Tutorial on Memory-Centric Computing: Conclusion Remarks

Geraldo F. Oliveira Prof. Onur Mutlu

ISCA 2024 29 June 2024

ETH zürich

- Introduction to Memory-Centric Computing Systems
- Invited Talk by Prof. Minsoo Rhu: "Memory-Centric Computing Systems – For AI and Beyond"
- Coffee Break
- Real-World Processing-Near-Memory Systems
- Processing-Using-Memory Architectures for Bulk Bitwise Op.
- Invited Talk by Prof. Saugata Ghose:
 "RACER and ReRAM PUM"
- PIM Programming & Infrastructure for PIM Research
- Closing Remarks

SAFARI

Challenge and Opportunity for Future

Fundamentally **Energy-Efficient** (Data-Centric) **Computing Architectures** Challenge and Opportunity for Future

Fundamentally **High-Performance** (Data-Centric) **Computing Architectures** Challenge and Opportunity for Future

Computing Architectures with

Minimal Data Movement

Concluding Remarks

- We must design systems to be balanced, high-performance, energy-efficient (all at the same time) → intelligent systems
 Data-centric, data-driven, data-aware
- Enable computation capability inside and close to memory
- This can
 - Lead to orders-of-magnitude improvements
 - Enable new applications & computing platforms
 - **Enable better understanding of nature**
 - ...

Future of truly memory-centric computing is bright We need to do recearch ⁹ design percent the computing state

We need to do research & design across the computing stack

Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware

We Need to Revisit the Entire Stack

	Problem	,
	Aigorithm	
	Program/Language	
	System Software	
	SW/HW Interface	
	Micro-architecture	
	Logic	
	Devices	
	Electrons	

We can get there step by step

SAFARI

We Need to Exploit Good Principles

- Data-centric system design
- All components intelligent
- Better (cross-layer) communication, better interfaces
- Better-than-worst-case design
- Heterogeneity
- Flexibility, adaptability

PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d

SAFARI Research Group

^aETH Zürich ^bCarnegie Mellon University ^cUniversity of Illinois at Urbana-Champaign ^dKing Mongkut's University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory" *Invited Book Chapter in <u>Emerging Computing: From Devices to Systems -</u> <i>Looking Beyond Moore and Von Neumann*, Springer, to be published in 2021.

SAFARI

Special Research Sessions & Courses (I)

Special Session at ISVLSI 2022: 9 cutting-edge talks

SAFAR

Special Research Sessions & Courses (II)

Special Session at ISVLSI 2022: 9 cutting-edge talks

SAFARI <u>https://www.youtube.com/playlist?list=PL5Q2soXY2Zi8KzG2CQYRNQOVD0GOBrnKy</u> ¹²

Processing-in-Memory Course (Fall 2022)

Short weekly lecturesHands-on projects

Livestream - P&S Data-Centric

Architectures: Fundamentally...

SAFARI

🔀 Shuffle

Onur Mutiu Lectures

=+ & :

Play all

SAFARI Project & Seminars Courses (Fall

. .,

Recent Changes Media Manager Sitemap

Q

Trace: • heterogeneous_systems • processing_in_memory

https://youtube.com/playlist?list=PL5Q2soXY2Zi8KzG2CQYRNQOVD0GOBrnKy

PIM Course (Fall 2022)

Fall 2022 Edition:

- https://safari.ethz.ch/projects and seminars/fall2022 /doku.php?id=processing in memory
- Spring 2022 Edition:
 - https://safari.ethz.ch/projects and seminars/spring2 022/doku.php?id=processing in memory

Youtube Livestream (Fall 2022):

https://www.youtube.com/watch?v=QLL0wQ9I4Dw& list=PL5Q2soXY2Zi8KzG2CQYRNQOVD0GOBrnKy

Youtube Livestream (Spring 2022):

