.pdf

Limitations of Processing-using-DRAM

Data Movement	RowClone, Seshadri+ 2013 LISA, Chang+ 2013
Bitwise Operations	Ambit, Seshadri+ 2017
Bit Shifting	DRISA, Li+ 2017
Arithmetic Operations	SIMDRAM, Hajinazar & Oliveira+ 2021

Existing Processing-using-DRAM architectures only support a limited range of operations

The Goal of pLUTo

Extend Processing-using-DRAM to support the execution of **arbitrarily complex operations**

pLUTo: Key Idea (x) input (f(x)) output
pLUTo: Key Idea

pLUTo: Key Idea

Replace computation with memory accesses $\rightarrow pLUTo LUT Query$ operation

System Integration

Performance (normalized to area)

Average speedup normalized to area across 7 real-world workloads

pLUTo provides *substantially higher* performance per unit area than *both* the CPU and the GPU

Energy Consumption

Average energy consumption across 7 real-world workloads

pLUTo *significantly reduces energy consumption* compared to processor-centric architectures for various workloads

More Results in the Paper

- Comparison with FPGA
- Area Overhead Analysis

- Subarray-Level Parallelism
- LUT Loading Overhead
- Circuit-Level Reliability & Correctness
 Range of Supported Operations

pLUTo: Enabling Massively Parallel Computation in DRAM via Lookup Tables

Mohammed Alser§ João Dinis Ferreira§ Gabriel Falcao[†] Juan Gómez-Luna[§] Lois Orosa[§]∇ Jeremie S. Kim§ Mohammad Sadrosadati[§] Geraldo F. Oliveira§ Taha Shahroodi[‡] Anant Nori* Onur Mutlu[§] §ETH Zürich [∇]*Galicia Supercomputing Center* [‡]TU Delft [†]IT, University of Coimbra *Intel

SAFARI

https://arxiv.org/pdf/2104.07699.pdf

SRC TECHCON Presentation

Geraldo F. Oliveira

- pLUTo: Enabling Massively Parallel Computation in DRAM via Lookup Tables
- https://arxiv.org/pdf/2104.07699.pdf

pLUTo: Enabling Massively Parallel Computation in DRAM via Lookup Tables, SRC TECHCON 2023

SAFARI

https://youtu.be/9t1FJQ6nNw4?si=bhylWCLZde2DC7os

Bulk Bitwise Operations in Real DRAM Chips

 Ismail Emir Yüksel, Yahya Can Tugrul Ataberk Olgun, F. Nisa Bostancı, A. Giray Yaglıkçı, Geraldo F. Oliveira, Haocong Luo, Juan Gómez-Luna, Mohammad Sadrosadati, Onur Mutlu, "Functionally-Complete Boolean Logic in Real DRAM Chips: Experimental Characterization and Analysis," *Proceedings of the <u>30th International Symposium on High-</u> <i>Performance Computer Architecture (HPCA)*, Edinburgh, Scotland, March 2024.

Functionally-Complete Boolean Logic in Real DRAM Chips: Experimental Characterization and Analysis

İsmail Emir Yüksel Yahya Can Tuğrul Ataberk Olgun F. Nisa Bostancı A. Giray Yağlıkçı Geraldo F. Oliveira Haocong Luo Juan Gómez-Luna Mohammad Sadrosadati Onur Mutlu

ETH Zürich

https://arxiv.org/pdf/2402.18736

The Capability of COTS DRAM Chips

We **demonstrate** that **COTS DRAM chips**:

Can simultaneously activate up to48 rows in two neighboring subarrays

Can perform **NOT operation** with up to **32 output operands**

Can perform up to **16-input** AND, NAND, OR, and NOR operations

2

3

DRAM Testing Infrastructure

- Developed from DRAM Bender [Olgun+, TCAD'23]*
- Fine-grained control over DRAM commands, timings, and temperature

SAFARI *Olgun et al., "<u>DRAM Bender: An Extensible and Versatile FPGA-based Infrastructure</u> to Easily Test State-of-the-art DRAM Chips," TCAD, 2023.

