Functionally-Complete Boolean Logic in Real DRAM Chips Experimental Characterization and Analysis

Ismail Emir Yüksel

Yahya C. Tugrul Ataberk Olgun F. Nisa Bostancı A. Giray Yaglıkçı Geraldo F. Oliveira Haocong Luo Juan Gómez–Luna Mohammad Sadr Onur Mutlu

ETH zürich

Executive Summary

- <u>Motivation</u>: Processing-using-DRAM can alleviate the performance and energy bottlenecks caused by data movement
 - Prior works show that existing DRAM chips can perform three-input majority and two-input AND and OR operations
- <u>Problem</u>: Proof-of-concept demonstrations on commercial off-the-shelf (COTS) DRAM chips do not provide
 - functionally-complete operations (e.g., NAND or NOR)
 - NOT operation
 - AND and OR operations with more than two inputs
- <u>Experimental Study</u>: 256 DDR4 chips from two major manufacturers
- <u>Key Results</u>:
 - COTS DRAM chips can perform NOT and {2, 4, 8, 16}-input AND, NAND, OR, and NOR operations with very high reliability (>94% success rate)
 - Data pattern and temperature only slightly affect the reliability of these operations (<1.98% decrease in success rate)

Outline

Background

Goal & Overview

Experimental Methodology

Multiple-Row Activation in Neighboring Subarrays

NOT Operation

AND, NAND, OR, and NOR Operations

Conclusion

Outline

Background

Goal & Overview

Experimental Methodology

Multiple-Row Activation in Neighboring Subarrays

NOT Operation

AND, NAND, OR, and NOR Operations

Conclusion

Data Movement Bottleneck

- Today's computing systems are processor centric
- All data is processed in the processor \rightarrow at great system cost

More than 60% of the total system energy is spent on data movement¹

SAFARI¹ A. Boroumand et al., "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks," ASPLOS, 2018

Processing-In-Memory (PIM)

- Two main approaches for Processing-In-Memory:
- **1 Processing-<u>Near</u>-Memory**: PIM logic is added near the memory arrays or to the logic layer of 3D-stacked memory
- 2 **Processing-<u>Using</u>-Memory**: uses the analog operational principles of memory cells to perform computation

DRAM Organization

DRAM Module

DRAM Open Bitline Architecture

DRAM Open Bitline Architecture

DRAM Operation

DRAM Subarray

ACTIVATE (ACT): Fetch the row's content into the sense amplifiers

Column Access (RD/WR): Read/Write the target column and drive to I/O

PRECHARGE (PRE):Prepare the subarray for a new ACTIVATE

Outline

Background

Goal & Overview

Experimental Methodology

Multiple-Row Activation in Neighboring Subarrays

NOT Operation

AND, NAND, OR, and NOR Operations

Conclusion

Our Goal

Understand the **capability** of COTS DRAM chips **beyond just storing data**

Rigorously **characterize the reliability** of this capability

COTS: Commercial Off-The-Shelf

The Capability of COTS DRAM Chips

We **demonstrate** that **COTS DRAM chips**:

Can simultaneously activate up to48 rows in two neighboring subarrays

Can perform **NOT operation** with up to **32 output operands**

Can perform up to **16-input** AND, NAND, OR, and NOR operations

2

3

Outline

Background

Goal & Overview

Experimental Methodology

Multiple-Row Activation in Neighboring Subarrays

NOT Operation

AND, NAND, OR, and NOR Operations

Conclusion

DRAM Testing Infrastructure

- Developed from DRAM Bender [Olgun+, TCAD'23]*
- Fine-grained control over DRAM commands, timings, and temperature

SAFARI *Olgun et al., "<u>DRAM Bender: An Extensible and Versatile FPGA-based Infrastructure</u> to Easily Test State-of-the-art DRAM Chips," TCAD, 2023.

DRAM Chips Tested

- 256 DDR4 chips from two major DRAM manufacturers
- Covers different die revisions and chip densities

Chip Mfr.	#Modules (#Chips)	Die Rev.	Mfr. Date ^a	Chip Density	Chip Org.	Speed Rate
SK Hynix	9 (72)	М	N/A	4Gb	x8	2666MT/s
	5 (40)	А	N/A	4Gb	x8	2133MT/s
	1 (16)	А	N/A	8Gb	x8	2666MT/s
	1 (32)	А	18-14	4Gb	x4	2400MT/s
	1 (32)	А	16-49	8Gb	x4	2400MT/s
	1 (32)	М	16-22	8Gb	x4	2666MT/s
Samsung	1 (8)	F	21-02	4Gb	x8	2666MT/s
	2 (16)	D	21-10	8Gb	x8	2133MT/s
	1 (8)	А	22-12	8Gb	x8	3200MT/s

Testing Methodology

- Carefully sweep:
 - Row addresses: Row A and Row B
 - Timing parameters: Between ACT \rightarrow PRE and PRE \rightarrow ACT

Outline

Background

Goal & Overview

Experimental Methodology

Multiple-Row Activation in Neighboring Subarrays

NOT Operation

AND, NAND, OR, and NOR Operations

Conclusion

The Capability of COTS DRAM Chips

We **demonstrate** that **COTS DRAM chips**:

Can simultaneously activate up to 48 rows in two neighboring subarrays

Can perform **NOT operation** with **up to 32** output operands

Can perform **up to 16-input** AND, NAND, OR, and NOR operations

Key Observation

Activating two rows in **quick succession** can **simultaneously** activate **multiple rows in neighboring subarrays**

Characterization Methodology

- To understand which and how many rows are simultaneously activated
 - Sweep Row A and Row B addresses

Key Results

COTS DRAM chips have **two distinct** sets of activation patterns in **neighboring subarrays** when two rows are activated with **violated timings**

Exactly the same number of rows in each subarray are activated **Twice as many** rows in one subarray **compared to its neighbor subarray** are activated

Subarray X Up to **16 rows** Shared Sense Amplifiers Subarray Y Up to **32 rows**

A total of **48 rows**

A total of **32 rows SAFARI**

Key Takeaway

COTS DDAM chine have two dictinct cots of

COTS DRAM chips can simultaneously activate up to 48 rows in two neighboring subarrays

in each subarray

<u>compared to its neighbor subar</u>

Functionally-Complete Boolean Logic in Real DRAM Chips: Experimental Characterization and Analysis

İsmail Emir Yüksel Yahya Can Tuğrul Ataberk Olgun F. Nisa Bostancı A. Giray Yağlıkçı Geraldo F. Oliveira Haocong Luo Juan Gómez-Luna Mohammad Sadrosadati Onur Mutlu

ETH Zürich

(More results in the paper)

p to **16 rows**

https://arxiv.org/pdf/2402.18736.pdf

Outline

Background

Goal & Overview

Experimental Methodology

Multiple-Row Activation in Neighboring Subarrays

NOT Operation

AND, NAND, OR, and NOR Operations

Conclusion

The Capability of COTS DRAM Chips

We **demonstrate** that **COTS DRAM chips**:

Can perform **NOT operation** with **up to 32** output operands

Can perform up to 16-input AND, NAND, OR, and NOR operations

2

Connect rows in neighboring subarrays through **a NOT gate** by simultaneously activating rows

ACT src

Characterization Methodology

Sweep Row A and Row B addresses

• Sweep DRAM chip temperature

Reliability Metric

Success Rate (for a DRAM cell)

Percentage of trials where the **correct output** of a tested operation is stored in the cell

Key Takeaways from In-DRAM NOT Operation

Key Takeaway 1

COTS DRAM chips can perform NOT operations with up to 32 destination rows

Key Takeaway 2

Temperature has a small effect on the reliability of NOT operations

Performing NOT in COTS DRAM Chips

COTS DRAM chips can perform NOT operations with up to 32 destination rows

Impact of Temperature

 Used destination cells that can perform NOT operation with >90% success rate at 50°C

Outline

Background

Goal & Overview

Experimental Methodology

Multiple-Row Activation in Neighboring Subarrays

NOT Operation

AND, NAND, OR, and NOR Operations

Conclusion
The Capability of COTS DRAM Chips

We **demonstrate** that **COTS DRAM chips**:

Can perform **OT operation** with **up to** output operands

Can perform **up to 16-input** AND, NAND, OR, and NOR operations

3

Key Idea

Manipulate the bitline voltage to express a wide variety of functions using multiple-row activation in neighboring subarrays

SAFARI *Gao et al., "FracDRAM: Fractional Values in Off-the-Shelf DRAM," in MICRO, 2022.

 $V_{DD} = 1 \& GND = 0$

 $V_{DD} = 1 \& GND = 0$

 $V_{DD} = 1 \& GND = 0$

 $V_{DD} = 1 \& GND = 0$

Many-Input AND, NAND, OR, and NOR Operations

We can express AND, NAND, OR, and NOR operations by carefully manipulating the **reference voltage**

Functionally-Complete Boolean Logic in Real DRAM Chips: Experimental Characterization and Analysis

İsmail Emir Yüksel Yahya Can Tuğrul Ataberk Olgun F. Nisa Bostancı A. Giray Yağlıkçı Geraldo F. Oliveira Haocong Luo Juan Gómez-Luna Mohammad Sadrosadati Onur Mutlu

ETH Zürich

(More details in the paper)

AVG(X,Y) https://arxiv.org/pdf/2402.18736.pdf

Characterization Methodology

• Sweep Row A and Row B addresses

Key Takeaways from In-DRAM Operations

Key Takeaway 1

COTS DRAM chips can perform {2, 4, 8, 16}-input AND, NAND, OR, and NOR operations

Key Takeaway 2

COTS DRAM chips can perform AND, NAND, OR, and NOR operations with very high reliability

Key Takeaway 3

Data pattern slightly affects the reliability of AND, NAND, OR, and NOR operations

Performing AND, NAND, OR, and NOR

COTS DRAM chips can perform {2, 4, 8, 16}-input AND, NAND, OR, and NOR operations

Performing AND, NAND, OR, and NOR

COTS DRAM chips can perform 16-input AND, NAND, OR, and NOR operations with very high success rate (>94%)

Impact of Data Pattern

Impact of Data Pattern

Impact of Data Pattern

Data pattern slightly affects the reliability of AND, NAND, OR, and NOR operations

