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Executive Summary

Problem:

Performance of database operators used for analytical query processing is limited 
by accesses to off-chip main memory

Motivation:

Processing-in-Memory systems move computation to where the data resides 

Evaluate a real-world PIM system for analytical query processing

Challenge:

Current database implementations on conventional systems cannot 
straightforwardly be ported due to the limitations of current PIM systems

Goal:

Create implementation of TPC-H queries that achieves optimal performance on 
UPMEM PIM system, to evaluate potential of PIM for analytical query processing

Results:

PIM outperforms CPU in 4 out of 5 TPC-H queries, by 3.9× on average

Outperforms GPU on 2 of the queries that require little communication
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Database Management Systems

• Development of DBMSs started in the late 1950s

▪ Even before the invention of the microprocessor

• DBMSs evolved together with computer architectures

• Larger DRAM sizes enabled the development of in-memory 
databases, where data is kept in main memory

▪ Performance and energy improvements compared to 
moving data from storage

• In-memory databases still suffer from data movement 
bottlenecks due to off-chip main memory accesses
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Database Operators

DB Operator Function

Selection Filter tuples based on a predicate on columns

Aggregation Grouping with aggregations groups columns with equal keys 

together and aggregates remaining columns

Ordering Orders tuples based on some columns

Join Concatenates rows of table to rows of another table based on 

key columns

• Relational databases consist of tables where each data point is 

a row

▪ Row is a tuple where each entry belongs to a set

• Database (DB) operators perform computation on rows and 

columns of one or multiple tables
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Memory-Bound DB Operators

• Roofline model of DB operators running on an Intel Xeon 

6226R Gold CPU with 128 GB of DDR4 DRAM
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The performance of the four DB operators is 
bottlenecked by main memory accesses

• Roofline model of DB operators running on an Intel Xeon 

6226R Gold CPU with 128 GB of DDR4 DRAM

3



UPMEM System Characteristics

• Complement standard DDR4 DIMMs with PIM DIMMs equipped with 
PIM-cores (DPUs) for processing

• PIM-cores can access internal DRAM with high bandwidth

• PIM-cores are multi-threaded, in-order, RISC-like cores

• PIM-threads can independently execute their own code

• Use scratchpad memory (SPM) instead of caches, which is managed by 
programmer

• Inter PIM-core communication happens over host
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Challenges and Limitations

Hardware unaware implementation of DB operators on UPMEM 
can lead to subpar performance due to three main reasons

Data movement in PIM code must be explicitly managed by 
programmer and can degrade performance if suboptimal

DB operators can require multiplication or division, which is 
costly on UPMEM due to the lack of hardware support

DB operators can require data redistribution and thus 
communication over the host
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Goal

• Implement DB operators on a real-world PIM system, while 
addressing the limitations previously mentioned

• Discover strengths and limitations of current memory-centric 
architectures for analytical query processing

• To this end we propose PIMDAL, a library for analytical query 
processing on the UPMEM system

Create high performance implementation of TPC-H 

queries on UPMEM PIM system, to evaluate the 

potential of PIM for analytical query processing

6



Outline

Background and Goal

PIMDAL

Experiments and Methodology

Evaluation and Insights

Conclusion & Outlook



Design Principles

• From a previous UPMEM characterization1 we deduce 2 design 
principles for PIMDAL

• Transfer latency from DRAM to scratchpad memory (SPM) has 
the form α + β×size 

⟶ Use as big, continuous memory transfers as possible

• Full pipeline occupancy and throughput achieved at 11 threads

⟶ Use at least 11 PIM-threads

• Challenge: SPM is shared by all the threads, design principles can 
interfere with each other

1Gómez-Luna+, Benchmarking Memory-centric Computing Systems: Analysis of Real 

Processing-in-Memory Hardware, IGSC 2021
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Structure

• PIMDAL consists of a PIM and a host component

• Host component feeds PIM system with data and provides 
communication capabilities

