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Goal: Processing Inside Memory/Storage

◼ Many questions … How do we design the:

❑ compute-capable memory & controllers?

❑ processors & communication units?

❑ software & hardware interfaces?

❑ system software, compilers, languages?

❑ algorithms & theoretical foundations?
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Processing in Memory:

Two Types

1. Processing near Memory

2. Processing using Memory
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Storage-Centric Computing:

Two Types

1. Processing near Storage

2. Processing using Storage
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Flash-Cosmos: In-Flash Bulk Bitwise Execution

• Jisung Park, Roknoddin Azizi, Geraldo F. Oliveira, Mohammad Sadrosadati, Rakesh 
Nadig, David Novo, Juan Gómez-Luna, Myungsuk Kim, and Onur Mutlu,
"Flash-Cosmos: In-Flash Bulk Bitwise Operations Using Inherent 
Computation Capability of NAND Flash Memory"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), 
Chicago, IL, USA, October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Lecture Video (44 minutes)]
[arXiv version]

5https://arxiv.org/pdf/2209.05566.pdf 

https://arxiv.org/pdf/2209.05566.pdf
https://arxiv.org/pdf/2209.05566.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_SSD-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_SSD-lecture-slides.pdf
https://www.youtube.com/watch?v=ioPERTy7bz4
https://arxiv.org/abs/2209.05566
https://arxiv.org/pdf/2209.05566.pdf
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Talk Outline

Motivation

Background

Flash-Cosmos

Evaluation

Summary
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Bulk Bitwise Operations

Bulk 
Bitwise 

Operations

Web Search

Cryptography

Set Operations
Genome Analysis

Databases

Graph Processing

Hyper-dimensional
Computing

...
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Bulk Bitwise Operations

Bulk 
Bitwise 

Operations

Web Search

Cryptography

Set Operations
Genome Analysis

Databases
(database queries 

and indexing)

Graph Processing

Hyper-dimensional
Computing

...

Data movement between compute units 

and the memory hierarchy significantly affects 

the performance of bulk bitwise operations
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Data-Movement Bottleneck

• Conventional systems perform outside-storage 
processing (OSP) after moving the data to host CPU 
through the memory hierarchy

Host 
Processor

(CPU, GPU)

Main
Memory

Write

Read

Storage
Write

Read

Memory Bandwidth 
tens to hundreds of GB/s

Storage I/O Bandwidth
 ~ 8 GB/s

Data Movement 
Bottleneck

The external I/O bandwidth of storage is the 
main bottleneck for data movement in OSP

Computation
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NDP for Bulk Bitwise Operations

Near-Data 
Processing

Cache
(e.g., Compute Cache1)

DRAM-based
main memory

 (e.g., Ambit2)

In-Storage
(e.g., Biscuit4)

NVM-based
main memory
(e.g., Pinatubo3)

[1] Aga+, “Compute Caches," HPCA, 2017

[2] Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology,” MICRO, 2017

[3] Li+, “Pinatubo: A Processing-in-Memory Architecture for Bulk Bitwise Operations in Emerging Non-Volatile Memories,” DAC, 2016 

[4] Gu+, “Biscuit: A Framework for Near-Data Processing of Big Data Workloads,” ISCA, 2016

[5] Gao+, “ParaBit: Processing Parallel Bitwise Operations in NAND Flash Memory Based SSDs,” MICRO, 2021

In-Flash
(e.g., ParaBit5)

...
Our focus

Large data sets
that do not fit 

in main memory
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In-Storage Processing (ISP)

• ISP performs computation using an in-storage 
computation unit

• ISP reduces external data movement by transferring 
only the computation results to the host 

Host 
Processor

(CPU, GPU)

Main
Memory

Read

Memory Bandwidth 
tens to hundreds of GB/s

Storage External 
I/O Bandwidth

 ~ 8 GB/s

In-Storage 
Computation 

Unit

⋯NAND
Chip #1

NAND
Chip #4

⋯NAND
Chip #1

NAND
Chip #4

⋯

Storage

Read

Write

Read

Write
Write

Storage Internal 
I/O Bandwidth

 ~ 9.6 GB/s

Data Movement 
Bottleneck

Computation
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In-Storage Processing (ISP)

• ISP performs computation using the in-storage 
computation unit

• ISP reduces external data movement by transferring 
only the computation results to the host 

Processor
(CPU, GPU)

Main
Memory

Read

Memory Bandwidth 
tens to hundreds of GB/s

Storage External 
I/O Bandwidth

 ~ 8 GB/s

In-Storage 
Computation 

Unit

⋯NAND
Chip #1

NAND
Chip #4

⋯NAND
Chip #1

NAND
Chip #4

⋯

Storage

Read

Write

Read

Write
Write

Storage Internal 
I/O Bandwidth

 ~ 9.6 GB/s

Data Movement 
Bottleneck

Storage internal I/O bandwidth is the main bottleneck 

for data movement in ISP
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In-Flash Processing (IFP)

