
3rd Workshop on

Memory-Centric Computing:

Storage-Centric Computing

Mohammad Sadrosadati

m.sadr89@gmail.com

ISCA 2025

21 June 2025

mailto:m.sadr89@gmail.com

Goal: Processing Inside Memory/Storage

◼ Many questions … How do we design the:

❑ compute-capable memory & controllers?

❑ processors & communication units?

❑ software & hardware interfaces?

❑ system software, compilers, languages?

❑ algorithms & theoretical foundations?

Cache

Processor
Core

Interconnect

Memory/Storage
Database

Graphs

Media

ML Model Query

Results

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Processing in Memory:

Two Types

1. Processing near Memory

2. Processing using Memory

3

Storage-Centric Computing:

Two Types

1. Processing near Storage

2. Processing using Storage

4

Flash-Cosmos: In-Flash Bulk Bitwise Execution

• Jisung Park, Roknoddin Azizi, Geraldo F. Oliveira, Mohammad Sadrosadati, Rakesh
Nadig, David Novo, Juan Gómez-Luna, Myungsuk Kim, and Onur Mutlu,
"Flash-Cosmos: In-Flash Bulk Bitwise Operations Using Inherent
Computation Capability of NAND Flash Memory"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO),
Chicago, IL, USA, October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Lecture Video (44 minutes)]
[arXiv version]

5https://arxiv.org/pdf/2209.05566.pdf

https://arxiv.org/pdf/2209.05566.pdf
https://arxiv.org/pdf/2209.05566.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_SSD-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_SSD-lecture-slides.pdf
https://www.youtube.com/watch?v=ioPERTy7bz4
https://arxiv.org/abs/2209.05566
https://arxiv.org/pdf/2209.05566.pdf

6

Talk Outline

Motivation

Background

Flash-Cosmos

Evaluation

Summary

7

Bulk Bitwise Operations

Bulk
Bitwise

Operations

Web Search

Cryptography

Set Operations
Genome Analysis

Databases

Graph Processing

Hyper-dimensional
Computing

...

8

Bulk Bitwise Operations

Bulk
Bitwise

Operations

Web Search

Cryptography

Set Operations
Genome Analysis

Databases
(database queries

and indexing)

Graph Processing

Hyper-dimensional
Computing

...

Data movement between compute units

and the memory hierarchy significantly affects

the performance of bulk bitwise operations

9

Data-Movement Bottleneck

• Conventional systems perform outside-storage
processing (OSP) after moving the data to host CPU
through the memory hierarchy

Host
Processor

(CPU, GPU)

Main
Memory

Write

Read

Storage
Write

Read

Memory Bandwidth
tens to hundreds of GB/s

Storage I/O Bandwidth
 ~ 8 GB/s

Data Movement
Bottleneck

The external I/O bandwidth of storage is the
main bottleneck for data movement in OSP

Computation

10

NDP for Bulk Bitwise Operations

Near-Data
Processing

Cache
(e.g., Compute Cache1)

DRAM-based
main memory

 (e.g., Ambit2)

In-Storage
(e.g., Biscuit4)

NVM-based
main memory
(e.g., Pinatubo3)

[1] Aga+, “Compute Caches," HPCA, 2017

[2] Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology,” MICRO, 2017

[3] Li+, “Pinatubo: A Processing-in-Memory Architecture for Bulk Bitwise Operations in Emerging Non-Volatile Memories,” DAC, 2016

[4] Gu+, “Biscuit: A Framework for Near-Data Processing of Big Data Workloads,” ISCA, 2016

[5] Gao+, “ParaBit: Processing Parallel Bitwise Operations in NAND Flash Memory Based SSDs,” MICRO, 2021

In-Flash
(e.g., ParaBit5)

...
Our focus

Large data sets
that do not fit

in main memory

11

In-Storage Processing (ISP)

• ISP performs computation using an in-storage
computation unit

• ISP reduces external data movement by transferring
only the computation results to the host

Host
Processor

(CPU, GPU)

Main
Memory

Read

Memory Bandwidth
tens to hundreds of GB/s

Storage External
I/O Bandwidth

 ~ 8 GB/s

In-Storage
Computation

Unit

⋯NAND
Chip #1

NAND
Chip #4

⋯NAND
Chip #1

NAND
Chip #4

⋯

Storage

Read

Write

Read

Write
Write

Storage Internal
I/O Bandwidth

 ~ 9.6 GB/s

Data Movement
Bottleneck

Computation

12

In-Storage Processing (ISP)

• ISP performs computation using the in-storage
computation unit

• ISP reduces external data movement by transferring
only the computation results to the host

Processor
(CPU, GPU)

Main
Memory

Read

Memory Bandwidth
tens to hundreds of GB/s

Storage External
I/O Bandwidth

 ~ 8 GB/s

In-Storage
Computation

Unit

⋯NAND
Chip #1

NAND
Chip #4

⋯NAND
Chip #1

NAND
Chip #4

⋯

Storage

Read

Write

Read

Write
Write

Storage Internal
I/O Bandwidth

 ~ 9.6 GB/s

Data Movement
Bottleneck

Storage internal I/O bandwidth is the main bottleneck

for data movement in ISP

13

In-Flash Processing (IFP)

• IFP performs computation within the flash chips as the
data operands are being read serially

• IFP reduces the internal data movement bottleneck in
storage by transferring only the computation results to
the in-storage computation unit

Host
Processor

(CPU, GPU)

Main
Memory

Read

Memory Bandwidth
tens to hundreds of GB/s

Storage External
I/O Bandwidth

 ~ 8 GB/s

In-Storage
Computation

Unit

⋯NAND
Chip #1

NAND
Chip #4

⋯NAND
Chip #1

NAND
Chip #4

⋯

Storage

Read

Write

Read

Write

Storage Internal
I/O Bandwidth

 ~ 9.6 GB/s

Data Sensing
Bottleneck

Computation

Write

14

In-Flash Processing (IFP)

• IFP performs computation within the flash chips as the
data operands are being read serially

• IFP reduces the internal data movement bottleneck in
storage by transferring only the computation results to
the in-storage computation unit