- https://www.youtube.com/watch?v=9e4Chnwdovo&li st=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
- Project course
 - Taken by Bachelor's/Master's students
 - Processing-in-Memory lectures
 - Hands-on research exploration
 - Many research readings

https://www.youtube.com/onurmutlulectures

SAFARI

Spring 2022 Meetings/Schedule

Week	Date	Livestream	Meeting	Learning Materials	Assignmen
W1	10.03 Thu.	You Tube Live	M1: P&S PIM Course Presentation (PDF) (PPT)	Required Materials Recommended Materials	HW 0 Out
W2	15.03 Tue.		Hands-on Project Proposals		
	17.03 Thu.	You Tube Premiere	M2: Real-world PIM: UPMEM PIM		
W3	24.03 Thu.	You Tube Live	M3: Real-world PIM: Microbenchmarking of UPMEM PIM @ (PDF) @ (PPT)		
W4	31.03 Thu.	You Tube Live	M4: Real-world PIM: Samsung HBM-PIM (PDF) (PPT)		
W5	07.04 Thu.	You Tube Live	M5: How to Evaluate Data Movement Bottlenecks (PDF) (2000) (PPT)		
W6	14.04 Thu.	You Tube Live	M6: Real-world PIM: SK Hynix AiM		
W7	21.04 Thu.	You Tube Premiere	M7: Programming PIM Architectures		
W8	28.04 Thu.	You Tube Premiere	M8: Benchmarking and Workload Suitability on PIM (PDF) (mathematical (PPT))		
W9	05.05 Thu.	You Tube Premiere	M9: Real-world PIM: Samsung AxDIMM		
W10	12.05 Thu.	You Tube Premiere	M10: Real-world PIM: Alibaba HB- PNM (PDF) m (PPT)		
W11	19.05 Thu.	You Tube Live	M11: SpMV on a Real PIM Architecture (PDF) (PPT)		
W12	26.05 Thu.	You Tube Live	M12: End-to-End Framework for Processing-using-Memory (2000) (PDF) (2000) (PPT)		
W13	02.06 Thu.	You Tube Live	M13: Bit-Serial SIMD Processing using DRAM (a) (PDF) (a) (PPT)		
W14	09.06 Thu.	You Tube Live	M14: Analyzing and Mitigating ML Inference Bottlenecks (PDF) (2000) (PPT)		
W15	15.06 Thu.	You Tube Live	M15: In-Memory HTAP Databases with HW/SW Co-design (PDF) (2010) (PPT)		
W16	23.06 Thu.	You Tube Live	M16: In-Storage Processing for Genome Analysis (PDF) ((PPT))		
W17	18.07 Mon.	You Tube Premiere	M17: How to Enable the Adoption of PIM? (PDF) (PPT)		
W18	09.08 Tue.	You Tube Premiere	SS1: ISVLSI 2022 Special Session on PIM (PDF & PPT)		

Processing-in-Memory Course (Spring 2023)

Short weekly lectures Hands-on projects

SAFARI Project & Seminars Courses (Spring 2023)

Trace: • heterogeneous_systems • processing_in_memory

Interest in making systems efficient and usable

https://safari.ethz.ch/projects and seminars/spring2023/doku.php?id =processing in memory

1:14:16 PIM Course: Lecture 2: How to Evaluate Data Movement Bottlenecks (Spring 2023) Onur Mutlu Lectures • 332 views • 2 months ago 16:37 Onur Mutlu Lectures • 1.5K views • Streamed 2 months ago 6:27:39 PIM Course: Lecture 3: Real-world PIM: UPMEM PIM (Spring 2023) Onur Mutlu Lectures • 411 views • 2 months and

Onur Mutlu Lectures • 169 views • 2 months ago

Onur Mutlu Lectures • 573 views • 1 month ago

https://www.youtube.com/playlist?list=PL5Q2soXY2Zi EObuoAZVSq o6UySWQHvZ

Onur Mutlu Lectures • 325 views • 1 month ago

Table of Contents

Search

Data-Centric Architectures: Fundamentally Improving Performance and Energy (227-

Recent Changes Media Manager Sitemap

processing in memory

9

- 0085-37L) Course Description
- Mentors
- Lecture Video Playlist on YouTube
- Spring 2023 Meetings/Schedule
- Past Lecture Video Plavlists on YouTube
- Learning Materials
- Assignments

energy in consumer applications. As a result, the data movement bottleneck is a huge burden that greatly limits the energy efficiency and performance of modern computing systems. This phenomenon is an undesired effect of the dichotomy between memory and the processor, which leads to the data movement

Many modern and important workloads such as machine learning, computational biology, graph processing, databases, video analytics, and real-time data analytics suffer greatly from the data movement bottleneck. These workloads are exemplified by irregular memory accesses, relatively low data reuse, low cache line utilization, low arithmetic intensity (i.e., ratio of operations per accessed byte), and large datasets that greatly exceed the main memory size. The computation in these workloads cannot usually compensate for the data movement costs. In order to alleviate this data movement bottleneck, we need a paradigm shift from the traditional processor-centric design, where all computation takes place in the compute units, to a more data-centric design where processing elements are placed closer to or inside where the data resides. This paradigm of computing is known as Processing-in-Memory (PIM).