• IFP performs computation within the flash chips as the 
data operands are being read serially

• IFP reduces the internal data movement bottleneck in 
storage by transferring only the computation results to 
the in-storage computation unit

Host 
Processor

(CPU, GPU)

Main
Memory

Read

Memory Bandwidth 
tens to hundreds of GB/s

Storage External 
I/O Bandwidth

 ~ 8 GB/s

In-Storage 
Computation 

Unit

⋯NAND
Chip #1

NAND
Chip #4

⋯NAND
Chip #1

NAND
Chip #4

⋯

Storage

Read

Write

Read

Write

Storage Internal 
I/O Bandwidth

 ~ 9.6 GB/s

Data Sensing 
Bottleneck

Computation

Write
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In-Flash Processing (IFP)

• IFP performs computation within the flash chips as the 
data operands are being read serially

• IFP reduces the internal data movement bottleneck in 
storage by transferring only the computation results to 
the in-storage computation unit

Host 
Processor

(CPU, GPU)

Main
Memory

Read

Memory Bandwidth 
tens to hundreds of GB/s

Storage External 
I/O Bandwidth

 ~ 8 GB/s

In-Storage 
Computation 

Unit

⋯NAND
Chip #1

NAND
Chip #4

⋯NAND
Chip #1

NAND
Chip #4

⋯

Storage

Read

Write

Read

Write

Storage Internal 
I/O Bandwidth

 ~ 9.6 GB/s

Data Sensing 
Bottleneck

Computation

Write

IFP fundamentally mitigates the data movement
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Data Sensing Bottleneck in IFP

In-Storage 
Computation 

Unit

⋯
NAND

Chip #1

NAND
Chip #4

⋯
NAND

Chip #1

NAND
Chip #4

⋯

• State-of-the-art IFP technique [1] performs bulk bitwise 
operations by controlling the latching circuit of the 
page buffer

A

NAND Flash Chip

Page Buffer

Operand A
Operand B
Operand C
Operand D

…

[1] Gao+, “ParaBit: Processing Parallel Bitwise Operations in NAND Flash Memory Based SSDs,” MICRO, 2021
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Data Sensing Bottleneck in IFP

• State-of-the-art IFP technique [1] performs bulk bitwise 
operations by controlling the latching circuit of the 
page buffer

A

NAND Flash Chip

A
B

…

C
D

Page Buffer

Data Sensing

A

A
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Data Sensing Bottleneck in IFP

• State-of-the-art IFP technique [1] performs bulk bitwise 
operations by controlling the latching circuit of the 
page buffer

A

NAND Flash Chip

A
B

…

C
D

Page Buffer

A

B

Data Sensing

A   AND B
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Data Sensing Bottleneck in IFP

• State-of-the-art IFP technique [1] performs bulk bitwise 
operations by controlling the latching circuit of the 
page buffer

NAND Flash Chip
A
B

…

C
D

Page Buffer

A   AND B

Data Sensing

C

A   AND B   AND C
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Data Sensing Bottleneck in IFP

• State-of-the-art IFP technique [1] performs bulk bitwise 
operations by controlling the latching circuit of the 
page buffer

NAND Flash Chip
A
B

…

C
D

Page Buffer

A   AND B

Data Sensing

C

A   AND B   AND C

Serial data sensing is the bottleneck in 

prior in-flash processing techniques
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Reliability Issues in IFP

• Prior IFP approaches cannot leverage ECC and 
data-randomization techniques as computation is 
performed within the flash chips during data sensing

A

NAND Flash Chip

A
B

…

C
D

Page Buffer
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Reliability Issues in IFP

• Prior IFP approaches cannot leverage ECC and 
data-randomization techniques as computation is 
performed within the flash chips during data sensing

NAND Flash Chip

B

…

C
D

Page Buffer

A

Data 
Sensing

B
A
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Reliability Issues in IFP

• Prior IFP approaches cannot leverage ECC and 
data-randomization techniques as computation is 
performed within the flash chips during data sensing

NAND Flash Chip

B

…

C
D

Page Buffer

A

A

Data 
Sensing

BB

A  AND B
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Reliability Issues in IFP

• Prior IFP approaches cannot leverage ECC and 
data-randomization techniques as computation is 
performed within the flash chips during data sensing

NAND Flash Chip

B

…

C
D

Page Buffer

A

A

Data 
Sensing

BB

A  AND B

Prior IFP techniques requires the application to be 

highly error-tolerant
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Our Goal

Address the bottleneck of state-of-the-art IFP techniques
(serial sensing of operands)

Make IFP reliable
(provide accurate computation results)
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Our Proposal

• Flash-Cosmos enables
• Computation on multiple operands using a 

single sensing operation

• Provide high reliability during in-flash computation

NAND Flash Chip

B

…
D

Page Buffer

C

A

Data 
Sensing

B
A

C

A  AND B AND C
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NAND Flash Basics: A Flash Cell