Host
Processor

(CPU, GPU)

Main
Memory

Read

Memory Bandwidth
tens to hundreds of GB/s

Storage External
I/O Bandwidth

 ~ 8 GB/s

In-Storage
Computation

Unit

⋯NAND
Chip #1

NAND
Chip #4

⋯NAND
Chip #1

NAND
Chip #4

⋯

Storage

Read

Write

Read

Write

Storage Internal
I/O Bandwidth

 ~ 9.6 GB/s

Data Sensing
Bottleneck

Computation

Write

IFP fundamentally mitigates the data movement

15

Data Sensing Bottleneck in IFP

In-Storage
Computation

Unit

⋯
NAND

Chip #1

NAND
Chip #4

⋯
NAND

Chip #1

NAND
Chip #4

⋯

• State-of-the-art IFP technique [1] performs bulk bitwise
operations by controlling the latching circuit of the
page buffer

A

NAND Flash Chip

Page Buffer

Operand A
Operand B
Operand C
Operand D

…

[1] Gao+, “ParaBit: Processing Parallel Bitwise Operations in NAND Flash Memory Based SSDs,” MICRO, 2021

16

Data Sensing Bottleneck in IFP

• State-of-the-art IFP technique [1] performs bulk bitwise
operations by controlling the latching circuit of the
page buffer

A

NAND Flash Chip

A
B

…

C
D

Page Buffer

Data Sensing

A

A

17

Data Sensing Bottleneck in IFP

• State-of-the-art IFP technique [1] performs bulk bitwise
operations by controlling the latching circuit of the
page buffer

A

NAND Flash Chip

A
B

…

C
D

Page Buffer

A

B

Data Sensing

A AND B

18

Data Sensing Bottleneck in IFP

• State-of-the-art IFP technique [1] performs bulk bitwise
operations by controlling the latching circuit of the
page buffer

NAND Flash Chip
A
B

…

C
D

Page Buffer

A AND B

Data Sensing

C

A AND B AND C

19

Data Sensing Bottleneck in IFP

• State-of-the-art IFP technique [1] performs bulk bitwise
operations by controlling the latching circuit of the
page buffer

NAND Flash Chip
A
B

…

C
D

Page Buffer

A AND B

Data Sensing

C

A AND B AND C

Serial data sensing is the bottleneck in

prior in-flash processing techniques

20

Reliability Issues in IFP

• Prior IFP approaches cannot leverage ECC and
data-randomization techniques as computation is
performed within the flash chips during data sensing

A

NAND Flash Chip

A
B

…

C
D

Page Buffer

21

Reliability Issues in IFP

• Prior IFP approaches cannot leverage ECC and
data-randomization techniques as computation is
performed within the flash chips during data sensing

NAND Flash Chip

B

…

C
D

Page Buffer

A

Data
Sensing

B
A

22

Reliability Issues in IFP

• Prior IFP approaches cannot leverage ECC and
data-randomization techniques as computation is
performed within the flash chips during data sensing

NAND Flash Chip

B

…

C
D

Page Buffer

A

A

Data
Sensing

BB

A AND B

23

Reliability Issues in IFP

• Prior IFP approaches cannot leverage ECC and
data-randomization techniques as computation is
performed within the flash chips during data sensing

NAND Flash Chip

B

…

C
D

Page Buffer

A

A

Data
Sensing

BB

A AND B

Prior IFP techniques requires the application to be

highly error-tolerant

24

Our Goal

Address the bottleneck of state-of-the-art IFP techniques
(serial sensing of operands)

Make IFP reliable
(provide accurate computation results)

25

Our Proposal

• Flash-Cosmos enables
• Computation on multiple operands using a

single sensing operation

• Provide high reliability during in-flash computation

NAND Flash Chip

B

…
D

Page Buffer

C

A

Data
Sensing

B
A

C

A AND B AND C

26

Talk Outline

Motivation

Background

Flash-Cosmos

Evaluation

Summary

27

NAND Flash Basics: A Flash Cell

• A flash cell stores data by adjusting the amount of
charge in the cell

Erased Cell
(Low Charge Level)

1

Programmed Cell
(High Charge Level)

0

Activation

Operates as a resistor Operates as an open switch

28

NAND Flash Basics: A NAND String

• A set of flash cells are serially connected to form a
NAND String

1

0

0

1

0

Bitline (BL)

…

NAND String

29

NAND Flash Basics: Read Mechanism

• NAND flash memory reads data by checking the
bitline current

1

0

0

1

0

Bitline (BL)

Non-Target Cells:
Operate as resistors

regardless of stored data

…

NAND String

30

NAND Flash Basics: Read Mechanism

• NAND flash memory reads data by checking the
bitline current

1

0

0

1

0

Bitline (BL)

Non-Target Cells:
Operate as resistors

regardless of stored data

…

NAND String

Target Cells:
Operate as resistors (1)

or open switches (0)

31

NAND Flash Basics: Read Mechanism

• NAND flash memory reads data by checking the
bitline current

1

0

0

1

0

BLi

Non-Target Cells:
Operate as resistors

regardless of stored data

…

NAND String

Target Cells:
Operate as resistors (1)

or open switches (0)
0

1

1

0

1

BLj

…

Reads as ‘1’
if BL current

flows

Reads as ‘0’
if BL current
cannot flow

32

• NAND strings connected to different bitlines comprise a
NAND block

NAND Flash Basics: A NAND Flash Block

BL1 BL2 BL3 BL4 BL5

1

0

0

1

0

BLN

…

1

0

0

1

0

…

1

0

0

1

0

…
1

0

0

1

0

…

1

0

0

1

0

…

1

0

0

1

0
…

…

…

…

…

…

WL1

WL2

WL3

WL4

WLM

Block

A single wordline (WL) controls a large number of
flash cells: High bit-level parallelism

33

• A large number of blocks share the same bitlines

NAND Flash Basics: Block Organization

BL1 BL2 BL3 BL4 BL5 BLN

…
…

…

…Block2 … … … … …

…
…

…

…BlockK … … … … …

…
…

…

…Block1 … … … … …
…… … … … …

34

• A large number of blocks share the same bitlines

Similarity to Digital Logic Gates

BL1 BL2 BL3 BL4 BL5 BLN

…
…

…

…Block2 … … … … …

…
…

…

…BlockK … … … … …

…
…

…

…Block1 … … … … …
…… … … … …

Cells in the same block
are connected serially:
Similar to digital NAND

A

B

(A•B)’

2-input NAND

35

• A large number of blocks share the same bitlines.