DRAM Chips Tested

- 256 DDR4 chips from two major DRAM manufacturers
- Covers different die revisions and chip densities

Chip Mfr.	#Modules (#Chips)	Die Rev.	Mfr. Date ^a	Chip Density	Chip Org.	Speed Rate
SK Hynix	9 (72)	М	N/A	4Gb	x8	2666MT/s
	5 (40)	А	N/A	4Gb	x8	2133MT/s
	1 (16)	А	N/A	8Gb	x8	2666MT/s
	1 (32)	А	18-14	4Gb	x4	2400MT/s
	1 (32)	А	16-49	8Gb	x4	2400MT/s
	1 (32)	М	16-22	8Gb	x4	2666MT/s
Samsung	1 (8)	F	21-02	4Gb	x8	2666MT/s
	2 (16)	D	21-10	8Gb	x8	2133MT/s
	1 (8)	А	22-12	8Gb	x8	3200MT/s

The Capability of COTS DRAM Chips

We **demonstrate** that **COTS DRAM chips**:

Can simultaneously activate up to48 rows in two neighboring subarrays

Can perform **NOT operation** with **up to 32** output operands

Can perform up to 16-input AND, NAND, OR, and NOR operations

Characterization Methodology

- To understand which and how many rows are simultaneously activated
 - Sweep Row A and Row B addresses

Key Results

COTS DRAM chips have **two distinct** sets of activation patterns in **neighboring subarrays** when two rows are activated with **violated timings**

Exactly the same number of rows in each subarray are activated

Twice as many rows in one subarray **compared to its neighbor subarray** are activated

A total of **48 rows**

The Capability of COTS DRAM Chips

We **demonstrate** that **COTS DRAM chips**:

Can simultaneously activate up to48 rows in two neighboring subarrays

2 Can perform **NOT operation** with **up to 32** output operands

Can perform **up to 16-input** AND, NAND, OR, and NOR operations

Characterization Methodology

Sweep Row A and Row B addresses

• Sweep **DRAM chip temperature**

Key Takeaways from In-DRAM NOT Operation

Key Takeaway 1

COTS DRAM chips can perform NOT operations with up to 32 destination rows

Key Takeaway 2

Temperature has a small effect on the reliability of NOT operations

The Capability of COTS DRAM Chips

We **demonstrate** that **COTS DRAM chips**:

Can simultaneously activate up to 48 rows in two neighboring subarrays

> Can perform **NOT operation** with **up to 32** output operands

Can perform **up to 16-input** AND, NAND, OR, and NOR operations

3

Key Idea

Manipulate the bitline voltage to express a wide variety of functions using multiple-row activation in neighboring subarrays

Two-Input AND and NAND Operations

 $V_{DD} = 1 \& GND = 0$ COM **REF** X 0 $\mathbf{0}$ 0 1 1 0 \mathbf{O} 1 1 AND NAND

Key Takeaways from In-DRAM Operations

Key Takeaway 1

COTS DRAM chips can perform {2, 4, 8, 16}-input AND, NAND, OR, and NOR operations

Key Takeaway 2

COTS DRAM chips can perform AND, NAND, OR, and NOR operations with very high reliability

Key Takeaway 3

Data pattern slightly affects the reliability of AND, NAND, OR, and NOR operations

Real Processing Using Memory Prototype

- End-to-end RowClone & TRNG using off-the-shelf DRAM chips
- Idea: Violate DRAM timing parameters to mimic RowClone

PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-DRAM

Ataberk Olgun^{§†} Juan Gómez Luna[§] Konstantinos Kanellopoulos[§] Behzad Salami^{§*} Hasan Hassan[§] Oğuz Ergin[†] Onur Mutlu[§] [§]ETH Zürich [†]TOBB ETÜ ^{*}BSC

<u>https://arxiv.org/pdf/2111.00082.pdf</u> <u>https://github.com/cmu-safari/pidram</u> <u>https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s</u>

PidRAM

Goal: Develop a flexible platform to explore end-to-end implementations of PuM techniques

• Enable rapid integration via key components

Hardware

Easy-to-extend Memory Controller

2 ISA-transparent PuM Controller

Software

2 Custom Supervisor Software

Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf https://github.com/cmu-safari/pidram https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

PiDRAM Workflow

1- User application interfaces with the OS via system calls

2- OS uses PuM Operations Library (pumolib) to convey operation related information to the hardware *using*

3- STORE instructions that target the memory mapped registers of the PuM Operations Controller (POC)

4- POC oversees the execution of a PuM operation (e.g., RowClone, bulk bitwise operations)

5- Scheduler arbitrates between regular (load, store) and PuM operations and issues DRAM commands with custom timings

Real Processing Using Memory Prototype

E README.md

0

Building a PiDRAM Prototype

To build PiDRAM's prototype on Xilinx ZC706 boards, developers need to use the two sub-projects in this directory. fpga-zynq is a repository branched off of UCB-BAR's fpga-zynq repository. We use fpga-zynq to generate rocket chip designs that support end-to-end DRAM PuM execution. controller-hardware is where we keep the main Vivado project and Verilog sources for PiDRAM's memory controller and the top level system design.

