
PID-Join: A Fast In-Memory Join Algorithm
for Commodity PIM-Enabled DIMMs [SIGMOD ’23]

Chaemin Lim1, Suhyun Lee1, Jinwoo Choi1, Jounghoo Lee1, Seongyeon Park2,
Hanjun Kim1, Jinho Lee2, and Youngsok Kim1

1Yonsei University
2Seoul National University

Real-World PIM Tutorial @ MICRO ’23
October 29, 2023

High Performance Computing Platforms Lab
@ Department of Computer Science, Yonsei University

AI Platforms & Architecture Group
@ Department of Artificial Intelligence, Yonsei University

High Performance Computing Platforms Lab
@ Dept. of CS & Dept. of AI, Yonsei University

High Performance Computing Platforms Lab
@ College of Computing, Yonsei University

In-Memory Databases & Join
• In-memory DBs store their tables in main memory.
• CPUs access the main memory, not disks, to access tuples.

•Join combines columns from 1+ tables into a new table.
• A key relational operation of in-memory DBs
• e.g., SELECT R.key, R.name, S.quantity FROM R, S

WHERE R.key = S.key

2

key name key quantity
0 A
1 B
2 C

1 100
2 200
3 300

⨝
R.key = S.key

R S

R.key R.name S.quantity

= 1 B 100
2 C 200

Join is Memory-Intensive!
• Join is a memory-intensive operation.
• Accesses throughout the two tables to join the tuples.

•High memory access bandwidth is essential.
• For accelerating the memory-intensive in-memory join

• Conventional systems suffer from limited memory B/W.
• Hard to achieve higher memory B/W over the memory channels

3

The "memory wall" has become a major
performance bottleneck for in-memory joins!

Processing-In-Memory (PIM)
• A promising solution to overcome the memory wall
• Achieves significantly higher memory B/W over CPUs!
• By offloading computation to the in-memory processors

4

CPU
Conventional System

Standard Memory

DataDataDataData
DataDataDataData
DataDataDataData

PIM-enabled Memory

Offload
Computation

PIM-enabled System

In-Memory
Processor

In-Memory
Processor

The Memory Wall

High Internal
Bandwidth!

CPU

DataDataDataData

DataDataDataData
DataDataDataData

PIM Can Greatly Accelerate Joins!
•PIM provides 9.33x higher memory bandwidth!
• Adding more PIM devices further increases the B/W
• Not bounded to the count of memory channels

0

400

800

1 2 3 4 5 6 7 8

Ba
nd

w
id

th

[G
B/

s]

of DIMMs

Non-PIM PIM

716.8 GB/s with PIM

76.8 GB/s without PIM

9.33x

5

PIM can fully exploit the high internal bandwidth
and can greatly accelerate in-memory joins!

Prior Studies on PIM-Assisted Joins
•Key Limitation: Incompatible with PIM-enabled DIMMs
•Limitation #1: Focused on 3D-stacked memory (HMC)
• Exhibit architectural characteristics different from those of DIMMs

•Limitation #2: Rely on cycle-level timing simulations
• Inaccurate on real systems due to hardware modeling errors

6

Prior Study PIM Architecture Real System? Publicly Available?
Mirzadeh et al. [ABDS ’15] 3D-Stacked
Drumond et al. [ISCA ’17] 3D-Stacked
Kepe et al. [VLDB ’19] 3D-Stacked
Boroumand et al. [ICDE ’22] 3D-Stacked
PID-Join [SIGMOD ’23] DIMM

Prior studies on PIM-assisted join & our work

Characteristic #1: Per-Bank Processors

7

• A DIMM has ranks, chips, and banks in a hierarchical manner.
• PIM-enabled DIMMs place one processor per bank.
• In-DIMM processors (IDPs) & working RAMs (WRAMs) to each bank
• IDPs can perform computation & WRAM-bank data transfers.
• e.g., UPMEM DIMMs [HotChips ‘19], Samsung AxDIMM [HotChips ‘21]