This is your perfect P&S if you want to become familiar with the main PIM technologies, which represent "the next big thing" in Computer Architecture. You will work hands-on with the first real-world PIM architecture, will explore different PIM architecture designs for important workloads, and will develop tools to enable research of future PIM systems. Projects in this course span software and hardware as well as the software/hardware interface. You can potentially work on developing and optimizing new workloads for the first real-world PIM hardware or explore new PIM designs in simulators, or do something else that

- Digital Design and Computer Architecture (or equivalent course).
- Interest in future computer architectures and computing paradigms.
- Interest in discovering why things do or do not work and solving problems

Livestream - Data-Centrie

Play all

Architectures: Fundamentally...

SAFARI

Onur Mutlu Lectures • 188 views • 2 months and

Onur Mutlu Lectures • 483 views • 2 months ago

PIM Course: Lecture 6: Real-world PIM: SK Hynix AiM (Spring 2023)

PIM Course: Lecture 7: Real-world PIM: Samsung AxDIMM (Spring 2023)

Real PIM Tutorials [ISCA'23, ASPLOS'23, HPCA'23]

June, March, Feb : Lectures + Hands-on labs + Invited talks

Trace: • start

ISCA 2023 Real-World PIM Tutorial

Search Q Recent Changes Media Manager Sitemap

Table of Contents

Organizers
Agenda (June 18, 2023)

Lectures (tentative)

Learning Materials

Hands-on Labs (tentative)

Real-world Processing-in-Memory Systems for Modern Workloads

Tutorial Description

Processing-in-Memory (PIM) is a computing paradigm that aims at overcoming the data movement bottleneck (i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement between memory units and compute units) by making memory compute-capable.

Explored over several decades since the 1960s, PIM systems are becoming a reality with the advent of the first commercial products and prototypes.

A number of startups (e.g., UPMEM, Neuroblade) are already commercializing real PIM hardware, each with its own design approach and target applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two years. Most of these architectures have in common that they place compute units near the memory arrays. This type of PIM is called processing near memory (PNM).

2,560-DPU Processing-in-Memory System

PIM can provide large improvements in both performance and energy consumption for many modern applications, thereby enabling a commercially viable way of dealing with huge amounts of data that is bottlenecking our computing systems. Yet, it is critical to (1) study and understand the characteristics that make a workload suitable for a PIM architecture, (2) propose optimization strategies for PIM kernels, and (3) develop programming frameworks and tools that can lower the learning curve and ease the adoption of PIM.

This tutorial focuses on the latest advances in PIM technology, workload characterization for PIM, and programming and optimizing PIM kernels. We will (1) provide an introduction to PIM and taxonomy of PIM systems, (2) give an overview and a rigorous analysis of existing real-world PIM hardware, (3) conduct hand-on labs about important workloads (machine learning, sparse linear algebra, bioinformatics, etc.) using real PIM systems, or workload to be unrefered.

and (4) shed light on how to improve future PIM systems for such workloads.

https://events.safari.ethz.ch/isca-pim-tutorial/

Real PIM Tutorial [ISCA 2023]

June 18: Lectures + Hands-on labs + Invited talks

ISCA 2023 Real-World PIM Tutorial Sunday, June 18, Orlando, Florida

Organizers: Juan Gómez Luna, Onur Mutlu, Ataberk Olgun Program: https://events.safari.ethz.ch/isca-pim-tutorial/ Overview PIM | PNM | UPMEM PIM | PNM for recommender systems | PNM for recommender systems | PNM for ML workloads | How to enable PIM? | PUM prototypes **Hands-on Labs:** Benchmarking | Accelerating real-world workloads