• A flash cell stores data by adjusting the amount of 
charge in the cell

Erased Cell
(Low Charge Level)

1

Programmed Cell
(High Charge Level)

0

Activation

Operates as a resistor Operates as an open switch
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NAND Flash Basics: A NAND String

• A set of flash cells are serially connected to form a 
NAND String

1

0

0

1

0

Bitline (BL)

…

NAND String
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NAND Flash Basics: Read Mechanism

• NAND flash memory reads data by checking the 
bitline current 

1

0

0

1

0

Bitline (BL)

Non-Target Cells:
Operate as resistors

regardless of stored data

…

NAND String
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NAND Flash Basics: Read Mechanism

• NAND flash memory reads data by checking the 
bitline current 

1

0

0

1

0

Bitline (BL)

Non-Target Cells:
Operate as resistors

regardless of stored data

…

NAND String

Target Cells:
Operate as resistors (1)

or open switches (0)
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NAND Flash Basics: Read Mechanism

• NAND flash memory reads data by checking the 
bitline current 

1

0

0

1

0

BLi

Non-Target Cells:
Operate as resistors

regardless of stored data

…

NAND String

Target Cells:
Operate as resistors (1)

or open switches (0)
0

1

1

0

1

BLj

…

Reads as ‘1’
if BL current

flows

Reads as ‘0’
if BL current
cannot flow
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• NAND strings connected to different bitlines comprise a 
NAND block

NAND Flash Basics: A NAND Flash Block

BL1 BL2 BL3 BL4 BL5

1

0

0

1

0

BLN

…

1

0

0

1

0

…

1

0

0

1

0

…
1

0

0

1

0

…

1

0

0

1

0

…

1

0

0

1

0
…

…

…

…

…

…

WL1

WL2

WL3

WL4

WLM

Block

A single wordline (WL) controls a large number of 
flash cells: High bit-level parallelism 
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• A large number of blocks share the same bitlines

NAND Flash Basics: Block Organization

BL1 BL2 BL3 BL4 BL5 BLN

…
…

…

…Block2 … … … … …

…
…

…

…BlockK … … … … …

…
…

…

…Block1 … … … … …
…… … … … …
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• A large number of blocks share the same bitlines

Similarity to Digital Logic Gates

BL1 BL2 BL3 BL4 BL5 BLN

…
…

…

…Block2 … … … … …

…
…

…

…BlockK … … … … …

…
…

…

…Block1 … … … … …
…… … … … …

Cells in the same block 
are connected serially: 
Similar to digital NAND

A

B

(A•B)’

2-input NAND
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• A large number of blocks share the same bitlines.

Similarity to Digital Logic Gates

BL1 BL2 BL3 BL4 BL5 BLN

…
…

…

…Block2 … … … … …

…
…

…

…BlockK … … … … …

…
…

…

…Block1 … … … … …
…… … … … …

Cells in the same block 
are connected serially: 
Similar to digital NAND

A

B

(A•B)’

2-input NAND

Cells in different blocks 
are connected in parallel: 

Similar to digital NOR

2-input NOR

A

B

(A+B)’
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Flash-Cosmos: Overview

Enables in-flash bulk bitwise operations on 
multiple operands with a single sensing 

operation using                                                   
Multi-Wordline Sensing (MWS)
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Multi-Wordline Sensing (MWS): Bitwise AND

• Intra-Block MWS: Simultaneously activates 
multiple WLs in the same block
• Bitwise AND of the stored data in the WLs

BL1 BL2 BL3 BL4

0

0

1

0

…

0

1

0

0
…

1

0

1

1

…

1

1

1

0

…

…

…

…

…

WL1

WL2

WL3

WL4

Blocki
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Multi-Wordline Sensing (MWS): Bitwise AND

• Intra-Block MWS: Simultaneously activates 
multiple WLs in the same block
• Bitwise AND of the stored data in the WLs

BL1 BL2 BL3 BL4

0

0

1

0

…

0

1

0

0
…

1

0

1

1

…

1

1

1

0

…

…

…

…

…

WL1

WL2

WL3

WL4

Blocki

Non-Target Cells:
Operate 

as resistors
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Multi-Wordline Sensing (MWS): Bitwise AND

• Intra-Block MWS: Simultaneously activates 
multiple WLs in the same block
• Bitwise AND of the stored data in the WLs

BL1 BL2 BL3 BL4

0

0

1

0

…

0

1

0

0
…

1

0

1

1

…

1

1

1

0

…

…

…

…

…

WL1

WL2

WL3

WL4

Non-Target Cells:
Operate 

as resistors

Target Cells:
Operate 

as resistors (1)
or open switches (0)

0 0 0 1Result:
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Multi-Wordline Sensing (MWS): Bitwise AND

• Intra-Block MWS: Simultaneously activates 
multiple WLs in the same block
• Bitwise AND of the stored data in the WLs

