
PIMDAL

Mitigating the Memory Bottleneck

in Data Analytics using

a Real Processing-in-Memory System

Manos Frouzakis, Juan Gómez-Luna, Geraldo F. Oliveira,
Mohammad Sadrosadati, Onur Mutlu

Executive Summary

Problem:

Performance of database operators used for analytical query processing is limited
by accesses to off-chip main memory

Motivation:

Processing-in-Memory systems move computation to where the data resides

Evaluate a real-world PIM system for analytical query processing

Challenge:

Current database implementations on conventional systems cannot
straightforwardly be ported due to the limitations of current PIM systems

Goal:

Create implementation of TPC-H queries that achieves optimal performance on
UPMEM PIM system, to evaluate potential of PIM for analytical query processing

Results:

PIM outperforms CPU in 4 out of 5 TPC-H queries, by 3.9× on average

Outperforms GPU on 2 of the queries that require little communication

Outline

Background and Goal

PIMDAL

Experiments and Methodology

Evaluation and Insights

Conclusion & Outlook

Outline

Background and Goal

PIMDAL

Experiments and Methodology

Evaluation and Insights

Conclusion & Outlook

Database Management Systems

• Development of DBMSs started in the late 1950s

▪ Even before the invention of the microprocessor

• DBMSs evolved together with computer architectures

• Larger DRAM sizes enabled the development of in-memory
databases, where data is kept in main memory

▪ Performance and energy improvements compared to
moving data from storage

• In-memory databases still suffer from data movement
bottlenecks due to off-chip main memory accesses

1

Database Operators

DB Operator Function

Selection Filter tuples based on a predicate on columns

Aggregation Grouping with aggregations groups columns with equal keys

together and aggregates remaining columns

Ordering Orders tuples based on some columns

Join Concatenates rows of table to rows of another table based on

key columns

• Relational databases consist of tables where each data point is

a row

▪ Row is a tuple where each entry belongs to a set

• Database (DB) operators perform computation on rows and

columns of one or multiple tables

2

Memory-Bound DB Operators

• Roofline model of DB operators running on an Intel Xeon

6226R Gold CPU with 128 GB of DDR4 DRAM

10-1 100 101
100

101

102

103

3

Memory-Bound DB Operators

10-1 100 101
100

101

102

103

The performance of the four DB operators is
bottlenecked by main memory accesses

• Roofline model of DB operators running on an Intel Xeon

6226R Gold CPU with 128 GB of DDR4 DRAM

3

UPMEM System Characteristics

• Complement standard DDR4 DIMMs with PIM DIMMs equipped with
PIM-cores (DPUs) for processing

• PIM-cores can access internal DRAM with high bandwidth

• PIM-cores are multi-threaded, in-order, RISC-like cores

• PIM-threads can independently execute their own code

• Use scratchpad memory (SPM) instead of caches, which is managed by
programmer

• Inter PIM-core communication happens over host

4

Challenges and Limitations

Hardware unaware implementation of DB operators on UPMEM
can lead to subpar performance due to three main reasons

Data movement in PIM code must be explicitly managed by
programmer and can degrade performance if suboptimal

DB operators can require multiplication or division, which is
costly on UPMEM due to the lack of hardware support

DB operators can require data redistribution and thus
communication over the host

5

Goal

• Implement DB operators on a real-world PIM system, while
addressing the limitations previously mentioned

• Discover strengths and limitations of current memory-centric
architectures for analytical query processing

• To this end we propose PIMDAL, a library for analytical query
processing on the UPMEM system

Create high performance implementation of TPC-H

queries on UPMEM PIM system, to evaluate the

potential of PIM for analytical query processing

6

Outline

Background and Goal

PIMDAL

Experiments and Methodology

Evaluation and Insights

Conclusion & Outlook

Design Principles

• From a previous UPMEM characterization1 we deduce 2 design
principles for PIMDAL