Rebuilding Steps

- Navigate into fpga-zynq and read the README file to understand the overall workflow of the repository

 Follow the readme in fpga-zynq/rocket-chip/riscv-tools to install dependencies
- Create the Verilog source of the rocket chip design using the ZynqCopyFPGAConfig

 Navigate into zc706, then run make rocket C0NFIG=ZynqCopyFPGAConfig -j<number of cores>
- 3. Copy the generated Verilog file (should be under zc706/src) and overwrite the same file in controllerhardware/source/hdl/impl/rocket-chip
- 4. Open the Vivado project in controller-hardware/Vivado_Project using Vivado 2016.2
- 5. Generate a bitstream
- 6. Copy the bitstream (system_top.bit) to fpga-zynq/zc706
- 7. Use the ./build_script.sh to generate the new boot.bin under fpga-images-zc706 , you can use this file to program the FPGA using the SD-Card
 - For details, follow the relevant instructions in fpga-zynq/README.md

You can run programs compiled with the RISC-V Toolchain supplied within the fpga-zynq repository. To install the toolchain, follow the instructions under fpga-zynq/rocket-chip/riscv-tools.

Generating DDR3 Controller IP sources

We cannot provide the sources for the Xilinx PHY IP we use in PiDRAM's memory controller due to licensing issues. We describe here how to regenerate them using Vivado 2016.2. First, you need to generate the IP RTL files:

1- Open IP Catalog 2- Find "Memory Interface Generator (MIG 7 Series)" IP and double click

https://arxiv.org/pdf/2111.00082.pdf https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

Microbenchmark Copy/Initialization Throughput

In-DRAM Copy and Initialization improve throughput by 119x and 89x

SAFARI Økasırga

PiDRAM is Open Source

SAFARI @kasırga

https://github.com/CMU-SAFARI/PiDRAM

CMU-SAFARI / PiDRAM (Public)		🕅 🗘 Edi	t Pins 👻 💿 Wate	ch 3 - 4 Fork 2	☆ Star (21) ►	
<> Code O Issues 1 Pull requests	🕑 Actions 🗄 Projects 🖽 Wiki	🛈 Security 🗠 Insights	😂 Settings			
<mark>ট master ২</mark> ট 2 branches 📀 0 tags	S	Go to file Add file	e ▼ Code ▼	About	¢	
olgunataberk Fix small mistake in READ	PiDRAM is the first flexible end-to-end framework that enables system					
controller-hardware	Add files via upload		7 months ago	Processing-using-Memory techniques.		
📘 fpga-zynq	fpga-zynq Adds instructions to reproduce two key results 7 months ago				Prototype on a RISC-V rocket chip system	
README.md		7 months ago	our preprint:			
				https://arxiv.org/abs/2	.111.00082	
i≡ README.md	🛱 Readme					
				☆ 21 stars		
PIDRAM	 3 watching 					
				೪ 2 forks		
PiDRAM is the first flexible end-to-er	nd framework that enables system integ	ration studies and evaluatio	n of real			
Processing-using-Memory (PuM) tec memory controller that can perform	Releases No releases published Create a new release					
required to build PiDRAM and develo						