More in the Paper

- Detailed hypotheses & key ideas to perform
 - NOT operation
 - Many-input AND, NAND, OR, and NOR operations
- How the reliability of bitwise operations are affected by
 - The location of activated rows
 - Temperature (for AND, NAND, OR, and NOR)
 - DRAM speed rate
 - Chip density and die revision
- Discussion on the limitations of COTS DRAM chips

Available on arXiv

Functionally-Complete Boolean Logic in Real DRAM Chips: Experimental Characterization and Analysis

İsmail Emir Yüksel Yahya Can Tuğrul Ataberk Olgun F. Nisa Bostancı A. Giray Yağlıkçı Geraldo F. Oliveira Haocong Luo Juan Gómez-Luna Mohammad Sadrosadati Onur Mutlu

ETH Zürich

Processing-using-DRAM (PuD) is an emerging paradigm that leverages the analog operational properties of DRAM circuitry to enable massively parallel in-DRAM computation. PuD has the potential to significantly reduce or eliminate costly data movement between processing elements and main memory. A common approach for PuD architectures is to make use of bulk bitwise computation (e.g., AND, OR, NOT). Prior works experimentally demonstrate three-input MAJ (i.e., MAJ3) and two-input AND and OR operations in commercial off-the-shelf (COTS) DRAM chips. Yet, demonstrations on COTS DRAM chips do not provide a functionally complete set of operations (e.g., NAND or AND and NOT).

We experimentally demonstrate that COTS DRAM chips are capable of performing 1) functionally-complete Boolean operations: NOT, NAND, and NOR and 2) many-input (i.e., more than two-input) AND and OR operations. We present an extensive systems and applications [12, 13]. Processing-using-DRAM (PuD) [29–32] is a promising paradigm that can alleviate the data movement bottleneck. PuD uses the analog operational properties of the DRAM circuitry to enable massively parallel in-DRAM computation. Many prior works [29–53] demonstrate that PuD can greatly reduce or eliminate data movement.

A widely used approach for PuD is to perform bulk bitwise operations, i.e., bitwise operations on large bit vectors. To perform bulk bitwise operations using DRAM, prior works propose modifications to the DRAM circuitry [29–31, 33, 35, 36, 43, 44, 46, 48–58]. Recent works [38, 41, 42, 45] experimentally demonstrate the feasibility of executing data copy & initialization [42, 45], i.e., the RowClone operation [49], and a subset of bitwise operations, i.e., three-input bitwise majority (MAJ3) and two-input AND and OR operations in unmodified commercial off-the-shelf (COTS) DRAM chips by operating beyond

https://arxiv.org/pdf/2402.18736.pdf

Outline

Background

Goal & Overview

Experimental Methodology

Multiple-Row Activation in Neighboring Subarrays

NOT Operation

AND, NAND, OR, and NOR Operations

Conclusion

Conclusion

- We experimentally demonstrate that commercial off-the-shelf (COTS) DRAM chips can perform:
 - **Functionally-complete** Boolean operations: NOT, NAND, and NOR
 - Up to 16-input AND, NAND, OR, and NOR operations
- We characterize the success rate of these operations on 256 COTS DDR4 chips from two major manufacturers
- We highlight **two key results**:
 - We can perform NOT and
 - {2, 4, 8, 16}-input AND, NAND, OR, and NOR operations
 on COTS DRAM chips with very high success rates (>94%)
 - Data pattern and temperature only slightly affect the reliability of these operations

We believe these empirical results demonstrate the promising potential of using DRAM as a computation substrate

Functionally-Complete Boolean Logic in Real DRAM Chips Experimental Characterization and Analysis

Ismail Emir Yüksel

Yahya C. Tugrul Ataberk Olgun F. Nisa Bostancı A. Giray Yaglıkçı Geraldo F. Oliveira Haocong Luo Juan Gómez–Luna Mohammad Sadr Onur Mutlu

ETH zürich

Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips Experimental Characterization and Analysis

ETH zürich

İsmail Emir Yüksel

Yahya C. Tuğrul F. Nisa Bostancı Geraldo F. Oliveira

A. Giray Yağlıkçı Ataberk Olgun Melina Soysal Haocong Luo

Juan Gómez–Luna Mohammad Sadr Onur Mutlu

Executive Summary

Motivation:

SAFAR

- Processing-Using-DRAM (PUD) alleviates data movement bottlenecks
- Commercial off-the-shelf (COTS) DRAM chips can perform three-input majority (MAJ3) and in-DRAM copy operations

Goal: To experimentally analyze and understand

- The computational capability of COTS DRAM chips beyond that of prior works
- The robustness of such capability under various operating conditions

Experimental Study: 120 DDR4 chips from two major manufacturers

- COTS DRAM chips can perform MAJ5, MAJ7, and MAJ9 operations and copy one DRAM row to up to 31 different rows at once
- Storing multiple redundant copies of MAJ's input operands (i.e., input replication) drastically increases robustness (>30% higher success rate)
- **Operating conditions** (temperature, voltage, and data pattern) **affect** the robustness of in-DRAM operations (by up to 11.52% success rate)

https://github.com/CMU-SAFARI/SiMRA-DRAM

Leveraging Simultaneous Many-Row Activation

Leveraging Simultaneous Many-Row Activation

In-DRAM Multiple Row Copy (Multi-RowCopy)