Similarity to Digital Logic Gates

BL1 BL2 BL3 BL4 BL5 BLN

…
…

…

…Block2 … … … … …

…
…

…

…BlockK … … … … …

…
…

…

…Block1 … … … … …
…… … … … …

Cells in the same block
are connected serially:
Similar to digital NAND

A

B

(A•B)’

2-input NAND

Cells in different blocks
are connected in parallel:

Similar to digital NOR

2-input NOR

A

B

(A+B)’

36

Talk Outline

Motivation

Background

Flash-Cosmos

Evaluation

Summary

37

Flash-Cosmos: Overview

Enables in-flash bulk bitwise operations on
multiple operands with a single sensing

operation using
Multi-Wordline Sensing (MWS)

38

Multi-Wordline Sensing (MWS): Bitwise AND

• Intra-Block MWS: Simultaneously activates
multiple WLs in the same block
• Bitwise AND of the stored data in the WLs

BL1 BL2 BL3 BL4

0

0

1

0

…

0

1

0

0
…

1

0

1

1

…

1

1

1

0

…

…

…

…

…

WL1

WL2

WL3

WL4

Blocki

39

Multi-Wordline Sensing (MWS): Bitwise AND

• Intra-Block MWS: Simultaneously activates
multiple WLs in the same block
• Bitwise AND of the stored data in the WLs

BL1 BL2 BL3 BL4

0

0

1

0

…

0

1

0

0
…

1

0

1

1

…

1

1

1

0

…

…

…

…

…

WL1

WL2

WL3

WL4

Blocki

Non-Target Cells:
Operate

as resistors

40

Multi-Wordline Sensing (MWS): Bitwise AND

• Intra-Block MWS: Simultaneously activates
multiple WLs in the same block
• Bitwise AND of the stored data in the WLs

BL1 BL2 BL3 BL4

0

0

1

0

…

0

1

0

0
…

1

0

1

1

…

1

1

1

0

…

…

…

…

…

WL1

WL2

WL3

WL4

Non-Target Cells:
Operate

as resistors

Target Cells:
Operate

as resistors (1)
or open switches (0)

0 0 0 1Result:

41

Multi-Wordline Sensing (MWS): Bitwise AND

• Intra-Block MWS: Simultaneously activates
multiple WLs in the same block
• Bitwise AND of the stored data in the WLs

BL1 BL2 BL3 BL4

0

0

1

0

…

0

1

0

0
…

1

0

1

1

…

1

1

1

0

…

…

…

…

…

WL1

WL2

WL3

WL4

Non-Target Cell:
Operate

as a resistance

Target Cell:
Operate

as a resistance (1)
or an open switch (0)

0 0 0 1Result:

A bitline reads as ‘1’ only when all the target cells store ‘1’
→ Equivalent to the bitwise AND of all the target cells

42

Multi-Wordline Sensing (MWS): Bitwise AND

• Intra-Block MWS: Simultaneously activates
multiple WLs in the same block
• Bitwise AND of the stored data in the WLs

BL1 BL2 BL3 BL4

0

0

1

0

…

0

1

0

0
…

1

0

1

1

…

1

1

1

0

…

…

…

…

…

WL1

WL2

WL3

WL4

Target Cell:
Operate

as a resistance (1)
or an open switch (0)

0 0 0 0Result:

43

Multi-Wordline Sensing (MWS): Bitwise AND

• Intra-Block MWS: Simultaneously activates
multiple WLs in the same block
• Bitwise AND of the stored data in the WLs

BL1 BL2 BL3 BL4

0

0

1

0

…

0

1

0

0
…

1

0

1

1

…

1

1

1

0

…

…

…

…

…

WL1

WL2

WL3

WL4

Target Cell:
Operate

as a resistance (1)
or an open switch (0)

0 0 0 0Result:

A bitline reads as ‘1’ only when all the target cells store ‘1’
→ Equivalent to the bitwise AND of all the target cells

44

Multi-Wordline Sensing (MWS): Bitwise AND

• Intra-Block MWS: Simultaneously activates
multiple WLs in the same block
• Bitwise AND of the stored data in the WLs

BL1 BL2 BL3 BL4

0

0

1

0

…

0

1

0

0
…

1

0

1

1

…

1

1

1

1

…

…

…

…

…

WL1

WL2

WL3

WL4

Target Cell:
Operate

as a resistance (1)
or an open switch (0)

0 0 0 1Result:

A bitline reads as ‘1’ only when all the target cells store ‘1’
→ Equivalent to the bitwise AND of all the target cells

Flash-Cosmos (Intra-Block MWS) enables
bitwise AND of multiple pages in the same block

via a single sensing operation

45

• Inter-Block MWS: Simultaneously activates multiple
WLs in different blocks
• Bitwise OR of the stored data in the WLs

Multi-Wordline Sensing (MWS): Bitwise OR

BL1 BL2 BL3 BL4

… … … …

1 0 1 0 …WLx in Block1

1 1 0 0 …WLy in Blocki

… … … …

46

• Inter-Block MWS: Simultaneously activates multiple
WLs in different blocks
• Bitwise OR of the stored data in the WLs

Multi-Wordline Sensing (MWS): Bitwise OR

BL1 BL2 BL3 BL4

… … … …

1 0 1 0 …WLx in Block1

… … … …

1 1 0 0 …WLy in Blocki

1 1 1 0Result:

47

• Inter-Block MWS: Simultaneously activates multiple
WLs in different blocks
• Bitwise OR of the stored data in the WLs