BL1 BL2 BL3 BL4

0

0

1

0

…

0

1

0

0
…

1

0

1

1

…

1

1

1

0

…

…

…

…

…

WL1

WL2

WL3

WL4

Non-Target Cell:
Operate 

as a resistance

Target Cell:
Operate 

as a resistance (1)
or an open switch (0)

0 0 0 1Result:

A bitline reads as ‘1’ only when all the target cells store ‘1’
→ Equivalent to the bitwise AND of all the target cells 
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Multi-Wordline Sensing (MWS): Bitwise AND

• Intra-Block MWS: Simultaneously activates 
multiple WLs in the same block
• Bitwise AND of the stored data in the WLs

BL1 BL2 BL3 BL4

0

0

1

0

…

0

1

0

0
…

1

0

1

1

…

1

1

1

0

…

…

…

…

…

WL1

WL2

WL3

WL4

Target Cell:
Operate 

as a resistance (1)
or an open switch (0)

0 0 0 0Result:
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Multi-Wordline Sensing (MWS): Bitwise AND

• Intra-Block MWS: Simultaneously activates 
multiple WLs in the same block
• Bitwise AND of the stored data in the WLs

BL1 BL2 BL3 BL4

0

0

1

0

…

0

1

0

0
…

1

0

1

1

…

1

1

1

0

…

…

…

…

…

WL1

WL2

WL3

WL4

Target Cell:
Operate 

as a resistance (1)
or an open switch (0)

0 0 0 0Result:

A bitline reads as ‘1’ only when all the target cells store ‘1’
→ Equivalent to the bitwise AND of all the target cells 
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Multi-Wordline Sensing (MWS): Bitwise AND

• Intra-Block MWS: Simultaneously activates 
multiple WLs in the same block
• Bitwise AND of the stored data in the WLs

BL1 BL2 BL3 BL4

0

0

1

0

…

0

1

0

0
…

1

0

1

1

…

1

1

1

1

…

…

…

…

…

WL1

WL2

WL3

WL4

Target Cell:
Operate 

as a resistance (1)
or an open switch (0)

0 0 0 1Result:

A bitline reads as ‘1’ only when all the target cells store ‘1’
→ Equivalent to the bitwise AND of all the target cells 

Flash-Cosmos (Intra-Block MWS) enables 
bitwise AND of multiple pages in the same block 

via a single sensing operation
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• Inter-Block MWS: Simultaneously activates multiple 
WLs in different blocks
• Bitwise OR of the stored data in the WLs

Multi-Wordline Sensing (MWS): Bitwise OR

BL1 BL2 BL3 BL4

… … … …

1 0 1 0 …WLx in Block1

1 1 0 0 …WLy in Blocki

… … … …
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• Inter-Block MWS: Simultaneously activates multiple 
WLs in different blocks
• Bitwise OR of the stored data in the WLs

Multi-Wordline Sensing (MWS): Bitwise OR

BL1 BL2 BL3 BL4

… … … …

1 0 1 0 …WLx in Block1

… … … …

1 1 0 0 …WLy in Blocki

1 1 1 0Result:
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• Inter-Block MWS: Simultaneously activates multiple 
WLs in different blocks
• Bitwise OR of the stored data in the WLs

Multi-Wordline Sensing (MWS): Bitwise OR

BL1 BL2 BL3 BL4

… … … …

1 0 1 0 …WLx in Block1

… … … …

1 1 0 0 …WLy in Blocki

1 1 1 0Result:

A bitline reads as ‘0’ only when all the target cells store ‘0’
→ Equivalent to the bitwise OR of all the target cells 
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• Inter-Block MWS: Simultaneously activates multiple 
WLs in different blocks
• Bitwise OR of the stored data in the WLs

Multi-Wordline Sensing (MWS): Bitwise OR

BL1 BL2 BL3 BL4

… … … …

1 0 1 0 …WLx in Block1

… … … …

1 1 0 0 …WLy in Blocki

1 1 1 1Result:

1 0 0 1 …WLy in Blocki
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• Inter-Block MWS: Simultaneously activates multiple 
WLs in different blocks
• Bitwise OR of the stored data in the WLs

Multi-Wordline Sensing (MWS): Bitwise OR

BL1 BL2 BL3 BL4

… … … …

1 0 1 0 …WLx in Block1

… … … …

1 1 0 0 …WLy in Blocki

1 1 1 1Result:

1 0 0 1 …WLy in Blocki

A bitline reads as ‘0’ only when all the target cells store ‘0’
→ Equivalent to the bitwise OR of all the target cells 
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• Inter-Block MWS: Simultaneously activates multiple 
WLs in different blocks
• Bitwise OR of the stored data in the WLs

Multi-Wordline Sensing (MWS): Bitwise OR

BL1 BL2 BL3 BL4

… … … …

1 0 1 0 …WLx in Block1

… … … …

1 1 0 0 …WLy in Blocki

1 1 1 1Result:

1 0 0 1 …WLy in Blocki

Flash-Cosmos (Inter-Block MWS) enables 
bitwise OR of multiple pages in different blocks 

via a single sensing operation
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Supporting Other Bitwise Operations