Simultaneously activate many rows to copy **one row's content** to **multiple destination rows**

RowClone

Multi-RowCopy

SAFARI

[Seshadri+ MICRO'13]

Robustness of Multi-RowCopy

COTS DRAM chips can copy one row's content to up to 31 rows with a very high success rate

Available on arXiv

levels. We extensively characterize 120 COTS DDR4 chips from two major manufacturers. We highlight four key results of our study. First, COTS DRAM chips are capable of 1) simultaneously activating up to 32 rows (i.e., simultaneous many-row activation), 2) executing a majority of X (MAJX) operation where X>3 (i.e., MAJ5, MAJ7, and MAJ9 operations), and 3) copying a DRAM row (concurrently) to up to 31 other DRAM rows, which we call Multi-RowCopy. Second, storing multiple copies of MAJX's input operands on all simultaneously activated rows drastically increases the success rate (i.e., the percentage of DRAM cells that correctly perform the computation) of the MAJX operation. For example, MAJ3 with 32-row activation (i.e.,

based arithmetic [64, 66, 69, 72, 91, 127, 130, 131], and lookup table based operations [82, 106, 107, 132]. We refer to DRAMbased PUM as Processing-Using-DRAM (PUD) and the computation performed using DRAM cells as PUD operations.

PUD benefits from the bulk data parallelism in DRAM devices to perform bulk bitwise PUD operations. Prior works show that bulk bitwise operations are used in a wide variety of important applications, including databases and web search [64, 67, 79, 130, 133-140], data analytics [64, 141-144], graph processing [56, 80, 94, 130, 145], genome analysis [60, 99, 146-149], cryptography [150, 151], set operations [56, 64], and hyperdimensional computing [152–154].

https://arxiv.org/pdf/2405.06081

Our Work is Open Source and Artifact Evaluated

Code Repro	ducible		Dataset Reproducible
SIMRA-DRAM Public		☆ Edit Pins ▼	• $\frac{9.9}{5}$ Fork 0 • \bigstar Starred 6 •
🐉 main 👻 🐉 1 Branch 😒 0 Tags	Q Go to file	t Add file \checkmark Code \checkmark	About 餘
🛎 unrealismail Update README.md		a51abfa · last month 🕚 5 Commits	a51abfa · last month 🕚 5 Commits Source code & scripts for experimental characterization and demonstration of 1)
DRAM-Bender	initial comit	last month	simultaneous many-row activation, 2) up to nine-input majority operations and 3) copying one row's content to up 31 rows in real DDR4 DRAM chips. Described in our DSN'24 paper by Yuksel et al. at https://arxiv.org/abs/2405.06081 Readme View license
analysis	initial comit	last month	
📄 experimental_data	initial comit	last month	
LICENSE	initial comit	last month	
README.md	Update README.md	last month	
띠 README 화 License		Ø ∷≣	小 Activity☑ Custom properties
Simultaneous Mar DRAM Chips: Expe	y-Row Activation in (erimental Characteriza	Off-the-Shelf ation and Analysis	 ☆ 6 stars ④ 4 watching ♀ 0 forks Report repository

https://github.com/CMU-SAFARI/SiMRA-DRAM

Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips Experimental Characterization and Analysis

İsmail Emir Yüksel

ETH zürich

Yahya C. Tuğrul F. Nisa Bostancı Geraldo F. Oliveira

A. Giray Yağlıkçı Ataberk Olgun Melina Soysal Haocong Luo

Juan Gómez–Luna Mohammad Sadr Onur Mutlu

Functionally-Complete Boolean Logic in Real DRAM Chips Experimental Characterization and Analysis

Backup Slides

Ismail Emir Yüksel

Yahya C. Tugrul Ataberk Olgun F. Nisa Bostancı

A. Giray Yaglıkçı Geraldo F. Oliveira Haocong Luo

Juan Gómez–Luna Mohammad Sadr Onur Mutlu

ETHzürich

Experimental Methodology

We test all banks in each DRAM chip

We test three neighboring subarray pairs in each bank

We test all possible combinations of activated rows

Performing NOT in COTS DRAM Chips

As the number of destination rows increases, more DRAM cells produce incorrect results.

The Coverage of Multiple-Row Activation

Figure 5: Coverage of each N_{RF} : N_{RL} activation type across tested R_F and R_L row pairs.

NOT vs. Activation Trend

Figure 8: Success rate of the NOT operation vs. N_{RF} : N_{RL} activation type.

Impact of Location in NOT Op.

• Categorize the distance between activated rows (source and destination rows) and the sense amplifiers into three regions: Far, Middle, and Close

The distance between activated rows and the sense amplifiers significantly affects the reliability
The effect of DRAM Speed Rate on NOT

Figure 11: Success rate of the NOT operation for different DRAM speed rates.

Chip Density & Die Revision (NOT)

Figure 12: Success rate of the NOT operation for different chip density and die revision combinations for two major manufacturers.

Performing AND, NAND, OR, and NOR

The reliability distributions are very similar between 1) AND-NAND and 2) OR – NOR operations.