Commercial PIM-enabled UPMEM DIMMs Internal architecture of an UPMEM DIMM

DIMM
Slot

DIMM
Rank 0

Rank 1

64/ 8/

…
Chip 0

8/

64/
64/

Bank
In-DIMM
Processor

Working
RAM

Memory
Bank

Bank
0

Bank
7

… …

/ 8

Chip 7
Bank

0
Bank

7
…

8

DIMM
Rank 0

Rank 1

Chip 0
Bank 0

…
Bank 7

…

Chip 1
Bank 0

…

Chip 2
Bank 0 Bank 7

…

8/8/ 8/

64/

…

64/

8/

8/

Last Level
Cache

Memory
Channel

Bank 7
…

64B Cache Line

Chip 7
Bank 0 Bank 7

……
8/

…
5756 58 63…

98 10 15…

10 2 7…

Working model of inter-bank communication

0 8 56

1 9 57

7 15 63

2 10 58

0 8 56

1 9 57

7 15 63

2 10 58

…

10 2 7…

…

…

…

…

0 8 56

1 9 57

7 15 63

2 10 58

98 10 15…

5756 58 63…

Characteristic #2:
Shared-Nothing Architecture

CPU
• No direct inter-bank

communication paths
between the banks.
• CPU must mediate all data

transfer through memory
channels.

• CPU needs to collect data
from the source banks and
distribute the data to the
destination banks.

9

DIMM
Rank 0

Rank 1

Chip 0
Bank 0

0 8 56…
Bank 7

…

Chip 1
Bank 0

1 9 57…

Chip 2
Bank 0 Bank 7

…

8/8/ 8/

64/

…

64/

8/

8/

Last Level
Cache

Memory
Channel

Bank 7
…

64B Cache Line

Chip 7
Bank 0 Bank 7

…7 15 63…
8/

2 10 58…

0 1 2 … 7
8 9 10 … 15

⁝
56 57 58 … 635756 58 63…

98 10 15…
10 2 7…

Working model of memory interleaving of a DIMM

CPU

Characteristic #3: Memory Interleaving

0 8 56…

1 9 57…

7 15 63…

2 10 58…

• Sequential data blocks get
byte-interleaved across
ranks/chips/banks.
• Provide high memory band-

width by accessing multiple
banks in parallel

• Transpose is necessary
for transferring sequential
data between the banks.

Design Goals

10

•Goal #1: Compatible with stock PIM-enabled DIMMs
• Prior studies only support 3D-stacked PIM and rely on simulations.

•Goal #2: Develop fast single-IDP join algorithms
• Each IDP can only access the data stored in its associated bank.

•Goal #3: Maximize inter-bank/host-PIM data xfer B/W
• Scaling the single-IDP join algorithm to multiple IDPs/DIMMs

requires fast and efficient inter-bank/DIMM data transfers.

Fast in-memory joins on “real PIM-enabled DIMMs”

Contents
•Background & Motivation
•PID-Join: Processing-In-DIMM Join Algorithm
•Overview
• Challenges & Key Ideas

•Evaluation
•Conclusion

11

Processing-In-DIMM Join (PID-Join)

12

⁝

CPU
Partition

PIM-Enabled DIMMs

Partition

Partition

Partition R
ot

at
e-

an
d-

St
re

amR

S

CPU CPU

R⨝S

Ra
nk

-w
is

e
U

no
rd

er
ed

 S
ca

tt
er

Ra
nk

-w
is

e
U

no
rd

er
ed

 G
at

he
r

PID-Join’s working model

Fast Single-IDP JoinsLimited Capabilities of IDPs

IDP #0 Single-IDP ⨝
PIM-Enabled DIMMs

IDP #1 Single-IDP ⨝

IDP #62 Single-IDP ⨝

IDP #63 Single-IDP ⨝

⁝

Rotate-and-StreamSlow Inter-Bank Communication

Unordered Scatter GatherSlow Host-PIM Data Transfer

Key IdeasChallenges

• Lack of native hardware support for complex arithmetic
• e.g., slow integer multiplication/division, floating-point operation

•Random bank access leads to significant B/W decrease
• 89% lower bandwidth than sequential WRAM-bank access
• Due to row activation of DRAM banks

13

0

5

10

Ta
bu

lat
ion OAT

CR
C3

2
Mult

Mult
Ad

d

Murm
ur

Th
ro

ug
hp

ut

[M
Tu

pl
es

/s
]

Hash functions
Single-IDP performance of various hash functions Bandwidth comparison on various access methods