Tutorial Materials

Time	Speaker	Title	Materials
8:55am- 9:00am	Dr. Juan Gómez Luna	Welcome & Agenda	(PDF) P (PPT)
9:00am- 10:20am	Prof. Onur Mutlu	Memory-Centric Computing	(PDF) P (PPT)
10:20am- 11:00am	Dr. Juan Gómez Luna	Processing-Near-Memory: Real PNM Architectures / Programming General-purpose PIM	(PDF) P (PPT)
11:20am- 11:50am	Prof. Izzat El Hajj	High-throughput Sequence Alignment using Real Processing-in-Memory Systems	(PDF) P (PPT)
11:50am- 12:30pm	Dr. Christina Giannoula	SparseP: Towards Efficient Sparse Matrix Vector Multiplication for Real Processing-In-Memory Systems	(PDF) P (PPT)
2:00pm- 2:45pm	Dr. Sukhan Lee	Introducing Real-world HBM-PIM Powered System for Memory-bound Applications	D (PDF) D (PPT)
2:45pm- 3:30pm	Dr. Juan Gómez Luna / Ataberk Olgun	Processing-Using-Memory: Exploiting the Analog Operational Properties of Memory Components / PUM Prototypes: PiDRAM	▶ (PDF) ₽ (PPT) ▶ (PDF) ₽ (PPT)
4:00pm- 4:40pm	Dr. Juan Gómez Luna	Accelerating Modern Workloads on a General-purpose PIM System	(PDF) P (PPT)
4:40pm- 5:20pm	Dr. Juan Gómez Luna	Adoption Issues: How to Enable PIM?	(PDF) P (PPT)
5:20pm- 5:30pm	Dr. Juan Gómez Luna	Hands-on Lab: Programming and Understanding a Real Processing-in- Memory Architecture	(Handout) → (PDF) P (PPT)

4 57 57

ISCA 2023 Tutorial: Real-world Processing-in-Memory Systems for Modern Workloads

🏠 Subscribed 🗸

Onur Mutlu Lectures

1,687 views Streamed live on Jun 18, 2023 Livestream - Data-Centric Architectures: Fundamentally Improving Performance and Energy (Spring 2023)

https://www.youtube.com/ live/GIb5EgSrWk0

Real PIM Tutorial [ASPLOS 2023]

March 26: Lectures + Hands-on labs + Invited talks

star

ASPLOS 2023 Real-World PIM Tutorial

Recent Changes Media Manager Siteman

Real-world Processing-in-Memory Systems for Modern Workloads Tutorial Description

Agenda (March 26, 2023)

 Lectures (tentative) Hands-on Labs (tentative)

Learning Materials

Registration

Table of Contents

Organizers

Real-world Processing-in-Memory Systems for Modern Workloads

S Important note about registration

Tutorial Description

Processing-in-Memory (PIM) is a computing paradigm that aims at overcoming the data movement bottleneck (i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement between memory units and compute units) by making memory compute-capable.

Explored over several decades since the 1960s, PIM systems are becoming a reality with the advent of the first commercial products and prototypes.

A number of startups (e.g., UPMEM, Neuroblade) are already commercializing real PIM hardware, each with its own design approach and target applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two years. Most of these architectures have in common that they place compute units near the memory arrays. This type of PIM is called processing near memory (PNM)

PIM can provide large improvements in both performance and energy consumption for many modern applications, thereby enabling a commercially viable way of dealing with huge amounts of data that is bottlenecking our computing systems. Yet, it is critical to (1) study and understand the characteristics that make a workload suitable for a PIM

Tutorial Materials

Time	Speaker	Title	Materials
9:00am- 10:20am	Prof. Onur Mutlu	Memory-Centric Computing	↓ (PDF) ▶ (PPT)
10:40am- 12:00pm	Dr. Juan Gómez Luna	Processing-Near-Memory: Real PNM Architectures Programming General-purpose PIM	▶ (PDF) ▶ (PPT)
1:40pm- 2:20pm	Prof. Alexandra (Sasha) Fedorova (UBC)	Processing in Memory in the Wild	.→ (PDF) P (PPT)
2:20pm- 3:20pm	Dr. Juan Gómez Luna & Ataberk Olgun	Processing-Using-Memory: Exploiting the Analog Operational Properties of Memory Components	 ▶ (PDF) ▶ (PPT) ▶ (PDF) ▶ (PPT)
3:40pm- 4:10pm	Dr. Juan Gómez Luna	Adoption issues: How to enable PIM? Accelerating Modern Workloads on a General-purpose PIM System	 ▶ (PDF) ▶ (PPT) ▶ (PDF) ▶ (PPT)
4:10pm- 4:50pm	Dr. Yongkee Kwon & Eddy (Chanwook) Park (SK Hynix)	System Architecture and Software Stack for GDDR6-AiM	→ (PDF) P (PPT)
4:50pm- 5:00pm	Dr. Juan Gómez Luna	Hands-on Lab: Programming and Understanding a Real Processing-in-Memory Architecture	→ (Handout) → (PDF) ▶ (PPT)