Impact of Temperature

Temperature has a small effect on the reliability of AND, NAND, OR, and NOR operations

Boolean Operations vs. Number of 1s

Figure 16: Success rates of AND and OR operations based on the number of logic-1s in the input operands.

The Effect of the Location

DRAM Speed Rate vs. Bitwise Ops.

Figure 20: Success rates of AND, NAND, OR, and NOR operations for three DRAM speed rates.

Chip Density&Die Revision vs. Bitwise Ops.

DRAM Cell Operation

DRAM Cell Operation - PRECHARGE

Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips Experimental Characterization and Analysis

ETH zürich

İsmail Emir Yüksel

Yahya C. Tuğrul F. Nisa Bostancı Geraldo F. Oliveira

A. Giray Yağlıkçı Ataberk Olgun Melina Soysal Haocong Luo

Juan Gómez–Luna Mohammad Sadr Onur Mutlu

Executive Summary

Motivation:

SAFAR

- Processing-Using-DRAM (PUD) alleviates data movement bottlenecks
- Commercial off-the-shelf (COTS) DRAM chips can perform three-input majority (MAJ3) and in-DRAM copy operations

Goal: To experimentally analyze and understand

- The computational capability of COTS DRAM chips beyond that of prior works
- The robustness of such capability under various operating conditions

Experimental Study: 120 DDR4 chips from two major manufacturers

- COTS DRAM chips can perform MAJ5, MAJ7, and MAJ9 operations and copy one DRAM row to up to 31 different rows at once
- Storing multiple redundant copies of MAJ's input operands (i.e., input replication) drastically increases robustness (>30% higher success rate)
- **Operating conditions** (temperature, voltage, and data pattern) **affect** the robustness of in-DRAM operations (by up to 11.52% success rate)

https://github.com/CMU-SAFARI/SiMRA-DRAM

Outline

Motivation & Background

Goal

Experimental Methodology

Simultaneous Many-Row Activation

MAJX Operation

Multi-RowCopy Operation

Conclusion

Outline

Motivation & Background

Goal

Experimental Methodology

Simultaneous Many-Row Activation

MAJX Operation

Multi-RowCopy Operation

Conclusion

Data Movement Bottleneck

- Today's computing systems are processor centric
- All data is processed in the processor \rightarrow at great system cost

More than 60% of the total system energy is spent on data movement¹

Processing-In-Memory (PIM)

Two main approaches for Processing-In-Memory:

- **1 Processing-<u>Near</u>-Memory:** PIM logic is added near the memory arrays or to the logic layer of 3D-stacked memory
- 2 **Processing-Using-Memory:** uses the analog operational principles of memory cells to perform computation

Processing-In-Memory (PIM)

Two main approaches for Processing-In-Memory:

- Processing-<u>Near</u>-Memory: PIM logic is added near the memory arrays or to the logic layer of 3D-stacked memory
- 2 **Processing-Using-Memory:** uses the analog operational principles of memory cells to perform computation

DRAM Organization

DRAM Operation

ACTIVATE (ACT):

Fetch the row's content into the **sense amplifiers**

Column Access (RD/WR):

Read/Write the target column and drive to I/O

PRECHARGE (PRE): Prepare the bank for a new ACTIVATE

In-DRAM Row-Copy (RowClone)

Copying the source (src) row's content to the destination (dst) row

In-DRAM Row-Copy (RowClone)

[Seshadri+ MICRO'13]

In-DRAM Row-Copy (RowClone)

[Seshadri+ MICRO'13]

In-DRAM Majority-of-Three (MAJ3)

Performing a MAJ3 operation using three rows as input operands

MAJ3(a, b, b) = b

SAFARI

[Seshadri+ MICRO'17]

In-DRAM Majority-of-Three (MAJ3)

Activate three rows simultaneously

Outline

Motivation & Background

Goal

Experimental Methodology

Simultaneous Many-Row Activation

MAJX Operation

Multi-RowCopy Operation

Conclusion

Our Goal

Experimentally understand the **computational capability** of COTS DRAM chips

Experimentally analyze the **robustness** of such capability under various **operating conditions**

Outline

Motivation & Background

Goal

Experimental Methodology

Simultaneous Many-Row Activation

MAJX Operation

Multi-RowCopy Operation

Conclusion

DRAM Testing Infrastructure (I)

DRAM Bender DDR3/4 Testing Infrastructure

https://github.com/CMU-SAFARI/DRAM-Bender

E CMU-SAFARI / DRAM-Bender						
	that ca					
	factors					
	مامانوريم					

කු

Bender is the first open DRAM testing infrastructure an be used to easily and rehensively test state-of-the-R4 modules of different form s. Five prototypes are available on different FPGA boards.