Exploit Inverse Read[1] which is supported in 
modern NAND flash memory

Bitwise NOT

Exploit MWS + Inverse Read

Bitwise NAND/ NOR

Use XOR between sensing and cache latches [2] 
which is also supported in NAND flash memory

Bitwise XOR/XNOR

[1] Lee+, “High-Performance 1-Gb-NAND Flash Memory with 0.12-µm Technology,” JSSC, 2002
[2] Kim+, “A 512-Gb 3-b/Cell 64-Stacked WL 3-D-NAND Flash Memory,” JSSC, 2018
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Flash-Cosmos: Overview

Increases the reliability of in-flash 
bulk bitwise operations by using                         

Enhanced SLC-mode Programming (ESP)

Enables in-flash bulk bitwise operations on 
multiple operands with a 

single sensing operation using                                                   
Multi-Wordline Sensing (MWS)
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Enhanced SLC-Mode Programming (ESP)

• SLC-mode programming provides a large voltage margin 
between the erased and programmed states

• Based on our real device characterization, we observe that 
SLC-mode programming is still highly error-prone without the 
use of ECC and data-randomization

#
 o

f 
ce

ll
s

Erased
0

Prog.
1

Threshold 
voltage

Voltage margin in 
SLC-mode
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Enhanced SLC-Mode Programming (ESP)

• ESP further increases the voltage margin between the erased 
and programmed states

• A wider voltage margin between the two states improves 
reliability by making the cells less vulnerable to errors

0
Prog.

ESP

Increased voltage 

margin in ESP

#
 o

f 
ce

ll
s

Erased
0

Prog.
1

Threshold 
voltage
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Enhanced SLC-Mode Programming (ESP)

• ESP increases the voltage margin between the erased and 
programmed states

• A wider voltage margin between the two states improves 
reliability during data sensing by making the cells less 
vulnerable to errors

0
Prog.

ESP

Increased voltage 

margin in ESP

#
 o

f 
ce

ll
s

Erased
0

Prog.
1

Threshold 
voltage

ESP improves the reliability of in-flash computation 

without the use of ECC or 

data-randomization techniques



56

Enhanced SLC-Mode Programming (ESP)

• ESP increases the voltage margin between the erased and 
programmed states

• A wider voltage margin between the two states improves 
reliability during data sensing by making the cells less 
vulnerable to errors

0
Prog.

ESP

Increased voltage 

margin in ESP

#
 o

f 
ce

ll
s

Erased
0

Prog.
1

Threshold 
voltage

ESP can improve the reliability of prior 

in-flash processing techniques as well
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Evaluation Methodology

• We evaluate Flash-Cosmos using

160 real state-of-the-art 3D NAND flash chips
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Real Device Characterization

• We validate the feasibility, performance, and reliability 
of Flash-Cosmos

• 160 48-layer 3D TLC NAND flash chips
• 3,686,400 tested wordlines

• Under worst-case operating conditions
• 1-year retention time at 10K P/E cycles

• Worst-case data patterns
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Results: Real-Device Characterization

Both intra- and inter-block MWS operations
require no changes to the cell array 

of commodity NAND flash chips

Both MWS operations can activate multiple WLs
(intra: up to 48, inter: up to 4) at the same time
with small increase in sensing latency (< 10%) 

ESP significantly improves
the reliability of computation results

(no observed bit error in the tested flash cells)
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Evaluation Methodology

• We evaluate Flash-Cosmos using

160 real state-of-the-art 3D NAND flash chips

Three real-world applications that perform 

bulk bitwise operations
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Evaluation with real-world workloads

• Simulation
• MQSim [Tavakkol+, FAST’18] to model the performance of                

Flash-Cosmos and the baselines                       

• Workloads
• Three real-world applications that heavily rely on bulk bitwise operations

• Bitmap Indices (BMI): Bitwise AND of up to ~1,000 operands

• Image Segmentation (IMS): Bitwise AND of 3 operands

• k-clique star listing (KCS): Bitwise OR of up to 32 operands

• Baselines
• Outside-Storage Processing (OSP): a multi-core CPU (Intel i7 11700K)

• In-Storage Processing (ISP): an in-storage hardware accelerator

• ParaBit [Gao+, MICRO’21]: the state-of-the-art in-flash processing (IFP) 
mechanism
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ISP ParaBit Flash-Cosmos

Results: Performance & Energy

Flash-Cosmos provides significant performance & 
energy benefits over all the baselines

The larger the number of operands,
the higher the performance & energy benefits
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1.6× 10×

2×25× 3.5× 3.3×13.4×
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More in the Paper

https://arxiv.org/abs/2209.05566.pdf

https://arxiv.org/abs/2209.05566.pdf
https://arxiv.org/abs/2209.05566.pdf
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Talk Outline

Motivation

Background

Flash-Cosmos

Evaluation of Flash-Cosmos and Key Results

Summary
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Flash-Cosmos: Summary