ASPLOS 2023 Tutorial: Real-world Processing-in-Memory Systems for Modern Workloads

Onur Mutlu Lectures $\hat{\square}$ Subscribed \lor 32.1K subscribers

views Streamed 7 days ago Livestream - Data-Centric Architectures: Fundamentally Improving Performance and Energy (Spring 2023) LOS 2023 Tutorial: Real-world Processing-in-Memory Systems for Modern Workloads

://events.safari.ethz.ch/asplos

https://www.youtube.com/ watch?v=oYCaLcT0Kmo

13 33 57

https://events.safari.ethz.ch/ asplos-pim-tutorial/

Real PIM Tutorial [HPCA 2023]

February 26: Lectures + Hands-on labs + Invited Talks

8:00am- 8:40am Prof. Onur Mutlu		Memory-Centric Computing	
8:40am- 10:00am	Dr. Juan Gómez Luna	Processing-Near-Memory: Real PNM Architectures Programming General-purpose PIM	→ (PDF) P (PPT)
10:20am- 11:00am	Dr. Dimin Niu	A 3D Logic-to-DRAM Hybrid Bonding Process-Near-Memory Chip for Recommendation	on System
11:00am- 11:40am	Dr. Christina Giannoula	SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real Processing- In-Memory Architectures	(PDF) ₽ (PPT)
1:30pm- 2:10pm	Dr. Juan Gómez Luna	Processing-Using-Memory: Exploiting the Analog Operational Properties of Memory Components	ト (PDF) P (PPT)
2:10pm- 2:50pm	Dr. Manuel Le Gallo	Deep Learning Inference Using Computational Phase-Change Memory	
2:50pm- 3:30pm	Dr. Juan Gómez Luna	PIM Adoption Issues: How to Enable PIM Adoption?	→ (PDF) P (PPT)
3:40pm- 5:40pm	Dr. Juan Gómez Luna	Hands-on Lab: Programming and Understanding a Real Processing-in-Memory Architecture	→ (Handout) → (PDF) ▶ (PPT)

HPCA 2023 Tutorial: Real-World Processing-in-Memory Architectures

Onur Mutlu Lectures

32 1K subscribers

A Share St Clip =+ Save

1.8K views Streamed 1 month ago Livestream - P&S Data-Centric Architectures: Fundamentally Improving Performance and Energy (Fall 2022) HPCA 2023 Tutorial: Real-World Processing-in-Memory Architectures https://events.safari.ethz.ch/real-r

https://events.safari.ethz.ch/ <u>real-pim-tutorial/</u>

Real PIM Tutorial [MICRO 2023]

October 29: Lectures + Hands-on labs + Invited talks

and a second	- 윈 Log I
MICRO 2023 Real-World PIM Tutorial	Search Q Recent Changes Media Manager Sitema
	Recent Changes moula manager Sitema
ce: • start	
	Table of Contents
Real-world Processing-in-Memory Systems for Modern Workloads Tutorial Description	 Real-world Processing-in-Memory Systems for Modern Workloads Tutorial Description
Processing-in-Memory (PIM) is a computing paradigm that aims at overcoming the data movement bottlenecl (i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement between memory units and compute units) by making memory compute-capable.	 Livestream Organizers Agenda (Tentative, October 29, 2023) Lectures
Explored over several decades since the 1960s, PIM systems are becoming a reality with the advent of the fit commercial products and prototypes.	* Learning Materials
A number of startups (e.g., UPMEM, Neuroblade) are already commercializing real PIM hardware, each with applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototy these architectures have in common that they place compute units near the memory arrays. This type of PIM (PNM).	pes in the last two years. Most of
2,560-DPU Processing-in-Memory System PIM can provide large improvements in bo consumption for many modern application viable way of dealing with huge amounts computing systems. Yet, it is critical to (1) characteristics that make a workload suita rameworks and tools that can lower the left IM.	s, thereby enabling a commercially of data that is bottlenecking our study and understand the ble for a PIM architecture, (2) propose d (3) develop programming

This tutorial focuses on the latest advances in PIM technology, workload characterization for PIM, and programming and optimizing PIM kernels. We will (1) provide an introduction to PIM and taxonomy of PIM systems, (2) give an overview and a rigorous analysis of existing real-worki PIM hardware, (3) conduct hard-on labs about limortant workloads (machine learning, sparse linear algebra, bioinformatics, etc.) using real PIM systems, and (4) shed light on how to improve future PIM systems for such workloads.