DRAM Testing Infrastructure (II)

Fine-grained control over DRAM commands, timings, temperature, and voltage

DRAM Chips Tested

- 120 DDR4 chips from two major DRAM manufacturers
- Covers different die revisions and chip densities

 DRAM Mfr.	#Modules	#Chips	Die Rev.	Density	Org.	Subarray Size
 SK Hynix	7	56	М	4Gb	x8	512 or 640
(Mfr. H)	5	40	А	4Gb	x8	512
Micron	4	16	Е	16Gb	x16	1024
 (Mfr. M)	2	8	В	16Gb	x16	1024

Testing Methodology (I)

- Carefully sweep
 - Row addresses: Row A and Row B (>3M row pairs)
 - Timing parameters: Between ACT → PRE and PRE → ACT

Testing Methodology (II)

Robustness Metric: Success Rate

Percentage of DRAM cells that produce correct output of a tested operation in all test trials

Success rate for this example: 66.67% (2/3)

Outline

Motivation & Background

Goal

Experimental Methodology

Simultaneous Many-Row Activation

MAJX Operation

Multi-RowCopy Operation

Conclusion

Key Observation

Activating two rows in **quick succession** can **simultaneously** activate **many rows in a subarray**

Hypothesis: Row Decoder Circuitry

Simultaneous many-row activation is possible due to the **hierarchical DRAM row decoder design**

Row Decoder: A Tree Example

• We can visualize the hierarchical row decoder circuitry as a tree

Activating a Single Row

Activating Many Rows: A Walkthrough

Back-to-back ACT commands with violated timings asserts many more signals in the row decoder

Hypothesis: Row Decoder Circuitry

Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips: Experimental Characterization and Analysis

İsmail Emir Yüksel¹ Yahya Can Tuğrul^{1,2} F. Nisa Bostancı¹ Geraldo F. Oliveira¹ A. Giray Yağlıkçı¹ Ataberk Olgun¹ Melina Soysal¹ Haocong Luo¹ Juan Gómez-Luna¹ Mohammad Sadrosadati¹ Onur Mutlu¹ ¹ETH Zürich ²TOBB University of Economics and Technology

(More discussions & hypotheses in the paper)

https://arxiv.org/pdf/2405.06081

Characterization Methodology (I)

If rows are activated, WR command overwrites all of the activated rows' content

Characterization Methodology (II)

Carefully sweep

- Row addresses: Row A and Row B
- Timing parameters: Between ACT → PRE and PRE → ACT
- Temperature (°C): 50, 60, 70, 80, and 90
- Wordline Voltage (V): 2.5, 2.4, 2.3, 2.2, and 2.1

Key Takeaways from Simultaneous Many-Row ACT

Key Takeaway 1

COTS DRAM chips are capable of simultaneously activating 2, 4, 8, 16, and 32 rows

Key Takeaway 2

Simultaneous many-row activation is highly resilient to

temperature and wordline voltage changes

Robustness of Simultaneous Many-Row Activation

COTS DRAM chips can simultaneously activate 2, 4, 8, 16, and 32 rows in the same subarray

Also in the Paper: Impact of Temperature & Voltage

Leveraging Simultaneous Many-Row Activation

Outline

Motivation & Background

Goal

Experimental Methodology

Simultaneous Many-Row Activation

MAJX Operation

Multi-RowCopy Operation

Conclusion

Leveraging Simultaneous Many-Row Activation

In-DRAM Majority-of-X (MAJX)

Simultaneously activate many rows to perform MAJX (where X>3) operations

MAJ5(a, b, b, b, a) = b

SAFARI

MAJ7(a, b, b, a, a, b, b) = b

MAJX in Real DRAM Chips

- For MAJX, we need to activate X rows simultaneously
- We can only simultaneously activate 2, 4, 8, 16, and 32 rows
- Question
 - How do we perform MAJX while simultaneously activating more than X rows?
- Answer
 - Making some rows neutral during the MAJX operation using the Frac operation*

Leveraging Simultaneous Many-Row Activation

Improving the Robustness (Input Replication)

Storing **multiple copies** of MAJX input operands can **increase the robustness** of MAJX operations

SAFAR

MAJ6(a, b, b, a, b, b) = b

Characterization Methodology

- Carefully sweep
 - Row addresses: Row A and Row B
 - Timing parameters: Between ACT → PRE and PRE → ACT
 - Temperature (°C): 50, 60, 70, 80, and 90
 - Wordline Voltage (V): 2.5, 2.4, 2.3, 2.2, and 2.1

Key Takeaways from MAJX Operation

Key Takeaway 1

COTS DRAM chips are capable of performing MAJ5, MAJ7, and MAJ9 operations

Key Takeaway 2

Storing multiple copies of MAJX's input operands significantly increases the MAJX's success rate

Key Takeaway 3

Voltage and temperature slightly affect the success rate, whereas data pattern affects significantly

Robustness of MAJX Operations

COTS DRAM chips are capable of performing MAJ5, MAJ7, and MAJ9 operations

Impact of Input Replication

Storing multiple copies of MAJ's input operands increases the success rate of MAJ3, MAJ5, MAJ7, and MAJ9 operations

Impact of Data Pattern

11.52% decrease in success rate on average (up to 32.56%) across all tested MAJX operations

Data pattern significantly affects the success rate of the MAJX operation

Also in the Paper: Impact of Temperature & Voltage

Outline

Motivation & Background

Goal

Experimental Methodology

Simultaneous Many-Row Activation

MAJX Operation

Multi-RowCopy Operation

Conclusion

Leveraging Simultaneous Many-Row Activation

In-DRAM Multiple Row Copy (Multi-RowCopy)