▪ Load data from disk and transfer data between host 
and PIM system

▪ Redistribute data between PIM-cores

• PIM component implements the four DB operators: selection, 
aggregation, ordering and join

▪ Operates on data stored in column-store format in DRAM, 
where each column in a table is stored contiguously in memory
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Two Algorithmic Building Blocks

• Two common algorithms for implementing aggregation and join 
are sorting and hashing:

• Aggregation

▪ Group equal elements together by sorting them

▪ Join elements by mapping them to the same hash table entry

• Join

▪ Sort-merge: Order both tables in the same order, iterate 
efficiently, match the keys and join them

▪ Hash: Store inner relation in hash table, probe with outer 
relation and join them

• Key Challenges: Parallelism and very irregular memory accesses
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Micro-Benchmarks

• Measure performance of standalone operators and compare to 
CPU/GPU

▪ Kernel execution time

▪ IPC of in-order pipeline

▪ Weak and strong scaling analysis of end-to-end execution

• Main goal is to gain insights into performance of DB operators

• Comparison to CPU and GPU reference implementations

▪ Comparison to CPU using  custom implementation based 
on Apache Arrow

▪ Comparison to GPU using cudf
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TPC-H Queries

• TPC-H benchmark widely used for comparing different 
commercial DBMSs

• Suite of business oriented ad-hoc queries

• Use 5 queries from the TPC-H benchmark that do not rely on 
variable-length datatypes

▪ Includes combinations of all DB operators

▪ All require addition, 4 of them multiplication 

• Reference implementations:

▪ PyArrow on the CPU

▪ Cudf on the GPU
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System Configurations

UPMEM PIM 

System

Intel Xeon

Gold 6226R

Nvidia

A6000 GPU

PEs 2048 DPUs
16 cores

(32 threads)
108 SM

Memory 131 GB 128 GB 48 GB

Int32 Throughput 760 GOps 1606 GOps 38 TOps

Bandwidth 1.2 TB/s 79 GB/s 768 GB/s

12



Outline

Background and Goal

PIMDAL

PIMDAL: Data Movement Optimization

Experiments and Methodology

Evaluation and Insights

Conclusion

Towards Data-Centric Architectures



Kernel Execution Time Overview

13



Aggregation

• Comparing hash to sort based aggregation for different number 
of unique elements/groups

• Sorting is inefficient for small number of output elements but 
performance remains constant for a growing number

▪ Few elements cannot be partitioned efficiently

• Hash aggregation faster for smaller number of output elements

• Execution time increases for hash aggregation because steps are 
repeated if output does not fit in SPM
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Key Takeaway 1: SPM or cache utilization still plays a 
role in the performance of PIM architectures, as the 
example of hash and sort based aggregation shows.



Join

• Hash and sort-merge join are two commonly used join 
algorithms

• On conventional systems hash join achieves significantly better 
performance in the general use-case

• A surprising result is that on PIM systems sort-merge join 
outperforms hash join

• What we currently know about algorithm performance does 
not necessarily translate to PIM systems 

• For more insights we can look into sort compared to hash 
partitioning performance
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Sort vs Hash Partitioning

• Sort outperforms hash partitioning

• Sort partitioning has lower arithmetic intensity and simpler 
memory accesses

• Hash partitioning has higher arithmetic intensity and more 
complex memory accesses

• This is exactly where conventional and PIM systems differ

• We try to mitigate this using the radix-cluster algorithm

▪ This leads to other issues such as synchronization

Sort Partitioning Hash Partitioning
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Key Takeaway 2: The most efficient algorithms for PIM 
can differ from the state-of-the-art on other

architectures. One such example is sort-merge 
compared to hash join



Weak Scaling Analysis I

• The main bottleneck for hash aggregations is the initial, and for 
selection also the final data transfers

• Sort aggregation is less limited by transfers due to longer 
execution time

• Asynchronous execution only improves performance when 
there are significant transfers from and to the host