XOR-based Multiply-based

Challenge #1: Limited Capability of IDPs

0

0.2
0.4

0.6

0.8

sequential RandomBa
nd

w
id

th
 [

G
B/

s]

Memory Bank

0

1

2

3

sequential RandomBa
nd

w
id

th
 [

G
B/

s]

Working RAM

Sequential Sequential

89%
20%

6.75x

14
PID-Join's Single-IDP hash join

IDP

WRAM

Memory
Bank R R

Partition

R
Partition

R
Partition

S
Partition

S
Partition

S
Partition

S

Rang
e

Partiti
on

Rang
e

Partiti
on

R
SR
SR
S

Mer
ge

Sort
-
Mer
gee
d R

Sort
-
Mer
gee
d S

Sort
-
Mer
ge

Sort
-
Mer
ge

Single-IDP sort-merge join

R Tuples

Hash Table
Build

R Partition

R Partition

R Partition

S Partition

S Partition

S Partition

Hash Table
Probe

S Tuples

Local
Partitioning

Local
Partitioning

R S
R S
R S

Key ValueWRAM

Bank

IDP

Hash Table

Random Access Sequential Access

JKTID
JKTID
JKTID

JKTID
JKTID
JKTID

• Enforce sequential WRAM-memory bank accesses
• Filter random accesses (e.g., hash table lookups) to the WRAM

• Utilize a fast XOR-based hash function
• Maximize the computational throughput of a single IDP

Key Idea #1: Optimized Single-IDP Joins

Enable fast single-IDP hash joins
which fully exploit the architectural characteristics!

Optimization of Other Join Algorithms
• Sort-merge join exploits range partitioning with the WRAM.
•Nested-loop join uses streaming memory access patterns.

15

PID-Join’s single-IDP sort-merge join

IDP

WRAM

Memory
BankR R

Partiti
on

R
Partiti
on

R
Partiti
on

S
Partiti
on

S
Partiti
on

S
Partiti
on

S

Ran
ge
Parti
tion

Ran
ge
Parti
tion

R
SR
SR
S

Me
rge

Sor
t-
Me
rge
ed
R

Sor
t-
Me
rge
ed
S

Sor
t-
Me
rge

Sor
t-
Me
rge

Single-IDP sort-merge
join

R Tuples

Sort

R Partition

R Partition

R Partition

S Partition

S Partition

S Partition

Sort

S Tuples

Range
Partitioning

Range
Partitioning

R S
R S
R S

WRAM

Bank

IDP

Random
Access

Sequential
Access

JKTID
JKTID
JKTID

JKTID
JKTID
JKTID

PID-Join’s single-IDP nested-loop join

IDP

WRAM

Memory
BankR R

Partiti
on

R
Partiti
on

R
Partiti
on

S
Partiti
on

S
Partiti
on

S
Partiti
on

S

Ran
ge
Parti
tion

Ran
ge
Parti
tion

R
SR
SR
S

Me
rge

Sor
t-
Me
rge
ed
R

Sor
t-
Me
rge
ed
S

Sor
t-
Me
rge

Sor
t-
Me
rge

Single-IDP sort-merge
join

R Tuples S TuplesR S
R S
R S

WRAM

Bank

IDP

Random
Access

Sequential
Access

JKTID
JKTID
JKTID

JKTID
JKTID
JKTID

Merge

S Buffer

S Buffer
⁝ x #Threadsx #Threads

R Buffer

R Buffer
⁝

Nested Loop Join

•Require the CPU to mediate the communication
• No direct communication paths between the banks

•Must transpose per-bank data using the CPUs
• Transposing all transferred data incurs high computational overheads.