Multi-Wordline Sensing (MWS): Bitwise OR

BL1 BL2 BL3 BL4

… … … …

1 0 1 0 …WLx in Block1

… … … …

1 1 0 0 …WLy in Blocki

1 1 1 0Result:

A bitline reads as ‘0’ only when all the target cells store ‘0’
→ Equivalent to the bitwise OR of all the target cells

48

• Inter-Block MWS: Simultaneously activates multiple
WLs in different blocks
• Bitwise OR of the stored data in the WLs

Multi-Wordline Sensing (MWS): Bitwise OR

BL1 BL2 BL3 BL4

… … … …

1 0 1 0 …WLx in Block1

… … … …

1 1 0 0 …WLy in Blocki

1 1 1 1Result:

1 0 0 1 …WLy in Blocki

49

• Inter-Block MWS: Simultaneously activates multiple
WLs in different blocks
• Bitwise OR of the stored data in the WLs

Multi-Wordline Sensing (MWS): Bitwise OR

BL1 BL2 BL3 BL4

… … … …

1 0 1 0 …WLx in Block1

… … … …

1 1 0 0 …WLy in Blocki

1 1 1 1Result:

1 0 0 1 …WLy in Blocki

A bitline reads as ‘0’ only when all the target cells store ‘0’
→ Equivalent to the bitwise OR of all the target cells

50

• Inter-Block MWS: Simultaneously activates multiple
WLs in different blocks
• Bitwise OR of the stored data in the WLs

Multi-Wordline Sensing (MWS): Bitwise OR

BL1 BL2 BL3 BL4

… … … …

1 0 1 0 …WLx in Block1

… … … …

1 1 0 0 …WLy in Blocki

1 1 1 1Result:

1 0 0 1 …WLy in Blocki

Flash-Cosmos (Inter-Block MWS) enables
bitwise OR of multiple pages in different blocks

via a single sensing operation

51

Supporting Other Bitwise Operations

Exploit Inverse Read[1] which is supported in
modern NAND flash memory

Bitwise NOT

Exploit MWS + Inverse Read

Bitwise NAND/ NOR

Use XOR between sensing and cache latches [2]
which is also supported in NAND flash memory

Bitwise XOR/XNOR

[1] Lee+, “High-Performance 1-Gb-NAND Flash Memory with 0.12-µm Technology,” JSSC, 2002
[2] Kim+, “A 512-Gb 3-b/Cell 64-Stacked WL 3-D-NAND Flash Memory,” JSSC, 2018

52

Flash-Cosmos: Overview

Increases the reliability of in-flash
bulk bitwise operations by using

Enhanced SLC-mode Programming (ESP)

Enables in-flash bulk bitwise operations on
multiple operands with a

single sensing operation using
Multi-Wordline Sensing (MWS)

53

Enhanced SLC-Mode Programming (ESP)

• SLC-mode programming provides a large voltage margin
between the erased and programmed states

• Based on our real device characterization, we observe that
SLC-mode programming is still highly error-prone without the
use of ECC and data-randomization

#
 o

f
ce

ll
s

Erased
0

Prog.
1

Threshold
voltage

Voltage margin in
SLC-mode

54

Enhanced SLC-Mode Programming (ESP)

• ESP further increases the voltage margin between the erased
and programmed states

• A wider voltage margin between the two states improves
reliability by making the cells less vulnerable to errors

0
Prog.

ESP

Increased voltage

margin in ESP

#
 o

f
ce

ll
s

Erased
0

Prog.
1

Threshold
voltage

55

Enhanced SLC-Mode Programming (ESP)

• ESP increases the voltage margin between the erased and
programmed states

• A wider voltage margin between the two states improves
reliability during data sensing by making the cells less
vulnerable to errors

0
Prog.

ESP

Increased voltage

margin in ESP

#
 o

f
ce

ll
s

Erased
0

Prog.
1

Threshold
voltage

ESP improves the reliability of in-flash computation

without the use of ECC or

data-randomization techniques

56

Enhanced SLC-Mode Programming (ESP)

• ESP increases the voltage margin between the erased and
programmed states

• A wider voltage margin between the two states improves
reliability during data sensing by making the cells less
vulnerable to errors

0
Prog.

ESP

Increased voltage

margin in ESP

#
 o

f
ce

ll
s

Erased
0

Prog.
1

Threshold
voltage

ESP can improve the reliability of prior

in-flash processing techniques as well

57

Talk Outline

Motivation

Background

Flash-Cosmos

Evaluation

Summary

58

Evaluation Methodology

• We evaluate Flash-Cosmos using

160 real state-of-the-art 3D NAND flash chips

59

Real Device Characterization

• We validate the feasibility, performance, and reliability
of Flash-Cosmos

• 160 48-layer 3D TLC NAND flash chips
• 3,686,400 tested wordlines

• Under worst-case operating conditions
• 1-year retention time at 10K P/E cycles

• Worst-case data patterns

60

Results: Real-Device Characterization

Both intra- and inter-block MWS operations
require no changes to the cell array

of commodity NAND flash chips

Both MWS operations can activate multiple WLs
(intra: up to 48, inter: up to 4) at the same time
with small increase in sensing latency (< 10%)

ESP significantly improves
the reliability of computation results

(no observed bit error in the tested flash cells)

61

Evaluation Methodology

• We evaluate Flash-Cosmos using

160 real state-of-the-art 3D NAND flash chips

Three real-world applications that perform

bulk bitwise operations

62

Evaluation with real-world workloads

• Simulation
• MQSim [Tavakkol+, FAST’18] to model the performance of

Flash-Cosmos and the baselines

• Workloads
• Three real-world applications that heavily rely on bulk bitwise operations

• Bitmap Indices (BMI): Bitwise AND of up to ~1,000 operands

• Image Segmentation (IMS): Bitwise AND of 3 operands

• k-clique star listing (KCS): Bitwise OR of up to 32 operands

• Baselines
• Outside-Storage Processing (OSP): a multi-core CPU (Intel i7 11700K)

• In-Storage Processing (ISP): an in-storage hardware accelerator

• ParaBit [Gao+, MICRO’21]: the state-of-the-art in-flash processing (IFP)
mechanism