66

First work to enable multi-operand 

bulk bitwise operations with a single sensing operation 

and high reliability

Improves performance by 3.5x/25x/32x on average 

over ParaBit/ISP/OSP across the workloads

Improves energy efficiency by 3.3x/13.4x/95x on 

average over ParaBit/ISP/OSP across the workloads

Low-cost & requires no changes to flash cell arrays



More on Flash-Cosmos

• Jisung Park, Roknoddin Azizi, Geraldo F. Oliveira, Mohammad Sadrosadati, Rakesh 
Nadig, David Novo, Juan Gómez-Luna, Myungsuk Kim, and Onur Mutlu,
"Flash-Cosmos: In-Flash Bulk Bitwise Operations Using Inherent 
Computation Capability of NAND Flash Memory"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), 
Chicago, IL, USA, October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Lecture Video (44 minutes)]
[arXiv version]

67https://arxiv.org/pdf/2209.05566.pdf 

https://arxiv.org/pdf/2209.05566.pdf
https://arxiv.org/pdf/2209.05566.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_SSD-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_SSD-lecture-slides.pdf
https://www.youtube.com/watch?v=ioPERTy7bz4
https://arxiv.org/abs/2209.05566
https://arxiv.org/pdf/2209.05566.pdf


CIPHERMATCH: Accelerating Secure String Matching

• Mayank Kabra, Rakesh Nadig, Harshita Gupta, Rahul Bera, Manos Frouzakis, 
Vamanan Arulchelvan, Yu Liang, Haiyu Mao, Mohammad Sadrosadati and Onur Mutlu,
”CIPHERMATCH: Accelerating Homomorphic Encryption-Based String 
Matching via Memory-Efficient Data Packing and In-Flash Processing"
Proceedings of the 30th International Conference on Architectural Support for 
Programming Languages and Operating System (ASPLOS), Rotterdam, Netherlands 
April 2025.
[arXiv version]

68https://arxiv.org/pdf/2503.08968.pdf 

https://arxiv.org/pdf/2209.05566.pdf
https://arxiv.org/pdf/2209.05566.pdf
https://www.asplos-conference.org/asplos2025/
https://www.asplos-conference.org/asplos2025/
https://arxiv.org/abs/2503.08968
https://arxiv.org/pdf/2503.08968.pdf


Upcoming Presentation at ISCA 2025

To be presented at ISCA 2025

 

Presenter – Andreas Kosmas Kakolyris

Visit us in Session 6C: Memory Acceleration

Location: Ono Auditorium
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Storage-Centric Computing:

Two Types

1. Processing near Storage

2. Processing using Storage

70



In-Storage Genomic Data Filtering [ASPLOS 2022] 

◼ Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid 
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata 
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing 
System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March 
2022.
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]
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https://github.com/CMU-SAFARI/GenStore

https://arxiv.org/pdf/2202.10400 

https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8
https://github.com/CMU-SAFARI/GenStore
https://arxiv.org/pdf/2202.10400


GenStore: 
A High-Performance In-Storage Processing System

for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, 

Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, 

Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu



Genome Sequence Analysis
◼ Genome sequence analysis is critical for many applications

❑Personalized medicine

❑Outbreak tracing

❑Evolutionary studies

•  Genome sequencing machines extract smaller fragments of the original 
DNA sequence, known as reads

AAGCTTCCATGG

AAATGGGCTTTC

GCCCAAATGGTT

GCTTCCAGAATG



Genome Sequence Analysis
◼Read mapping: first key step in genome sequence analysis

…GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG…

- Aligns reads to potential matching locations in the reference genome

Reference Genome

Differences Differences

- For each matching location, the alignment step finds the degree of 
similarity (alignment score)

AAGCTTCCATGG
GCCCAAATGGTT

GCTTCCAGAATG

AAATGGGCTTTC
• Calculating the alignment score requires computationally-expensive 

approximate string matching (ASM) to account for differences between 
reads and the reference genome due to:

- Sequencing errors

- Genetic variation



Genome Sequence Analysis

Computation overhead
 

Data movement overhead 

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Alignment

Data Movement from Storage

Storage
System



Heuristics Accelerators Filters

 Computation overhead
 

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory
Storage
System

Data movement overhead 

✓

Accelerating Genome Sequence Analysis



Storage
System

Key Idea

Non-matching reads
Do not have potential matching locations and can skip alignment

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

Exactly-matching reads
Do not need expensive approximate string matching during alignment



Challenges

Read mapping workloads can exhibit different behavior

There are limited hardware resources 
in the storage system

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory
Storage
System



GenStore

Computation overhead
 

Data movement overhead 

GenStore provides significant speedup (1.4x - 33.6x) and  
energy reduction (3.9x – 29.2x) at low cost