• Transfer latency from DRAM to scratchpad memory (SPM) has
the form α + β×size

⟶ Use as big, continuous memory transfers as possible

• Full pipeline occupancy and throughput achieved at 11 threads

⟶ Use at least 11 PIM-threads

• Challenge: SPM is shared by all the threads, design principles can
interfere with each other

1Gómez-Luna+, Benchmarking Memory-centric Computing Systems: Analysis of Real

Processing-in-Memory Hardware, IGSC 2021

7

Structure

• PIMDAL consists of a PIM and a host component

• Host component feeds PIM system with data and provides
communication capabilities

▪ Load data from disk and transfer data between host
and PIM system

▪ Redistribute data between PIM-cores

• PIM component implements the four DB operators: selection,
aggregation, ordering and join

▪ Operates on data stored in column-store format in DRAM,
where each column in a table is stored contiguously in memory

8

Two Algorithmic Building Blocks

• Two common algorithms for implementing aggregation and join
are sorting and hashing:

• Aggregation

▪ Group equal elements together by sorting them

▪ Join elements by mapping them to the same hash table entry

• Join

▪ Sort-merge: Order both tables in the same order, iterate
efficiently, match the keys and join them

▪ Hash: Store inner relation in hash table, probe with outer
relation and join them

• Key Challenges: Parallelism and very irregular memory accesses

9

Outline

Background and Goal

PIMDAL

Experiments and Methodology

Evaluation and Insights

Conclusion & Outlook

Micro-Benchmarks

• Measure performance of standalone operators and compare to
CPU/GPU

▪ Kernel execution time

▪ IPC of in-order pipeline

▪ Weak and strong scaling analysis of end-to-end execution

• Main goal is to gain insights into performance of DB operators

• Comparison to CPU and GPU reference implementations

▪ Comparison to CPU using custom implementation based
on Apache Arrow

▪ Comparison to GPU using cudf

10

TPC-H Queries

• TPC-H benchmark widely used for comparing different
commercial DBMSs

• Suite of business oriented ad-hoc queries

• Use 5 queries from the TPC-H benchmark that do not rely on
variable-length datatypes

▪ Includes combinations of all DB operators

▪ All require addition, 4 of them multiplication

• Reference implementations:

▪ PyArrow on the CPU

▪ Cudf on the GPU

11

System Configurations

UPMEM PIM

System

Intel Xeon

Gold 6226R

Nvidia

A6000 GPU

PEs 2048 DPUs
16 cores

(32 threads)
108 SM

Memory 131 GB 128 GB 48 GB

Int32 Throughput 760 GOps 1606 GOps 38 TOps

Bandwidth 1.2 TB/s 79 GB/s 768 GB/s

12

Outline

Background and Goal

PIMDAL

PIMDAL: Data Movement Optimization

Experiments and Methodology

Evaluation and Insights

Conclusion

Towards Data-Centric Architectures

Kernel Execution Time Overview

13

Aggregation

• Comparing hash to sort based aggregation for different number
of unique elements/groups

• Sorting is inefficient for small number of output elements but
performance remains constant for a growing number

▪ Few elements cannot be partitioned efficiently

• Hash aggregation faster for smaller number of output elements

• Execution time increases for hash aggregation because steps are
repeated if output does not fit in SPM

14

Aggregation

• Comparing hash to sort based aggregation for different number
of unique elements/groups

• Sorting is inefficient for small number of output elements but
performance remains constant for a growing number

▪ Few elements cannot be partitioned efficiently

• Hash aggregation faster for smaller number of output elements

• Execution time increases for hash aggregation because steps are
repeated if output does not fit in SPM

14

Key Takeaway 1: SPM or cache utilization still plays a
role in the performance of PIM architectures, as the
example of hash and sort based aggregation shows.