Working model of inter-bank communication. The colors indicate the tuples’ destination banks. 16

Challenge #2: Slow Inter-Bank Communication

v Transpose x Transposew Shuffle

Host Memory (CPU)

⁝

Tu
pl

e
#

0
Tu

pl
e

#
1

⁝
Tu

pl
e

#
7

Tu
pl

e
#

0
Tu

pl
e

#
1

⁝
Tu

pl
e

#
7

Tu
pl

e
#

0
Tu

pl
e

#
1

⁝
Tu

pl
e

#
7

⁝

Tuple #0
Tuple #1

⁝
Tuple #7

Tuple #0
Tuple #1

⁝
Tuple #7

Tuple #0
Tuple #1

⁝
Tuple #7

⁝

Tuple #0
⁝

Tuple #0

Tuple #1
⁝

Tuple #1

Tuple #7
⁝

Tuple #7

Tuple #0

Tuple #1

Tuple #7
⁝

Tu
pl

e
#

0
⁝

Tu
pl

e
#

0

Tu
pl

e
#

1
⁝

Tu
pl

e
#

1

Tu
pl

e
#

7
⁝

Tu
pl

e
#

7

Tu
pl

e
#

0
Tu

pl
e

#
1

Tu
pl

e
#

7

Source (PIM) Destination (PIM)

⁝
Chip 7 Bank 0

Chip 1 Bank 0

Chip 0 Bank 0

Tuple #1
⁝

Tuple #7

Tuple #1
⁝

Tuple #7

Tuple #1
⁝

Tuple #7

⁝
Chip 7 Bank 0

Chip 1 Bank 0

Chip 0 Bank 0

Tuple #0
⁝

Tuple #0

Tuple #1
⁝

Tuple #1

Tuple #7
⁝

Tuple #7

Tuple #0

Tuple #1

Tuple #7

Tuple #0

Tuple #0

Tuple #0

u Load y Store

Key Idea #2: Rotate-and-Stream
• Implement an IDP-CPU cooperative all-to-all shuffle
• Minimize the CPU consumption of the data transpose

• Exploit the identical data layout of the src. & dst. banks
• Eliminate adjustment of data layouts & enable streaming tuples

17The working model of Rotate-and-Stream. The colors indicate the tuples’ destination banks.

⁝

Chip 0 Bank 0

Chip 1 Bank 0

Chip 7 Bank 0

Source (PIM) Destination (PIM)

⁝
Chip 7 Bank 0

Chip 1 Bank 0

Chip 0 Bank 0

⁝

v Rotate w Storeu Load

Tuple-wise
Rotate x7

Byte-wise
Rotate x1

Byte-wise
Rotate x7

Byte-wise
Rotate x0

Tuple #0
⁝

Tuple #0

Tuple #0

Tuple #1
⁝

Tuple #1

Tuple #1

Tuple #7
⁝

Tuple #7

Tuple #7

Tuple-wise
Rotate x1

Tuple-wise
Rotate x0

Tuple #0
⁝

Tuple #0

Tuple #0

Tu
pl

e
#

0
Tu

pl
e

#
1

⁝
Tu

pl
e

#
7

Tu
pl

e
#

0
Tu

pl
e

#
1

⁝
Tu

pl
e

#
7

Tu
pl

e
#

0
Tu

pl
e

#
1

⁝
Tu

pl
e

#
7

⁝

Tu
pl

e
#

0
Tu

pl
e

#
1

⁝
Tu

pl
e

#
7

Tuple #1
⁝

Tuple #7

Tuple #0

Tuple #1
⁝

Tuple #7

Tuple #0

Tuple #1
⁝

Tuple #7

Tuple #0

Tuple #1
⁝

Tuple #1

Tuple #1

Tuple #1

Tuple #7
⁝

Tuple #7

Tuple #7

Tuple #7
Tuple #7
Tuple #7

Tu
pl

e
#

0
Tu

pl
e

#
1

⁝
Tu

pl
e

#
7

Tu
pl

e
#

0
Tu

pl
e

#
1

⁝
Tu

pl
e

#
7

Tu
pl

e
#

1
Tu

pl
e

#
2

Tu
pl

e
#

6

Vector Registers (CPU)

Enable fast inter-bank all-to-all communication
with a single-byte rotation & streaming tuples!

• Per-bank region splitting incurs random host mem. Access
• To identify what data to be stored in each destination bank
• Collecting the data to construct a cache line

•Redundant loads on the CPU side
• To collect and perform byte-wise transposing

18

Working model of conventional Host-to-PIM data transfer

x Store

Host Memory

Per-bank Region0

Per-bank Region7

Per-bank Region1

Tuple #0

......