Filter reads that do not require alignment
inside the storage system

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

GenStore-Enabled
Storage
System

✓
✓



More on GenStore 

◼ Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid 
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata 
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing 
System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March 
2022.
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]
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https://github.com/CMU-SAFARI/GenStore

https://arxiv.org/pdf/2202.10400 

https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8
https://github.com/CMU-SAFARI/GenStore
https://arxiv.org/pdf/2202.10400


In-Storage Metagenomics [ISCA 2024] 

◼ Nika Mansouri Ghiasi, Mohammad Sadrosadati, Harun Mustafa, Arvid Gollwitzer, 
Can Firtina, Julien Eudine, Haiyu Mao, Joel Lindegger, Meryem Banu Cavlak, 
Mohammed Alser, Jisung Park, and Onur Mutlu,
"MegIS: High-Performance and Low-Cost Metagenomic Analysis with 
In-Storage Processing"
Proceedings of the 51st Annual International Symposium on Computer 
Architecture (ISCA), Buenos Aires, Argentina, July 2024.
[Slides (pptx) (pdf)]
[arXiv version]
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https://github.com/CMU-SAFARI/MegIS

https://arxiv.org/pdf/2406.19113 

https://arxiv.org/pdf/2406.19113
https://arxiv.org/pdf/2406.19113
https://iscaconf.org/isca2024/
https://iscaconf.org/isca2024/
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pptx
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pdf
https://arxiv.org/abs/2406.19113
https://github.com/CMU-SAFARI/MegIS
https://arxiv.org/pdf/2406.19113
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MegIS: Metagenomics In-Storage

• First in-storage system for end-to-end metagenomic analysis

• Idea: Cooperative in-storage processing for metagenomic analysis

- Hardware/software co-design between the storage system and host system
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MegIS’s Steps

A large database 
containing information

on many species 

Metagenomic sample
with species that 

are not known in advance

Preparation 
of Input Queries Q

u
er

y 
K

-m
er

s

…

GCTCA

CTCAT

TCATG

Presence/Absence 
Identification

V. cholerae

E. coli

SARS-CoV-2

Abundance
Estimation

Step 1

Step 2

Step 3
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MegIS Hardware-Software Co-Design
H

o
st

 S
y

st
e

m

SSD DRAM

Standard
Metadata

⋯

SSD 
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D
 

CntrlCntrl

Channel#NChannel#1



85

MegIS Hardware-Software Co-Design
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Step 1

Task partitioning and mapping
•  Each step executes 

in its most suitable system 

Step 2 Step 3
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MegIS Hardware-Software Co-Design
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Data/computation flow coordination
• Reduce communication overhead

• Reduce #writes to flash chips

Step 1 Step 2 Step 3

Task partitioning and mapping
•  Each step executes 

in its most suitable system 
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MegIS Hardware-Software Co-Design
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Storage-aware algorithms
• Enable efficient 

access patterns to the SSD 

Step 1 Step 2 Step 3

Data/computation flow coordination
• Reduce communication overhead

• Reduce #writes to flash chips

Task partitioning and mapping
•  Each step executes 

in its most suitable system 
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MegIS Hardware-Software Co-Design
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Lightweight in-storage accelerators 
• Minimize SRAM/DRAM buffer spaces 

needed inside the SSD

Step 1 Step 2 Step 3

Storage-aware algorithms
• Enable efficient 

access patterns to the SSD 

Data/computation flow coordination
• Reduce communication overhead

• Reduce #writes to flash chips

Task partitioning and mapping
•  Each step executes 

in its most suitable system 
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MegIS Hardware-Software Co-Design
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FTL

MegIS
Metadata
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Data mapping scheme and Flash Translation Layer (FTL) 
• Specialize to the characteristics of metagenomic analysis

• Leverage the SSD’s full internal bandwidth

Step 1 Step 2 Step 3

Storage-aware algorithms
• Enable efficient 

access patterns to the SSD 

Lightweight in-storage accelerators 
• Minimize SRAM/DRAM buffer spaces 

needed inside the SSD

Data/computation flow coordination
• Reduce communication overhead

• Reduce #writes to flash chips

Task partitioning and mapping
•  Each step executes 

in its most suitable system 

ACCACC
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Evaluation: Methodology Overview
Performance, Energy, and Power Analysis

Baseline Comparison Points

• Performance-optimized software, Kraken2 [Genome Biology’19]

• Accuracy-optimized software, Metalign [Genome Biology’20]

• PIM hardware-accelerated tool (using processing-in-memory), Sieve [ISCA’21]

SSD Configurations

• SSD-C: with SATA3 interface (0.5 GB/s sequential read bandwidth)

• SSD-P: with PCIe Gen4 interface (7 GB/s sequential read bandwidth)

Hardware Components

• Synthesized Verilog model for the in-storage accelerators

• MQSim [Tavakkol+, FAST’18] for SSD’s internal operations

• Ramulator [Kim+, CAL’15] for SSD’s internal DRAM

Software Components

Measure on a real system: 

• AMD® EPYC® CPU with 
128 physical cores

• 1-TB DRAM 
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Evaluation: Speedup over the Software Baselines