Join

• Hash and sort-merge join are two commonly used join
algorithms

• On conventional systems hash join achieves significantly better
performance in the general use-case

• A surprising result is that on PIM systems sort-merge join
outperforms hash join

• What we currently know about algorithm performance does
not necessarily translate to PIM systems

• For more insights we can look into sort compared to hash
partitioning performance

15

Sort vs Hash Partitioning

• Sort outperforms hash partitioning

• Sort partitioning has lower arithmetic intensity and simpler
memory accesses

• Hash partitioning has higher arithmetic intensity and more
complex memory accesses

• This is exactly where conventional and PIM systems differ

• We try to mitigate this using the radix-cluster algorithm

▪ This leads to other issues such as synchronization

Sort Partitioning Hash Partitioning

16

Sort vs Hash Partitioning

• Sort outperforms hash partitioning

• Sort partitioning has lower arithmetic intensity and simpler
memory accesses

• Hash partitioning has higher arithmetic intensity and more
complex memory accesses

• This is exactly where conventional and PIM systems differ

• We try to mitigate this using the radix-cluster algorithm

▪ This leads to other issues such as synchronization

Sort Partitioning Hash Partitioning

16

Key Takeaway 2: The most efficient algorithms for PIM
can differ from the state-of-the-art on other

architectures. One such example is sort-merge
compared to hash join

Weak Scaling Analysis I

• The main bottleneck for hash aggregations is the initial, and for
selection also the final data transfers

• Sort aggregation is less limited by transfers due to longer
execution time

• Asynchronous execution only improves performance when
there are significant transfers from and to the host

▪ Transfers can be performed successively, improving
bandwidth utilization

Selection Hash Aggregation Sort Aggregation

17

Weak Scaling Analysis II

• Performance is similar for all three operators

• The biggest bottleneck in operator performance is data
redistribution between PIM-cores

• For all DB operators the weak scaling with the number of
PIM-cores or ranks is far from optimal

▪ PIM execution time remains constant

▪ Data transfer time increases due to contention

Ordering Sort-Merge Join Hash Join

18

Strong Scaling Analysis I

Selection Hash Aggregation Sort Aggregation

• Transfer and execution time improves with more PIM-cores, but
not optimally

• Bandwidth does not fully scale with PIM-cores, since memory
channels are shared by PIM-ranks

19

Strong Scaling Analysis II

Ordering Sort-Merge Join Hash Join

• The behavior is similar for the more complex operators

• Overall, using as many PIM-cores as possible is always beneficial
for the performance of DB operators on the UPMEM system

• The main bottleneck of complex DB operators remains data
redistribution between PIM-cores

20

Strong Scaling Analysis II

Ordering Sort-Merge Join Hash Join

• The behavior is similar for the more complex operators

• Overall, using as many PIM-cores as possible is always beneficial
for the performance of DB operators on the UPMEM system

• The main bottleneck of complex DB operators remains data
redistribution between PIM-cores

Key Takeaway 3: Current PIM systems are still limited by
the weaknesses of processor-centric architectures. This
is because processors have to be used for data transfers.

20

Comparison to CPU and GPU (8 GB)

• Simpler operators selection and aggregation show no speedup
on PIM and GPU when including transfer times

• Ordering with more memory accesses outperforms the CPU
on both PIM and GPU

• Join is slower on PIM than on GPU due to data redistribution

• On CPU it is slower due to small data size as we show next

21

Comparison to CPU (32 GB)

• Comparison of selection remains the same

• For aggregation speedup gets worse, likely because the cache
provides a higher performance uplift on the CPU

• The two more memory-bound operators perform the best on
PIM compared to the CPU

22

Comparison to CPU (32 GB)

• Comparison of selection remains the same

• For aggregation speedup gets worse, likely because the cache
provides a higher performance uplift on the CPU

• The two more memory-bound operators perform the best on
PIM compared to the CPU

22

Key Takeaway 4: Queries using ordering and join are
better suited for acceleration using PIM systems

compared to selection and aggregation.