63

S
p

e
e

d
u

p
 o

v
e

r
O

S
P

BMI IMS KCS AVG

102

1

101

103

ISP ParaBit Flash-Cosmos

Results: Performance & Energy

Flash-Cosmos provides significant performance &
energy benefits over all the baselines

The larger the number of operands,
the higher the performance & energy benefits

BMI IMS KCS AVG
1

104

103

102

101

E
n

e
rg

y
 b

e
n

e
fi

t
o

v
e

r
O

S
P

150×

14×

2.5× 20×

2×

70×

12×

1.6× 10×

2×25× 3.5× 3.3×13.4×

64

More in the Paper

https://arxiv.org/abs/2209.05566.pdf

https://arxiv.org/abs/2209.05566.pdf
https://arxiv.org/abs/2209.05566.pdf

65

Talk Outline

Motivation

Background

Flash-Cosmos

Evaluation of Flash-Cosmos and Key Results

Summary

66

Flash-Cosmos: Summary

66

First work to enable multi-operand

bulk bitwise operations with a single sensing operation

and high reliability

Improves performance by 3.5x/25x/32x on average

over ParaBit/ISP/OSP across the workloads

Improves energy efficiency by 3.3x/13.4x/95x on

average over ParaBit/ISP/OSP across the workloads

Low-cost & requires no changes to flash cell arrays

More on Flash-Cosmos

• Jisung Park, Roknoddin Azizi, Geraldo F. Oliveira, Mohammad Sadrosadati, Rakesh
Nadig, David Novo, Juan Gómez-Luna, Myungsuk Kim, and Onur Mutlu,
"Flash-Cosmos: In-Flash Bulk Bitwise Operations Using Inherent
Computation Capability of NAND Flash Memory"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO),
Chicago, IL, USA, October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Lecture Video (44 minutes)]
[arXiv version]

67https://arxiv.org/pdf/2209.05566.pdf

https://arxiv.org/pdf/2209.05566.pdf
https://arxiv.org/pdf/2209.05566.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_SSD-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_SSD-lecture-slides.pdf
https://www.youtube.com/watch?v=ioPERTy7bz4
https://arxiv.org/abs/2209.05566
https://arxiv.org/pdf/2209.05566.pdf

CIPHERMATCH: Accelerating Secure String Matching

• Mayank Kabra, Rakesh Nadig, Harshita Gupta, Rahul Bera, Manos Frouzakis,
Vamanan Arulchelvan, Yu Liang, Haiyu Mao, Mohammad Sadrosadati and Onur Mutlu,
”CIPHERMATCH: Accelerating Homomorphic Encryption-Based String
Matching via Memory-Efficient Data Packing and In-Flash Processing"
Proceedings of the 30th International Conference on Architectural Support for
Programming Languages and Operating System (ASPLOS), Rotterdam, Netherlands
April 2025.
[arXiv version]

68https://arxiv.org/pdf/2503.08968.pdf

https://arxiv.org/pdf/2209.05566.pdf
https://arxiv.org/pdf/2209.05566.pdf
https://www.asplos-conference.org/asplos2025/
https://www.asplos-conference.org/asplos2025/
https://arxiv.org/abs/2503.08968
https://arxiv.org/pdf/2503.08968.pdf

Upcoming Presentation at ISCA 2025

To be presented at ISCA 2025

Presenter – Andreas Kosmas Kakolyris

Visit us in Session 6C: Memory Acceleration

Location: Ono Auditorium

69

Storage-Centric Computing:

Two Types

1. Processing near Storage

2. Processing using Storage

70

In-Storage Genomic Data Filtering [ASPLOS 2022]

◼ Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing
System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March
2022.
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]

71

https://github.com/CMU-SAFARI/GenStore

https://arxiv.org/pdf/2202.10400

https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8
https://github.com/CMU-SAFARI/GenStore
https://arxiv.org/pdf/2202.10400

GenStore:
A High-Performance In-Storage Processing System

for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun,

Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr,

Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu

Genome Sequence Analysis
◼ Genome sequence analysis is critical for many applications

❑Personalized medicine

❑Outbreak tracing

❑Evolutionary studies

• Genome sequencing machines extract smaller fragments of the original
DNA sequence, known as reads

AAGCTTCCATGG

AAATGGGCTTTC

GCCCAAATGGTT

GCTTCCAGAATG

Genome Sequence Analysis
◼Read mapping: first key step in genome sequence analysis

…GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG…

- Aligns reads to potential matching locations in the reference genome

Reference Genome

Differences Differences

- For each matching location, the alignment step finds the degree of
similarity (alignment score)

AAGCTTCCATGG
GCCCAAATGGTT

GCTTCCAGAATG

AAATGGGCTTTC
• Calculating the alignment score requires computationally-expensive

approximate string matching (ASM) to account for differences between
reads and the reference genome due to:

- Sequencing errors

- Genetic variation

Genome Sequence Analysis

Computation overhead

Data movement overhead

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Alignment

Data Movement from Storage

Storage
System

Heuristics Accelerators Filters

 Computation overhead

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory
Storage
System

Data movement overhead

✓

Accelerating Genome Sequence Analysis

Storage
System

Key Idea

Non-matching reads
Do not have potential matching locations and can skip alignment

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

Exactly-matching reads
Do not need expensive approximate string matching during alignment

Challenges

Read mapping workloads can exhibit different behavior

There are limited hardware resources
in the storage system

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory
Storage
System

GenStore

Computation overhead

Data movement overhead

GenStore provides significant speedup (1.4x - 33.6x) and
energy reduction (3.9x – 29.2x) at low cost

Filter reads that do not require alignment
inside the storage system

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

GenStore-Enabled
Storage
System

✓
✓

More on GenStore

◼ Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing
System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March
2022.
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]

80

https://github.com/CMU-SAFARI/GenStore

https://arxiv.org/pdf/2202.10400

https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8
https://github.com/CMU-SAFARI/GenStore
https://arxiv.org/pdf/2202.10400

In-Storage Metagenomics [ISCA 2024]