▪ Transfers can be performed successively, improving 
bandwidth utilization

Selection Hash Aggregation Sort Aggregation
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Weak Scaling Analysis II

• Performance is similar for all three operators

• The biggest bottleneck in operator performance is data 
redistribution between PIM-cores

• For all DB operators the weak scaling with the number of 
PIM-cores or ranks is far from optimal

▪ PIM execution time remains constant

▪ Data transfer time increases due to contention

Ordering Sort-Merge Join Hash Join
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Strong Scaling Analysis I

Selection Hash Aggregation Sort Aggregation

• Transfer and execution time improves with more PIM-cores, but 
not optimally

• Bandwidth does not fully scale with PIM-cores, since memory 
channels are shared by PIM-ranks
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Strong Scaling Analysis II

Ordering Sort-Merge Join Hash Join

• The behavior is similar for the more complex operators

• Overall, using as many PIM-cores as possible is always beneficial 
for the performance of DB operators on the UPMEM system

• The main bottleneck of complex DB operators remains data 
redistribution between PIM-cores
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Strong Scaling Analysis II

Ordering Sort-Merge Join Hash Join

• The behavior is similar for the more complex operators

• Overall, using as many PIM-cores as possible is always beneficial 
for the performance of DB operators on the UPMEM system

• The main bottleneck of complex DB operators remains data 
redistribution between PIM-cores

Key Takeaway 3: Current PIM systems are still limited by 
the weaknesses of processor-centric architectures. This 
is because processors have to be used for data transfers.
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Comparison to CPU and GPU (8 GB)

• Simpler operators selection and aggregation show no speedup 
on PIM and GPU when including transfer times

• Ordering with more memory accesses outperforms the CPU 
on both PIM and GPU

• Join is slower on PIM than on GPU due to data redistribution

• On CPU it is slower due to small data size as we show next
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Comparison to CPU (32 GB)

• Comparison of selection remains the same

• For aggregation speedup gets worse, likely because the cache 
provides a higher performance uplift on the CPU

• The two more memory-bound operators perform the best on 
PIM compared to the CPU
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Key Takeaway 4: Queries using ordering and join are 
better suited for acceleration using PIM systems

compared to selection and aggregation.



TPC-H Benchmark CPU

• Outperform CPU on all queries but 6, by 3.9× on average

• Speedup in queries 3 to 5 is mainly due to joins

• In query 1 due to high number of columns aggregated

• Outperform CPU even with complex arithmetic operations

▪ Can represent decimals as 64-bit integers, multiplication is 
simple due to magnitudes of numbers used

▪ Query 4 without multiplication performs best on PIM
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TPC-H Benchmark GPU

• Outperform GPU in queries 1 and 6 that do not rely on join 
by 2.2× and 3.3× respectively

• Join requires data redistribution over the host which is slow

▪ Single GPU has unified memory

• Overall TPC-H performance is limited by main memory

• Inter PIM-core communication is currently an issue, but scaling 
PIM memory should be easier than GPU memory
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Key Takeaway 5: Data analytics is well suited for more 
data-centric architectures as the results from PIM and 

also the GPU show.
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Conclusion & Outlook

• Memory-centric architectures can significantly accelerate data 
analytics as PIMDAL shows on the UPMEM system

• We find strengths and weaknesses of PIM for implemented DB 
operators using HW performance metrics

• Communication between PIM-cores is a key limitation of 
current PIM systems

▪ Might require a fundamentally new memory architecture

• Memory-centric systems can play a key role in data analytics in 
the future, especially if they can support even more complex 
operations as found in machine learning for example

• Main memory is only one part of the equation, what happens if 
data needs to be loaded from storage?
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Questions?

“PIMDAL: Mitigating the Memory Bottleneck in Data 
Analytics using a Real Processing-in-Memory System” 
with more insights can be found on arXiv:

https://arxiv.org/abs/2504.01948

https://arxiv.org/abs/2504.01948
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