100

Extended Version on ArXiv

SAFARI @kasırga

https://arxiv.org/abs/2111.00082

	All fields 🗸 Search		
Help Ac	vanced Search		
Computer Science > Hardware Architecture	Download:		
[Submitted on 29 Oct 2021 (v1), last revised 19 Dec 2021 (this version, v3)]	• PDF		
PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-DRAM	Other formats		
Ataberk Olgun, Juan Gómez Luna, Konstantinos Kanellopoulos, Behzad Salami, Hasan Hassan, Oğuz Ergin, Onur Mutlu Processing-using-memory (PuM) techniques leverage the analog operation of memory cells to perform computation. Several recent works have demonstrated PuM techniques in off-the-shelf DRAM devices. Since DRAM is the dominant memory technology as main memory in current computing systems, these PuM techniques represent an opportunity for alleviating the data movement bottleneck at very low cost. However, system integration of PuM techniques imposes non-trivial challenges that are yet to be solved. Design space exploration of potential solutions to the PuM integration challenges requires appropriate tools to	Current browse context: cs.AR < prev next > new recent 2111 Change to browse by: cs		
develop necessary hardware and software components. Unfortunately, current specialized DRAM-testing platforms, or system simulators do not provide the flexibility and/or the holistic system view that is necessary to deal with PuM integration challenges. We design and develop PiDRAM, the first flexible end-to-end framework that enables system integration studies and evaluation of real PuM techniques. PiDRAM provides software and hardware components to rapidly integrate PuM techniques across the whole system software and hardware stack (e.g.,	References & Citations NASA ADS Google Scholar Semantic Scholar 		
necessary modifications in the operating system, memory controller). We implement PiDRAM on an FPGA-based platform along with an open-source RISC-V system. Using PiDRAM, we implement and evaluate two state-of-the-art PuM techniques: in-DRAM (i) copy and initialization, (ii) true random number generation. Our results show that the in-memory copy and initialization techniques can improve the performance of bulk copy operations by 12.6x and bulk initialization operations by 14.6x on a real system. Implementing the true random number generator requires only 190 lines of Verilog and 74 lines of C code using PiDRAM's software and hardware components.	DBLP - CS Bibliography listing bibtex Juan Gómez-Luna Behzad Salami Hasan Hassan Oguz Ergin Onur Mutlu		
Comments: 15 pages, 12 figures Subjects: Hardware Architecture (cs. AR)	Export Bibtex Citation		
Cite as: arXiv:2111.00082 [cs.AR] (or arXiv:2111.00082v3 [cs.AR] for this version) https://doi.org/10.48550/arXiv.2111.00082	Bookmark 💥 💀 👾 📾		

Long Talk + Tutorial on Youtube

https://youtu.be/s_z_S6FYpC8

102

In-DRAM Physical Unclonable Functions

 Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu, "The DRAM Latency PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM Devices" Proceedings of the 24th International Symposium on High-Performance Computer Architecture (HPCA), Vienna, Austria, February 2018. [Lightning Talk Video] [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Full Talk Lecture Video (28 minutes)]

The DRAM Latency PUF:

Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices

Jeremie S. Kim^{†§} Minesh Patel[§] Hasan Hassan[§] Onur Mutlu^{§†} [†]Carnegie Mellon University [§]ETH Zürich

In-DRAM True Random Number Generation

 Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu, "D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput" Proceedings of the <u>25th International Symposium on High-Performance Computer</u> Architecture (HPCA), Washington, DC, USA, February 2019. [Slides (pptx) (pdf)] [Full Talk Video (21 minutes)] [Full Talk Lecture Video (27 minutes)] Top Picks Honorable Mention by IEEE Micro.

D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput

Jeremie S. Kim^{‡§}

Minesh Patel[§] Hasan Hassan[§] Lois Orosa[§] Onur Mutlu^{§‡} [‡]Carnegie Mellon University [§]ETH Zürich

In-DRAM True Random Number Generation

 Ataberk Olgun, Minesh Patel, A. Giray Yaglikci, Haocong Luo, Jeremie S. Kim, F. Nisa Bostanci, Nandita Vijaykumar, Oguz Ergin, and Onur Mutlu, <u>"QUAC-TRNG: High-Throughput True Random Number Generation Using</u> <u>Quadruple Row Activation in Commodity DRAM Chips"</u> *Proceedings of the <u>48th International Symposium on Computer Architecture</u> (<i>ISCA*), Virtual, June 2021.
 [Slides (pptx) (pdf)]
 [Short Talk Slides (pptx) (pdf)]
 [Talk Video (25 minutes)]
 [SAFARI Live Seminar Video (1 hr 26 mins)]

QUAC-TRNG: High-Throughput True Random Number Generation Using Quadruple Row Activation in Commodity DRAM Chips

Ataberk OlgunMinesh PatelA. Giray YağlıkçıHaocong LuoJeremie S. KimF. Nisa BostancıNandita VijaykumarOğuz ErginOnur Mutlu§ETH Zürich†TOBB University of Economics and TechnologyOUniversity of Toronto