◼ Nika Mansouri Ghiasi, Mohammad Sadrosadati, Harun Mustafa, Arvid Gollwitzer,
Can Firtina, Julien Eudine, Haiyu Mao, Joel Lindegger, Meryem Banu Cavlak,
Mohammed Alser, Jisung Park, and Onur Mutlu,
"MegIS: High-Performance and Low-Cost Metagenomic Analysis with
In-Storage Processing"
Proceedings of the 51st Annual International Symposium on Computer
Architecture (ISCA), Buenos Aires, Argentina, July 2024.
[Slides (pptx) (pdf)]
[arXiv version]

81

https://github.com/CMU-SAFARI/MegIS

https://arxiv.org/pdf/2406.19113

https://arxiv.org/pdf/2406.19113
https://arxiv.org/pdf/2406.19113
https://iscaconf.org/isca2024/
https://iscaconf.org/isca2024/
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pptx
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pdf
https://arxiv.org/abs/2406.19113
https://github.com/CMU-SAFARI/MegIS
https://arxiv.org/pdf/2406.19113

82

MegIS: Metagenomics In-Storage

• First in-storage system for end-to-end metagenomic analysis

• Idea: Cooperative in-storage processing for metagenomic analysis

- Hardware/software co-design between the storage system and host system

H
o

st
 S

y
st

e
m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

CntrlCntrl

Channel#NChannel#1

83

MegIS’s Steps

A large database
containing information

on many species

Metagenomic sample
with species that

are not known in advance

Preparation
of Input Queries Q

u
er

y
K

-m
er

s

…

GCTCA

CTCAT

TCATG

Presence/Absence
Identification

V. cholerae

E. coli

SARS-CoV-2

Abundance
Estimation

Step 1

Step 2

Step 3

84

MegIS Hardware-Software Co-Design
H

o
st

 S
y

st
e

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

CntrlCntrl

Channel#NChannel#1

85

MegIS Hardware-Software Co-Design
H

o
st

 S
y

st
e

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

CntrlCntrl

Channel#NChannel#1

Step 1

Task partitioning and mapping
• Each step executes

in its most suitable system

Step 2 Step 3

86

MegIS Hardware-Software Co-Design
H

o
st

 S
y

st
e

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

CntrlCntrl

Channel#NChannel#1

Data/computation flow coordination
• Reduce communication overhead

• Reduce #writes to flash chips

Step 1 Step 2 Step 3

Task partitioning and mapping
• Each step executes

in its most suitable system

87

MegIS Hardware-Software Co-Design
H

o
st

 S
y

st
e

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

CntrlCntrl

Channel#NChannel#1

Storage-aware algorithms
• Enable efficient

access patterns to the SSD

Step 1 Step 2 Step 3

Data/computation flow coordination
• Reduce communication overhead

• Reduce #writes to flash chips

Task partitioning and mapping
• Each step executes

in its most suitable system

88

MegIS Hardware-Software Co-Design
H

o
st

 S
y

st
e

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

ACCACC

CntrlCntrl

Channel#NChannel#1

Lightweight in-storage accelerators
• Minimize SRAM/DRAM buffer spaces

needed inside the SSD

Step 1 Step 2 Step 3

Storage-aware algorithms
• Enable efficient

access patterns to the SSD

Data/computation flow coordination
• Reduce communication overhead

• Reduce #writes to flash chips

Task partitioning and mapping
• Each step executes

in its most suitable system

89

MegIS Hardware-Software Co-Design
H

o
st

 S
y

st
e

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

MegIS
FTL

MegIS
Metadata

CntrlCntrl

Channel#NChannel#1

Data mapping scheme and Flash Translation Layer (FTL)
• Specialize to the characteristics of metagenomic analysis

• Leverage the SSD’s full internal bandwidth

Step 1 Step 2 Step 3

Storage-aware algorithms
• Enable efficient

access patterns to the SSD

Lightweight in-storage accelerators
• Minimize SRAM/DRAM buffer spaces

needed inside the SSD

Data/computation flow coordination
• Reduce communication overhead

• Reduce #writes to flash chips

Task partitioning and mapping
• Each step executes

in its most suitable system

ACCACC

90

Evaluation: Methodology Overview
Performance, Energy, and Power Analysis

Baseline Comparison Points

• Performance-optimized software, Kraken2 [Genome Biology’19]

• Accuracy-optimized software, Metalign [Genome Biology’20]

• PIM hardware-accelerated tool (using processing-in-memory), Sieve [ISCA’21]

SSD Configurations

• SSD-C: with SATA3 interface (0.5 GB/s sequential read bandwidth)

• SSD-P: with PCIe Gen4 interface (7 GB/s sequential read bandwidth)

Hardware Components

• Synthesized Verilog model for the in-storage accelerators

• MQSim [Tavakkol+, FAST’18] for SSD’s internal operations

• Ramulator [Kim+, CAL’15] for SSD’s internal DRAM

Software Components

Measure on a real system:

• AMD® EPYC® CPU with
128 physical cores

• 1-TB DRAM

91

Evaluation: Speedup over the Software Baselines

MegIS provides significant speedup over both

Performance-Optimized and Accuracy-Optimized baselines

S
p

e
e

d
u

p

Performance-Optimized MegISAccuracy-Optimized

Sample Genetic Diversity

0
1
2
3
4
5
6
7

Low Med High GMean

SSD-C

5
.8

x
1

4
.9

x

0
1
2
3
4
5
6
7

Low Med High GMean

SSD-C

5
.8

x

Sample Genetic Diversity

1
4

.9
x

92

Evaluation: Speedup over the Software Baselines

MegIS provides significant speedup over both

Performance-Optimized and Accuracy-Optimized baselines

S
p

e
e

d
u

p

Performance-Optimized MegISAccuracy-Optimized

Sample Genetic Diversity

0
1
2
3
4
5
6
7

Low Med High GMean

SSD-P

4
.0

x

1
2

.1
x

MegIS improves performance on both

cost-optimized and performance-optimized SSDs

93

4
.9

x
0

2

4

6

Low Med High GMean

0

1

2

3

Low Med High GMean

S
p

e
e

d
u

p

SSD-C

PIM MegIS

1
.9

x

SSD-P

Sample Genetic Diversity Sample Genetic Diversity

PIM MegIS

MegIS provides significant speedup over the PIM baseline

Evaluation: Speedup over the PIM Baseline

94

• On average across different input sets and SSDs

0

1

2

3

4

5

6

Perf-Opt Acc-Opt PIM MegISG
e

o
M

e
a

n
 E

n
e

rg
y

 R
e

d
u

ct
io

n
(H

ig
h

e
r

is
 B

e
tt

e
r)