TPC-H Benchmark CPU

• Outperform CPU on all queries but 6, by 3.9× on average

• Speedup in queries 3 to 5 is mainly due to joins

• In query 1 due to high number of columns aggregated

• Outperform CPU even with complex arithmetic operations

▪ Can represent decimals as 64-bit integers, multiplication is
simple due to magnitudes of numbers used

▪ Query 4 without multiplication performs best on PIM

23

TPC-H Benchmark GPU

• Outperform GPU in queries 1 and 6 that do not rely on join
by 2.2× and 3.3× respectively

• Join requires data redistribution over the host which is slow

▪ Single GPU has unified memory

• Overall TPC-H performance is limited by main memory

• Inter PIM-core communication is currently an issue, but scaling
PIM memory should be easier than GPU memory

24

TPC-H Benchmark GPU

• Outperform GPU in queries 1 and 6 that do not rely on join
by 2.2× and 3.3× respectively

• Join requires data redistribution over the host which is slow

▪ Single GPU has unified memory

• Overall TPC-H performance is limited by main memory

• Inter PIM-core communication is currently an issue, but scaling
PIM memory should be easier than GPU memory

24

Key Takeaway 5: Data analytics is well suited for more
data-centric architectures as the results from PIM and

also the GPU show.

Outline

Background and Goal

PIMDAL

Experiments and Methodology

Evaluation and Insights

Conclusion & Outlook

Conclusion & Outlook

• Memory-centric architectures can significantly accelerate data
analytics as PIMDAL shows on the UPMEM system

• We find strengths and weaknesses of PIM for implemented DB
operators using HW performance metrics

• Communication between PIM-cores is a key limitation of
current PIM systems

▪ Might require a fundamentally new memory architecture

• Memory-centric systems can play a key role in data analytics in
the future, especially if they can support even more complex
operations as found in machine learning for example

• Main memory is only one part of the equation, what happens if
data needs to be loaded from storage?

25

Questions?

“PIMDAL: Mitigating the Memory Bottleneck in Data
Analytics using a Real Processing-in-Memory System”
with more insights can be found on arXiv:

https://arxiv.org/abs/2504.01948

https://arxiv.org/abs/2504.01948

	Slide 1: PIMDAL Mitigating the Memory Bottleneck in Data Analytics using a Real Processing-in-Memory System
	Slide 2: Executive Summary
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Database Management Systems
	Slide 6: Database Operators
	Slide 7: Memory-Bound DB Operators
	Slide 8: Memory-Bound DB Operators
	Slide 9: UPMEM System Characteristics
	Slide 10: Challenges and Limitations
	Slide 11: Goal
	Slide 12: Outline
	Slide 13: Design Principles
	Slide 14: Structure
	Slide 15: Two Algorithmic Building Blocks
	Slide 16: Outline
	Slide 17: Micro-Benchmarks
	Slide 18: TPC-H Queries
	Slide 19: System Configurations
	Slide 20: Outline
	Slide 21: Kernel Execution Time Overview
	Slide 22: Aggregation
	Slide 23: Aggregation
	Slide 24: Join
	Slide 25: Sort vs Hash Partitioning
	Slide 26: Sort vs Hash Partitioning
	Slide 27: Weak Scaling Analysis I
	Slide 28: Weak Scaling Analysis II
	Slide 29: Strong Scaling Analysis I
	Slide 30: Strong Scaling Analysis II
	Slide 31: Strong Scaling Analysis II
	Slide 32: Comparison to CPU and GPU (8 GB)
	Slide 33: Comparison to CPU (32 GB)
	Slide 34: Comparison to CPU (32 GB)
	Slide 35: TPC-H Benchmark CPU
	Slide 36: TPC-H Benchmark GPU
	Slide 37: TPC-H Benchmark GPU
	Slide 38: Outline
	Slide 39: Conclusion & Outlook
	Slide 40: Questions?