Tuple #8

Tuple #7
Tuple #15

Tuple #1
Tuple #9

64B Cache line
Tuple #0

Tuple #7

Tuple #1...

u Collect

64B Cache line
Tuple #8

Tuple #15

Tuple #9...

64B AVX Vector Register

64B AVX Vector Register

Tuple #0

Tuple #7

Tuple #1...

Tuple #8

Tuple #15

Tuple #9...

v Load w Transpose

...

...

Tu
pl

e
#

0

Tu
pl

e
#

7

Tu
pl

e
#

1
Tu

pl
e

#
8

Tu
pl

e
#

15

Tu
pl

e
#

9

Challenge #3: Slow Host-PIM Data Transfer

Tuple #0
Chip 0 Bank 0

Tuple #1
Chip 1 Bank 0

Tuple #7
Chip 7 Bank 0

...

Tuple #8

Tuple #9

Tuple #15

Destination

• Joins do not impose strict ordering to input/output tuples.
• Scatter/gather input/outputs in any order to exploit all IDPs.

•Rank-wise host-PIM data transfers rather than bank-wise
• Remove the need for region splitting and exploits AVX vector registers

Key Idea #3: Unordered Scatter Gather

19

Working model of PID-Join’s Unordered Scatter

w Storeu Stream
64B AVX Vector Register

Tuple #0

Tuple #7

Tuple #1...

64B AVX Vector Register
Tuple #8

Tuple #15

Tuple #9...

v Transpose

...

...

Tu
pl

e
#0

Tu
pl

e
#7

Tu
pl

e
#1

Tu
pl

e
#8

Tu
pl

e
#1

5

Tu
pl

e
#9

Tuple #0
Chip 0 Bank 0

Tuple #1
Chip 1 Bank 0

Tuple #7
Chip 7 Bank 0

...

Tuple #8

Tuple #9

Tuple #15

DestinationHost Memory

No Region

Tuple #0

Tuple #7

Tuple #1...

Tuple #8

Tuple #15

Tuple #9...

Achieve high bandwidth host-PIM data transfer
with sequential large granularity memory access!

Contents
•Background & Motivation
•PID-Join: Processing-In-DIMM Join Algorithm
•Evaluation
•Conclusion

20

Experimental Setup
• Baseline & PIM Systems
• Intel Xeon Gold 5222 CPU
• Five DDR4 channels per system
• Baseline: five standard DDR4 channels
• PIM: four PIM + one standard channels

•Workloads
• Synthetic benchmarks
• 32-bit integer join keys & tuple IDs
• |R|:|S| ratios from 1:1 to 1:32

• Adjust |S| from 64-M to 512-M tuples
• Uniform R, uniform/skewed S

• Four TPC-H queries involving a two-way join

21

Our PIM system equipped with eight UPMEM DIMMs
(a total of 1,024 IDPs)

Fast Join Executions

•Up to 2.43x faster join latency compared to PRHO*
• 1.92x (hash), 4.79x (sort-merge), 83.22x (nested-loop) geomean improvements

22

Latency of CPU-based join algorithms and PID-Join with |R|:|S| ratio of 1:1 with 512-M tuples of |S|

* Histogram-based Optimized Parallel Radix Join (PRHO) [VLDB ‘13]

0 50 100 150 200 250

Nested-Loop (PID-Join)
Nested-Loop (CPU)

Latency [minute]

0 5 10 15 20 25 30 35 40

Sort-Merge (PID-Join)
M-PASS

Latency [sec]

0 1 2 3 4 5 6 7 8 9

Hash (PID-Join)
PRHO

Latency [sec]

10.17x

6.26x

2.43x

Fast Inter-Bank Communication &
Host-PIM Data Transfers

• Can be achieved by enabling streaming transposes
• with large access granularity using vector registers.