MegIS provides significant energy reduction over

the Performance-Optimized, Accuracy-Optimized, and PIM baselines

5
.4

x

1
5

.2
x

1
.9

x

Evaluation: Reduction in Energy Consumption

95

Evaluation: Accuracy, Area, and Power

Accuracy

• Same accuracy as the accuracy-optimized baseline

• Significantly higher accuracy than the performance-optimized and
PIM baselines

- 4.6 – 5.2× higher F1 scores

- 3 – 24% lower L1 norm error

Area and Power

Total for an 8-channel SSD:

• Area: 0.04 mm2 (Only 1.7% of the area of three ARM Cortex R4 cores
in an SSD controller)

• Power: 7.658 mW

96

Evaluation: System Cost-Efficiency
G

M
e

a
n

 S
p

e
e

d
u

p

0

5

10

15

20

Perf-Opt ($) Acc-Opt ($) Perf-Opt($$$) Acc-Opt ($$$) MegIS ($)

• Cost-optimized system ($): With SSD-C and 64-GB DRAM

• Performance-optimized system ($$$): With SSD-P and 1-TB DRAM

MegIS outperforms the baselines

even when running on a much less costly system

($) ($) ($$$) ($$$) ($)

7
.2

x

2
.4

x

97

Evaluation: System Cost-Efficiency
G

M
e

a
n

 S
p

e
e

d
u

p

0

5

10

15

20

Perf-Opt ($) Acc-Opt ($) Perf-Opt($$$) Acc-Opt ($$$) MegIS ($)

• Cost-optimized system ($): With SSD-C and 64-GB DRAM

• Performance-optimized system ($$$): With SSD-P and 1-TB DRAM

MegIS outperforms the baselines

even when running on a much less costly system

($) ($) ($$$) ($$$) ($)

7
.2

x

2
.4

xMegIS improves system cost-efficiency

and makes metagenomics more accessible

for wider adoption

98

More in the Paper

•MegIS’s performance when running in-storage processing
operations on the cores existing in the SSD controller

•MegIS’s performance when using the same accelerators
outside SSD

• Sensitivity analysis with varying

- Database sizes

- Memory capacities

- #SSDs

- #Channels

- #Samples

•MegIS’s performance for abundance estimation

99

More in the Paper

• MegIS’s performance with the cores in the SSD controller

• MegIS’s performance outside SSD

• Sensitivity analysis with varying

- Database sizes

- Memory capacities

- #SSDs

- #Channels

- #Samples

• MegIS’s performance for abundance estimation
https://arxiv.org/abs/2406.19113

https://arxiv.org/abs/2406.19113

100

Metagenomic analysis suffers from
significant storage I/O data movement overhead

MegIS: Summary

The first in-storage processing system for end-to-end metagenomic analysis

Leverages and orchestrates processing inside and outside the storage system

MegIS

Improves performance
2.7×–37.2× over performance-optimized software

6.9×–100.2× over accuracy-optimized software

1.5×–5.1× over hardware-accelerated PIM baseline

Low area overhead
1.7% of the three cores

in an SSD controller

Reduces energy consumption
5.4× over performance-optimized software

15.2× over accuracy-optimized software

1.9× over hardware-accelerated PIM baseline

High accuracy
Same as accuracy-optimized

4.8× higher F1 scores

 over performance-optimized/PIM

More on MegIS

◼ Nika Mansouri Ghiasi, Mohammad Sadrosadati, Harun Mustafa, Arvid Gollwitzer,
Can Firtina, Julien Eudine, Haiyu Mao, Joel Lindegger, Meryem Banu Cavlak,
Mohammed Alser, Jisung Park, and Onur Mutlu,
"MegIS: High-Performance and Low-Cost Metagenomic Analysis with
In-Storage Processing"
Proceedings of the 51st Annual International Symposium on Computer
Architecture (ISCA), Buenos Aires, Argentina, July 2024.
[Slides (pptx) (pdf)]
[arXiv version]

101

https://github.com/CMU-SAFARI/MegIS

https://arxiv.org/pdf/2406.19113

https://arxiv.org/pdf/2406.19113
https://arxiv.org/pdf/2406.19113
https://iscaconf.org/isca2024/
https://iscaconf.org/isca2024/
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pptx
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pdf
https://arxiv.org/abs/2406.19113
https://github.com/CMU-SAFARI/MegIS
https://arxiv.org/pdf/2406.19113

Storage-Centric Computing:

Two Types

1. Processing near Storage

2. Processing using Storage

102

Summary and Future Outlook

Our Vision on Storage-Centric Computing

◼ Entire storage system as a specialized-enough accelerator

❑ Special-purpose accelerators

❑ General-purpose computation

❑ Multiple different memory technologies

◼ Processing-using-Flash/DRAM

◼ Processing-near-Flash/DRAM

◼ Storage system becomes a first-class citizen where
computation takes place when it makes

❑ greatly improving performance, energy efficiency, system
cost, sustainability, …

104

Storage-Centric Computing: Some Challenges

◼ Reliability of computation

◼ Limited endurance

◼ Higher latencies of flash memories

◼ Small internal DRAMs

◼ Limited power and area budgets

◼ Programming framework

◼ Security guarantees

◼ …

105

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

We can get there step by step

3rd Workshop on

Memory-Centric Computing:

Storage-Centric Computing

Mohammad Sadrosadati

m.sadr89@gmail.com

ISCA 2025

21 June 2025

mailto:m.sadr89@gmail.com

	Slide 1: 3rd Workshop on Memory-Centric Computing: Storage-Centric Computing
	Slide 2: Goal: Processing Inside Memory/Storage
	Slide 3: Processing in Memory: Two Types
	Slide 4: Storage-Centric Computing: Two Types
	Slide 5: Flash-Cosmos: In-Flash Bulk Bitwise Execution
	Slide 6: Talk Outline
	Slide 7: Bulk Bitwise Operations
	Slide 8: Bulk Bitwise Operations
	Slide 9: Data-Movement Bottleneck
	Slide 10: NDP for Bulk Bitwise Operations
	Slide 11: In-Storage Processing (ISP)
	Slide 12: In-Storage Processing (ISP)
	Slide 13: In-Flash Processing (IFP)
	Slide 14: In-Flash Processing (IFP)
	Slide 15: Data Sensing Bottleneck in IFP
	Slide 16: Data Sensing Bottleneck in IFP
	Slide 17: Data Sensing Bottleneck in IFP
	Slide 18: Data Sensing Bottleneck in IFP
	Slide 19: Data Sensing Bottleneck in IFP
	Slide 20: Reliability Issues in IFP
	Slide 21: Reliability Issues in IFP
	Slide 22: Reliability Issues in IFP
	Slide 23: Reliability Issues in IFP
	Slide 24: Our Goal
	Slide 25: Our Proposal
	Slide 26: Talk Outline
	Slide 27: NAND Flash Basics: A Flash Cell
	Slide 28: NAND Flash Basics: A NAND String
	Slide 29: NAND Flash Basics: Read Mechanism
	Slide 30: NAND Flash Basics: Read Mechanism
	Slide 31: NAND Flash Basics: Read Mechanism
	Slide 32: NAND Flash Basics: A NAND Flash Block
	Slide 33: NAND Flash Basics: Block Organization
	Slide 34: Similarity to Digital Logic Gates
	Slide 35: Similarity to Digital Logic Gates
	Slide 36: Talk Outline
	Slide 37: Flash-Cosmos: Overview
	Slide 38: Multi-Wordline Sensing (MWS): Bitwise AND
	Slide 39: Multi-Wordline Sensing (MWS): Bitwise AND
	Slide 40: Multi-Wordline Sensing (MWS): Bitwise AND
	Slide 41: Multi-Wordline Sensing (MWS): Bitwise AND
	Slide 42: Multi-Wordline Sensing (MWS): Bitwise AND
	Slide 43: Multi-Wordline Sensing (MWS): Bitwise AND
	Slide 44: Multi-Wordline Sensing (MWS): Bitwise AND
	Slide 45: Multi-Wordline Sensing (MWS): Bitwise OR
	Slide 46: Multi-Wordline Sensing (MWS): Bitwise OR
	Slide 47: Multi-Wordline Sensing (MWS): Bitwise OR
	Slide 48: Multi-Wordline Sensing (MWS): Bitwise OR
	Slide 49: Multi-Wordline Sensing (MWS): Bitwise OR
	Slide 50: Multi-Wordline Sensing (MWS): Bitwise OR
	Slide 51: Supporting Other Bitwise Operations
	Slide 52: Flash-Cosmos: Overview
	Slide 53: Enhanced SLC-Mode Programming (ESP)
	Slide 54: Enhanced SLC-Mode Programming (ESP)
	Slide 55: Enhanced SLC-Mode Programming (ESP)
	Slide 56: Enhanced SLC-Mode Programming (ESP)
	Slide 57: Talk Outline
	Slide 58: Evaluation Methodology
	Slide 59: Real Device Characterization
	Slide 60: Results: Real-Device Characterization
	Slide 61: Evaluation Methodology
	Slide 62: Evaluation with real-world workloads
	Slide 63: Results: Performance & Energy
	Slide 64: More in the Paper
	Slide 65: Talk Outline
	Slide 66: Flash-Cosmos: Summary
	Slide 67: More on Flash-Cosmos
	Slide 68: CIPHERMATCH: Accelerating Secure String Matching
	Slide 69: Upcoming Presentation at ISCA 2025
	Slide 70: Storage-Centric Computing: Two Types
	Slide 71: In-Storage Genomic Data Filtering [ASPLOS 2022]
	Slide 72: GenStore: A High-Performance In-Storage Processing System for Genome Sequence Analysis
	Slide 73: Genome Sequence Analysis
	Slide 74: Genome Sequence Analysis
	Slide 75: Genome Sequence Analysis
	Slide 76: Accelerating Genome Sequence Analysis
	Slide 77: Key Idea
	Slide 78: Challenges
	Slide 79: GenStore
	Slide 80: More on GenStore
	Slide 81: In-Storage Metagenomics [ISCA 2024]
	Slide 82: MegIS: Metagenomics In-Storage
	Slide 83: MegIS’s Steps
	Slide 84: MegIS Hardware-Software Co-Design
	Slide 85: MegIS Hardware-Software Co-Design
	Slide 86: MegIS Hardware-Software Co-Design
	Slide 87: MegIS Hardware-Software Co-Design
	Slide 88: MegIS Hardware-Software Co-Design
	Slide 89: MegIS Hardware-Software Co-Design
	Slide 90: Evaluation: Methodology Overview
	Slide 91: Evaluation: Speedup over the Software Baselines
	Slide 92: Evaluation: Speedup over the Software Baselines
	Slide 93: Evaluation: Speedup over the PIM Baseline
	Slide 94: Evaluation: Reduction in Energy Consumption
	Slide 95: Evaluation: Accuracy, Area, and Power
	Slide 96: Evaluation: System Cost-Efficiency
	Slide 97: Evaluation: System Cost-Efficiency
	Slide 98: More in the Paper
	Slide 99: More in the Paper
	Slide 100: MegIS: Summary
	Slide 101: More on MegIS
	Slide 102: Storage-Centric Computing: Two Types
	Slide 103: Summary and Future Outlook
	Slide 104: Our Vision on Storage-Centric Computing
	Slide 105: Storage-Centric Computing: Some Challenges
	Slide 106: 3rd Workshop on Memory-Centric Computing: Storage-Centric Computing