Agenda (Tentative, October 29, 2023)

Lectures

- 1. Introduction: PIM as a paradigm to overcome the data movement bottleneck.
- 2. PIM taxonomy: PNM (processing near memory) and PUM (processing using memory).
- 3. General-purpose PNM: UPMEM PIM.
- 4. PNM for neural networks: Samsung HBM-PIM, SK Hynix AiM.
- 5. PNM for recommender systems: Samsung AxDIMM, Alibaba PNM.
- 6. PUM prototypes: PiDRAM, SRAM-based PUM, Flash-based PUM.
- 7. Other approaches: Neuroblade, Mythic.
- 8. Adoption issues: How to enable PIM?
- 9. Hands-on labs: Programming a real PIM system.

https://www.youtube.com/ live/ohUooNSIxOI

https://events.safari.ethz.ch/micro -pim-tutorial

PIM Tutorial at HEART 2024

HEART 2024 Memory-Centric Computing Systems Tutorial

Friday, June 21, Porto, Portugal

Organizers: Geraldo F. Oliveira, Dr. Mohammad Sadrosadati, Ataberk Olgun, Professor Onur Mutlu Program: https://events.safari.ethz.ch/heart24-memorycentric-tutorial/

Overview of PIM | PIM taxonomy PIM in memory & storage Real-world PNM systems PUM for bulk bitwise operations Programming techniques & tools Infrastructures for PIM Research Research challenges & opportunities

https://events.safari.ethz.ch/heart24-memorycentric-tutorial 21

This PIM Tutorial at ISCA 2024

ISCA 2024 Memory-Centric Computing Systems Tutorial

Saturday, June 29, Buenos Aires, Argentina

Organizers: Geraldo F. Oliveira, Dr. Mohammad Sadrosadati, Ataberk Olgun, Professor Onur Mutlu Program: https://events.safari.ethz.ch/isca24-memorycentric-tutorial/

Overview of PIM | PIM taxonomy PIM in memory & storage Real-world PNM systems PUM for bulk bitwise operations Programming techniques & tools Infrastructures for PIM Research Research challenges & opportunities

https://events.safari.ethz.ch/isca24-memorycentric-tutorial

Referenced Papers, Talks, Artifacts

All are available at

https://people.inf.ethz.ch/omutlu/projects.htm

https://www.youtube.com/onurmutlulectures

https://github.com/CMU-SAFARI/

pen Source Tools: SAFARI GitHub SAFARI Research Group at ETH Zurich and Carnegie Mellon University Site for source code and tools distribution from SAFARI Research Group at ETH Zurich and Carnegie Mellon University. 📯 241 followers 📀 ETH Zurich and Carnegie Mellon U... 🧬 https://safari.ethz.ch/ 🏹 omutlu@gmail.com Overview Repositories 80 Projects Packages 8 People 13 Pinned Customize pins aramulator Public prim-benchmarks Public ... A Fast and Extensible DRAM Simulator, with built-in support for PrIM (Processing-In-Memory benchmarks) is the first benchmark suite modeling many different DRAM technologies including DDRx, LPDDRx, for a real-world processing-in-memory (PIM) architecture. PrIM is GDDRx, WIOx, HBMx, and various academic proposals. Described in developed to evaluate, analyze, and characterize the first publ... the... ● C++ ☆ 442 ¥ 195 ●C ☆ 100 ¥ 38 MQSim Public **rowhammer** Public MQSim is a fast and accurate simulator modeling the performance of Source code for testing the Row Hammer error mechanism in DRAM modern multi-queue (MQ) SSDs as well as traditional SATA based devices. Described in the ISCA 2014 paper by Kim et al. at SSDs. MQSim faithfully models new high-bandwidth protocol http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf. implement... ● C++ ☆ 213 ♀ 120 <u>ት</u> 208 ነ 41 • C SoftMC Public Pythia Public SoftMC is an experimental FPGA-based memory controller design that A customizable hardware prefetching framework using online can be used to develop tests for DDR3 SODIMMs using a C++ based reinforcement learning as described in the MICRO 2021 paper by Bera API. The design, the interface, and its capabilities and limitatio... et al. (https://arxiv.org/pdf/2109.12021.pdf). Verilog ☆ 104 % 26 C++ 🛱 85 🖌 25

https://github.com/CMU-SAFARI/

Tutorial on Memory-Centric Computing: Conclusion Remarks

Geraldo F. Oliveira Prof. Onur Mutlu

ISCA 2024 29 June 2024

ETH zürich