MegIS provides significant speedup over both 

Performance-Optimized and Accuracy-Optimized baselines
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Evaluation: Speedup over the Software Baselines

MegIS provides significant speedup over both 

Performance-Optimized and Accuracy-Optimized baselines
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MegIS improves performance on both 

cost-optimized and performance-optimized SSDs
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MegIS provides significant speedup over the PIM baseline

Evaluation: Speedup over the PIM Baseline
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• On average across different input sets and SSDs

0

1

2

3

4

5

6

Perf-Opt Acc-Opt PIM MegISG
e

o
M

e
a

n
 E

n
e

rg
y

 R
e

d
u

ct
io

n
(H

ig
h

e
r 

is
 B

e
tt

e
r)

MegIS provides significant energy reduction over 

the Performance-Optimized, Accuracy-Optimized, and PIM baselines
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Evaluation: Reduction in Energy Consumption
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Evaluation: Accuracy, Area, and Power

Accuracy

• Same accuracy as the accuracy-optimized baseline

• Significantly higher accuracy than the performance-optimized and 
PIM baselines

- 4.6 – 5.2× higher F1 scores

- 3 – 24% lower L1 norm error

Area and Power

Total for an 8-channel SSD:

• Area: 0.04 mm2 (Only 1.7% of the area of three ARM Cortex R4 cores 
in an SSD controller)

• Power: 7.658 mW
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Evaluation: System Cost-Efficiency
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MegIS outperforms the baselines
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Evaluation: System Cost-Efficiency
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even when running on a much less costly system
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and makes metagenomics more accessible 

for wider adoption
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More in the Paper

•MegIS’s performance when running in-storage processing 
operations on the cores existing in the SSD controller

•MegIS’s performance when using the same accelerators 
outside SSD

• Sensitivity analysis with varying 

- Database sizes

- Memory capacities

- #SSDs

- #Channels

- #Samples

•MegIS’s performance for abundance estimation
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More in the Paper

• MegIS’s performance with the cores in the SSD controller

• MegIS’s performance outside SSD

• Sensitivity analysis with varying 

- Database sizes

- Memory capacities

- #SSDs

- #Channels

- #Samples

• MegIS’s performance for abundance estimation
https://arxiv.org/abs/2406.19113

https://arxiv.org/abs/2406.19113
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Metagenomic analysis suffers from 
significant storage I/O data movement overhead 

MegIS: Summary

The first in-storage processing system for end-to-end metagenomic analysis

Leverages and orchestrates processing inside and outside the storage system

MegIS

Improves performance
2.7×–37.2× over performance-optimized software 

6.9×–100.2×  over accuracy-optimized software

1.5×–5.1× over hardware-accelerated PIM baseline

Low area overhead
1.7% of the three cores

in an SSD controller

Reduces energy consumption
5.4× over performance-optimized software 

15.2×  over accuracy-optimized software

1.9× over hardware-accelerated PIM baseline

High accuracy
Same as accuracy-optimized

4.8× higher F1 scores

 over performance-optimized/PIM



More on MegIS 

◼ Nika Mansouri Ghiasi, Mohammad Sadrosadati, Harun Mustafa, Arvid Gollwitzer, 
Can Firtina, Julien Eudine, Haiyu Mao, Joel Lindegger, Meryem Banu Cavlak, 
Mohammed Alser, Jisung Park, and Onur Mutlu,
"MegIS: High-Performance and Low-Cost Metagenomic Analysis with 
In-Storage Processing"
Proceedings of the 51st Annual International Symposium on Computer 
Architecture (ISCA), Buenos Aires, Argentina, July 2024.
[Slides (pptx) (pdf)]
[arXiv version]
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https://github.com/CMU-SAFARI/MegIS

https://arxiv.org/pdf/2406.19113 

https://arxiv.org/pdf/2406.19113
https://arxiv.org/pdf/2406.19113
https://iscaconf.org/isca2024/
https://iscaconf.org/isca2024/
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pptx
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pdf
https://arxiv.org/abs/2406.19113
https://github.com/CMU-SAFARI/MegIS
https://arxiv.org/pdf/2406.19113


Storage-Centric Computing:

Two Types

1. Processing near Storage

2. Processing using Storage

102



Summary and Future Outlook



Our Vision on Storage-Centric Computing

◼ Entire storage system as a specialized-enough accelerator

❑ Special-purpose accelerators

❑ General-purpose computation

❑ Multiple different memory technologies

◼ Processing-using-Flash/DRAM

◼ Processing-near-Flash/DRAM

◼ Storage system becomes a first-class citizen where 
computation takes place when it makes

❑ greatly improving performance, energy efficiency, system 
cost, sustainability, …
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Storage-Centric Computing: Some Challenges 

◼ Reliability of computation

◼ Limited endurance

◼ Higher latencies of flash memories

◼ Small internal DRAMs

◼ Limited power and area budgets

◼ Programming framework

◼ Security guarantees

◼ …
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Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

We can get there step by step
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