Simultaneously activate many rows to copy **one row's content** to **multiple destination rows**

RowClone

Multi-RowCopy

SAFARI

[Seshadri+ MICRO'13]

Characterization Methodology (II)

Carefully sweep

- Row addresses: Row A and Row B
- Timing parameters: Between ACT → PRE and PRE → ACT
- Temperature (°C): 50, 60, 70, 80, and 90
- Wordline Voltage (V): 2.5, 2.4, 2.3, 2.2, and 2.1

Key Takeaways from Multi-RowCopy

Key Takeaway 1

COTS DRAM chips are capable of copying one row's data to 1, 3, 7, 15, and 31 other rows at very high success rates

Key Takeaway 2

Multi-RowCopy in COTS DRAM chips is highly resilient to changes in data pattern, temperature, and wordline voltage

Robustness of Multi-RowCopy

COTS DRAM chips can copy one row's content to up to 31 rows with a very high success rate

Impact of Data Pattern

Data pattern has a small effect

on the success rate of the Multi-RowCopy operation

Also in the Paper: Impact of Temperature & Voltage

More in the Paper

- Detailed hypotheses and key ideas on
 - Hypothetical row decoder circuitry
 - Input Replication
- More characterization results
 - Power consumption of simultaneous many-row activation
 - Effect of timing delays between ACT-PRE and PRE-ACT commands
 - Effect of temperature and wordline voltage
- Circuit-level (SPICE) experiments for input replication
- Potential performance benefits of enabling new in-DRAM operations
 - Majority-based computation
 - Content destruction-based cold-boot attack prevention
- Discussions on the limitations of tested COTS DRAM chips

Available on arXiv

ness of these capabilities under various timing delays between DRAM commands, data patterns, temperature, and voltage levels. We extensively characterize 120 COTS DDR4 chips from two major manufacturers. We highlight four key results of our study. First, COTS DRAM chips are capable of 1) simultaneously activating up to 32 rows (i.e., simultaneous many-row activation), 2) executing a majority of X (MAJX) operation where X>3 (i.e., MAJ5, MAJ7, and MAJ9 operations), and 3) copying a DRAM row (concurrently) to up to 31 other DRAM rows, which we call Multi-RowCopy. Second, storing multiple copies of MAJX's input operands on all simultaneously activated rows drastically increases the success rate (i.e., the percentage of DRAM cells that correctly perform the computation) of the MAJX operation. For example, MAJ3 with 32-row activation (i.e.,

based arithmetic [64, 66, 69, 72, 91, 127, 130, 131], and lookup table based operations [82, 106, 107, 132]. We refer to DRAMbased PUM as Processing-Using-DRAM (PUD) and the computation performed using DRAM cells as PUD operations.

PUD benefits from the bulk data parallelism in DRAM devices to perform bulk bitwise PUD operations. Prior works show that bulk bitwise operations are used in a wide variety of important applications, including databases and web search [64, 67, 79, 130, 133-140], data analytics [64, 141-144], graph processing [56, 80, 94, 130, 145], genome analysis [60, 99, 146-149], cryptography [150, 151], set operations [56, 64], and hyperdimensional computing [152–154].

https://arxiv.org/pdf/2405.06081

Our Work is Open Source and Artifact Evaluated

Code Reproducible			Dataset Reproducible
Simra-Dram Public		🔊 Edit Pins 👻 💿 Watch 4	▼ 😵 Fork 0 ▼ 🔶 Starred 6 ▼
양 main 👻 양 1 Branch 🛇 0 Tags	Q Go to file	t Add file - <> Code -	About 鐐
🛎 unrealismail Update README.md		a51abfa · last month 🕚 5 Commits	a51abfa · last month 🕚 5 Commits Source code & scripts for experimental characterization and demonstration of 1)
DRAM-Bender	initial comit	last month	simultaneous many-row activation, 2) up to nine-input majority operations and 3) copying one row's content to up 31 rows in real DDR4 DRAM chips. Described in our DSN'24 paper by Yuksel et al. at https://arxiv.org/abs/2405.06081 Readme Ar View license
analysis	initial comit	last month	
experimental_data	initial comit	last month	
LICENSE	initial comit	last month	
🗅 README.md	Update README.md	last month	
□ README ^Δ License		Ø 🗄	ActivityCustom properties
Simultaneous Mar DRAM Chips: Expe	y-Row Activation in rimental Characteriz	Off-the-Shelf ation and Analysis	 ☆ 6 stars ◆ 4 watching ♀ 0 forks Report repository

https://github.com/CMU-SAFARI/SiMRA-DRAM

Outline

Motivation & Background

Goal

Experimental Methodology

Simultaneous Many-Row Activation

MAJX Operation

Multi-RowCopy Operation

Conclusion

SAFARI

We experimentally demonstrate that COTS DRAM chips can

- simultaneously activate up to 32 DRAM rows
- perform MAJ3, MAJ5, MAJ7, and MAJ9 operations
- copy one row's content to up to 31 rows

We characterize 120 DDR4 chips and highlight three key results

- Storing multiple copies of MAJX's input operands (i.e., input replication) drastically increases the success rate of MAJX operations
- Voltage and temperature slightly affect the success rate of MAJX operation, whereas data pattern affects significantly
- Multi-RowCopy is highly resilient to changes in data pattern, temperature, and wordline voltage