In-DRAM True Random Number Generation

F. Nisa Bostanci, Ataberk Olgun, Lois Orosa, A. Giray Yaglikci, Jeremie S. Kim, Hasan Hassan, Oguz Ergin, and Onur Mutlu,
 "DR-STRaNGe: End-to-End System Design for DRAM-based True Random Number Generators"
 Proceedings of the <u>28th International Symposium on High-Performance Computer</u>
 <u>Architecture</u> (HPCA), Virtual, April 2022.
 [Slides (pptx) (pdf)]
 [Short Talk Slides (pptx) (pdf)]

DR-STRaNGe: End-to-End System Design for DRAM-based True Random Number Generators

F. Nisa Bostanci^{†§} Ataberk Olgun^{†§} Lois Orosa[§] A. Giray Yağlıkçı[§]
 Jeremie S. Kim[§] Hasan Hassan[§] Oğuz Ergin[†] Onur Mutlu[§]

[†]TOBB University of Economics and Technology

nur Mutlu[§] [§]ETH Zürich

SAFARI

https://arxiv.org/pdf/2201.01385.pdf

Pinatubo: A Processing-in-Memory Architecture for Bulk Bitwise Operations in Emerging Non-volatile Memories

Shuangchen Li¹; Cong Xu², Qiaosha Zou^{1,5}, Jishen Zhao³, Yu Lu⁴, and Yuan Xie¹

University of California, Santa Barbara¹, Hewlett Packard Labs² University of California, Santa Cruz³, Qualcomm Inc.⁴, Huawei Technologies Inc.⁵ {shuangchenli, yuanxie}ece.ucsb.edu¹

SAFARI <u>https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf</u> ¹⁰⁷

Pinatubo: RowClone and Bitwise Ops in PCM

Figure 2: Overview: (a) Computing-centric approach, moving tons of data to CPU and write back. (b) The proposed Pinatubo architecture, performs *n*-row bitwise operations inside NVM in one step.
In-Flash Bulk Bitwise Execution

Jisung Park, Roknoddin Azizi, Geraldo F. Oliveira, Mohammad Sadrosadati, Rakesh Nadig, David Novo, Juan Gómez-Luna, Myungsuk Kim, and <u>Onur Mutlu</u>,
 "Flash-Cosmos: In-Flash Bulk Bitwise Operations Using Inherent Computation Capability of NAND Flash Memory"
 Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, October 2022.
 [Slides (pptx) (pdf)]
 [Longer Lecture Slides (pptx) (pdf)]
 [Lecture Video (44 minutes)]
 [arXiv version]

Flash-Cosmos: In-Flash Bulk Bitwise Operations Using Inherent Computation Capability of NAND Flash Memory

Jisung Park^{§∇} Roknoddin Azizi[§] Geraldo F. Oliveira[§] Mohammad Sadrosadati[§] Rakesh Nadig[§] David Novo[†] Juan Gómez-Luna[§] Myungsuk Kim[‡] Onur Mutlu[§]

[§]ETH Zürich [¬]POSTECH [†]LIRMM, Univ. Montpellier, CNRS [‡]Kyungpook National University

https://arxiv.org/pdf/2209.05566.pdf

SAFARI

Aside: In-Memory Crossbar Computation

(a) Multiply-Accumulate operation

(b) Vector-Matrix Multiplier

Fig. 1. (a) Using a bitline to perform an analog sum of products operation. (b) A memristor crossbar used as a vector-matrix multiplier.

SAFARI

Shafiee+, "ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars", ISCA 2016.

Aside: In-Memory Crossbar Computation

SAFARI

Tutorial on Memory-Centric Computing: Processing-Using-Memory

> Geraldo F. Oliveira Prof. Onur Mutlu

> > ISCA 2024 29 June 2024

ETH zürich

- Introduction to Memory-Centric Computing Systems
- Invited Talk by Prof. Minsoo Rhu: "Memory-Centric Computing Systems – For AI and Beyond"
- Coffee Break
- Real-World Processing-Near-Memory Systems
- Processing-Using-Memory Architectures for Bulk Bitwise Op.
- Invited Talk by Prof. Saugata Ghose:
 "RACER and ReRAM PUM"
- PIM Programming & Infrastructure for PIM Research
- Closing Remarks

SAFARI