23

0

4

8

12

32MB 128MB 512MB 2GB

Ba
nd

w
id

th
 [

G
B/

s]

Transfer Size

Conventional Rotate-and-Stream

0

4

8

12

51
2M

B

2G
B

8G
B

32
GB

51
2M

B

2G
B

8G
B

32
GB

Host-to-PIM PIM-to-Host

Ba
nd

w
id

th
 [

G
B/

s]

Transfer Size

IDP-wise Data Transfer Rank-wise USG

All-to-all communication bandwidth comparison Host-PIM data transfer bandwidth comparison

6.42x
3.91x

Effect of Data Transfer Optimizations

24

0

4

8

12

PRHO PID Hash +RnS PID Join

1:1

La
te

nc
y

[S
ec

]
Gather

Join

Inter-IDP Communication

Partitioning

Scatter

Join execution latency of PRHO and PID-Join with |R|:|S|=1:1 and |S|=512-M tuples

1.92x 3.03x

IDP-
friendly

Join

+USG

• Achieved 1.92x speedup with rotate-and-stream
• Achieved 3.03x speedup RnS + unordered scatter/gather!

Varying Rank Counts

• Easily scales-out with varying rank counts.
• The number of IDPs increases accordingly
• Some memory padding incurs little latency increase

25

0

100

200

300

0

1

2

4 8 16 4 8 16 4 8 16

1:1 1:4 1:16

Th
ro

ug
hp

ut
[M

Tu
pl

es
/s

]

La
te

nc
y

[s
ec

]

|R|:|S| Ratio / # of Ranks

In-CPU Processing In-PID Processing Throughput

0

100

200

300

0

1

2

4 8 16 4 8 16 4 8 16

1:1 1:4 1:16

Th
ro

ug
hp

ut
[M

Tu
pl

es
/s

]

La
te

nc
y

[s
ec

]

|R|:|S| Ratio / # of Ranks

Join execution latency of PID-Join with varying rank counts and |R|:|S| ratios
(a) Zipf factor = 0.0 (b) Zipf factor = 0.5

Varying Collision Handling Methods

•Linear probe shows the highest hash performance.
• Due to its low computational overhead.

26

0%

25%

50%

75%

100%

0.0

0.5

1.0

1.5

LP QP DH LP QP DH LP QP DH
1:1 1:4 1:16

Co
llis

io
n

Ra
te

No
rm

al
ize

d
La

te
nc

y

Collision Handling Method / |R|:|S| Ratio

0%

25%

50%

75%

100%

0.0

0.5

1.0

1.5

LP QP DH LP QP DH LP QP DH

0.25 0.5 0.75

Co
llis

io
n

Ra
te

No
rm

al
ize

d
La

te
nc

y

Collision Handling Method / Zipf Factor

Single-IDP performance of PID-Join with varying collision handling methods

Potential Speedup with TPC-H Queries

• Up to 3.41x faster two-way join for TPC-H queries
• Geomean speedup of 2.55x with joins of the queries

• Up to 1.26x faster TPC-H queries
• Geomean estimated speedup of 1.14x with four two-way join queries.

27

0

20

40
M

on
et

DB

M
on

et
DB

 w
/

PI
D-

Jo
in

M
on

et
DB

M
on

et
DB

 w
/

PI
D-

Jo
in

M
on

et
DB

M
on

et
DB

 w
/

PI
D-

Jo
in

M
on

et
DB

M
on

et
DB

 w
/

PI
D-

Jo
in

Q4 Q12 Q14 Q19

La
te

nc
y[

se
c]

TPC-H Query

Others Join

0

1

2

3

4

Q4 Q12 Q14 Q19

Sp
ee

du
p

TPC-H Query

Join Query

Breakdown of the TPC-H query execution latency of MonetDB The potential speedup of PID-Join

Conclusion
• PIM is highly promising for accelerating in-memory joins.
• Achieve significantly higher memory bandwidth over the CPU

• First study which accelerates join on PIM-enabled DIMMs
• The existing PIM-assisted joins focus on 3D-stacked PIM devices.
• The existing PIM-assisted joins rely on cycle-level simulations.

• PID-Join, a fast PIM-assisted in-memory join algorithm
• First work that implements PIM-assisted join on the real system
• Optimized single-IDP joins, Rotate-and-Stream, and Unordered Scatter-Gather
• Achieve geometric-mean speedup of 1.92x vs. PRHO

28

Thank You!
•Any questions?
• Please refer to our paper for more details & experimental results!
• https://github.com/yonsei-hpcp/pid-join

Youngsok Kim
Assistant Professor
Department of Computer Science
College of Computing
Yonsei University
Email: youngsok@yonsei.ac.kr
Website: https://hpcp.yonsei.ac.kr/~youngsok

29