We believe these empirical results demonstrate the promising potential of using DRAM as a computation substrate

https://github.com/CMU-SAFARI/SiMRA-DRAM
Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips Experimental Characterization and Analysis

İsmail Emir Yüksel

ETH zürich

Yahya C. Tuğrul F. Nisa Bostancı Geraldo F. Oliveira

A. Giray Yağlıkçı Ataberk Olgun Melina Soysal Haocong Luo

Juan Gómez–Luna Mohammad Sadr Onur Mutlu

Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips Experimental Characterization and Analysis

Backup Slides

İsmail Emir Yüksel

Yahya C. Tuğrul F. Nisa Bostancı Geraldo F. Oliveira

A. Giray Yağlıkçı Ataberk Olgun Melina Soysal Haocong Luo

Juan Gómez–Luna Mohammad Sadr Onur Mutlu

Power Consumption of Many-Row ACT

32-row activation consumes 21.19% less power than the most power-consuming single DRAM operation (i.e., REF)

Simultaneous many-row activation power draw likely meets the power budget of DDR4 chips

Impact of Temperature in Many-Row ACT

Increasing temperature up to 90°C has a small effect on the success rate

Impact of Voltage in Many-Row ACT

Reducing the wordline voltage only slightly affects the success rate

Impact of Temperature in MAJX

Impact of Voltage in MAJX Operations

Wordline voltage slightly affects the success rate of the MAJX operation

Impact of Timing Delays in Many-Row ACT

Impact of Timing Delays in MAJX

Impact of Timing Delays in Multi-RowCopy

Impact of Temperature in Multi-RowCopy

Increasing temperature up to 90°C has a very small effect on the success rate

Impact of Voltage in Multi-RowCopy

Reducing the wordline voltage only slightly affects the success rate

Majority-based Computation

New MAJX operations provide 121.61% (46.54%) higher performance over using only MAJ3 in Mfr. M (Mfr. H) on average.

Cold Boot Attack Prevention

Multi-RowCopy-based content destruction outperforms both RowClone-based and Frac-based content destruction by up to 20.87× and 7.55×, respectively.

Frac Operation

Input Replication in Real Chips

DRAM Chips Tested: Extended Table

Module	Chip	Module Identifier	#Modules	Freq	Mfr. Date	Chip	Die	Chip	Subarray
Vendor	Vendor	Chip Identifier	(#Chips)	(MT/s)	ww-yy	Den.	Rev.	Org.	Size
TimeTec	SK Hynix	TLRD44G2666HC18F-SBK [240]	7 (56)	2666	Unknown	4Gb	М	$\times 8$	512 or 640
		H5AN4G8NMFR-TFC [241]							
TeamGroup	SK Hynix	76TT21NUS1R8-4G [242]	5 (40)	2133	Unknown	4Gb	M	$\times 8$	512
		H5AN4G8NAFR-TFC [243]							
Micron	Micron	MTA4ATF1G64HZ-3G2E1 [244]	4 (16)	3200	46-20	16Gb	Е	×16	1024
		MT40A1G16KD-062E:E [245]							
Micron	Micron	MTA4ATF1G64HZ-3G2B2 [246]	2 (8)	2666	26-21	16Gb	В	×16	1024
		MT40A1G16RC-062E:B [247]							

Row Decoder Circuitry

Effect of Input Replication on the Bitline Deviation

Limitations of Tested COTS DRAM Chips (I)

Some COTS DRAM chips do not support all in-DRAM operations

- We do not observe simultaneous many-row activation in tested 64 Samsung chips
- <u>Hypothesis</u>
 - Internal DRAM circuitry ignores the PRE command or the second ACT command when the timing parameters are greatly violated

If such a limitation were not imposed, we believe these DRAM chips are also fundamentally capable of performing the operations we examine in this work

Limitations of Tested COTS DRAM Chips (II)

- Tested COTS DRAM chips support only consecutive two row activation and simultaneous activation of 2, 4, 8, 16, and 32 rows
 - <u>Hypothesis</u>
 - This is due to our current infrastructure limitations, where we can issue DRAM commands at intervals of only 1.5ns.
 - Having fine-grained control on timing would allow us to deassert/assert desired intermediate signals in the row decoder circuitry

Limitations of Tested COTS DRAM Chips (III)

- Performing in-DRAM operations potentially have an effect on transient errors in DRAM chips
 - We perform each test (a single data point in the distribution) 10K times
 - We do not observe any errors in rows outside of the simultaneously activated row group

We believe that investigating all potential effects (e.g., on transient errors) requires a much more extensive exploration of various aspects

Open Research Questions

1	Is it possible to robustly activate more than four DRAM rows simultaneously?
2	What other PUD operations can be realized in COTS DRAM chips?
3	How robustly can PUD operations be performed in COTS DRAM chips?
4	Can the robustness of PUD operations be improved?
5	What are the effects of operating conditions on the robustness of PUD operations?

DRAM Cell Operation

DRAM Cell Operation - ACTIVATE

DRAM Cell Operation - PRECHARGE

