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In-Memory Databases & Join
• In-memory DBs store their tables in main memory.
• CPUs access the main memory, not disks, to access tuples.

•Join combines columns from 1+ tables into a new table.
• A key relational operation of in-memory DBs
• e.g., SELECT R.key, R.name, S.quantity FROM R, S

WHERE R.key = S.key
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key name key quantity
0 A
1 B
2 C

1 100
2 200
3 300

⨝
R.key = S.key

R S

R.key R.name S.quantity

= 1 B 100
2 C 200



Join is Memory-Intensive!
• Join is a memory-intensive operation.
• Accesses throughout the two tables to join the tuples.

•High memory access bandwidth is essential.
• For accelerating the memory-intensive in-memory join

• Conventional systems suffer from limited memory B/W.
• Hard to achieve higher memory B/W over the memory channels
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The "memory wall" has become a major
performance bottleneck for in-memory joins!



Processing-In-Memory (PIM)
• A promising solution to overcome the memory wall
• Achieves significantly higher memory B/W over CPUs!
• By offloading computation to the in-memory processors
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PIM Can Greatly Accelerate Joins!
•PIM provides 9.33x higher memory bandwidth!
• Adding more PIM devices further increases the B/W
• Not bounded to the count of memory channels
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PIM can fully exploit the high internal bandwidth 
and can greatly accelerate in-memory joins!



Prior Studies on PIM-Assisted Joins
•Key Limitation: Incompatible with PIM-enabled DIMMs
•Limitation #1: Focused on 3D-stacked memory (HMC)
• Exhibit architectural characteristics different from those of DIMMs

•Limitation #2: Rely on cycle-level timing simulations
• Inaccurate on real systems due to hardware modeling errors
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Prior Study PIM Architecture Real System? Publicly Available?
Mirzadeh et al. [ABDS ’15] 3D-Stacked
Drumond et al. [ISCA ’17] 3D-Stacked
Kepe et al. [VLDB ’19] 3D-Stacked
Boroumand et al. [ICDE ’22] 3D-Stacked
PID-Join [SIGMOD ’23] DIMM

Prior studies on PIM-assisted join & our work



Characteristic #1: Per-Bank Processors
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• A DIMM has ranks, chips, and banks in a hierarchical manner.
• PIM-enabled DIMMs place one processor per bank.
• In-DIMM processors (IDPs) & working RAMs (WRAMs) to each bank
• IDPs can perform computation & WRAM-bank data transfers.
• e.g., UPMEM DIMMs [HotChips ‘19], Samsung AxDIMM [HotChips ‘21]

Commercial PIM-enabled UPMEM DIMMs Internal architecture of an UPMEM DIMM
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CPU
• No direct inter-bank 

communication paths 
between the banks.
• CPU must mediate all data 

transfer through memory 
channels.

• CPU needs to collect data
from the source banks and 
distribute the data to the 
destination banks.
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• Provide high memory band-

width by accessing multiple
banks in parallel

• Transpose is necessary
for transferring sequential 
data between the banks.



Design Goals
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•Goal #1: Compatible with stock PIM-enabled DIMMs
• Prior studies only support 3D-stacked PIM and rely on simulations.

•Goal #2: Develop fast single-IDP join algorithms
• Each IDP can only access the data stored in its associated bank.

•Goal #3: Maximize inter-bank/host-PIM data xfer B/W
• Scaling the single-IDP join algorithm to multiple IDPs/DIMMs 

requires fast and efficient inter-bank/DIMM data transfers.

Fast in-memory joins on “real PIM-enabled DIMMs”



Contents
•Background & Motivation
•PID-Join: Processing-In-DIMM Join Algorithm
•Overview
• Challenges & Key Ideas

•Evaluation
•Conclusion
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Processing-In-DIMM Join (PID-Join)
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• Lack of native hardware support for complex arithmetic
• e.g., slow integer multiplication/division, floating-point operation

•Random bank access leads to significant B/W decrease
• 89% lower bandwidth than sequential WRAM-bank access
• Due to row activation of DRAM banks 
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PID-Join's Single-IDP hash join
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• Enforce sequential WRAM-memory bank accesses
• Filter random accesses (e.g., hash table lookups) to the WRAM

• Utilize a fast XOR-based hash function
• Maximize the computational throughput of a single IDP

Key Idea #1: Optimized Single-IDP Joins

Enable fast single-IDP hash joins
which fully exploit the architectural characteristics!



Optimization of Other Join Algorithms
• Sort-merge join exploits range partitioning with the WRAM.
•Nested-loop join uses streaming memory access patterns.
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PID-Join’s single-IDP sort-merge join
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PID-Join’s single-IDP nested-loop join

IDP

WRAM

Memory
BankR R

Partiti
on

R
Partiti
on

R
Partiti
on

S
Partiti
on

S
Partiti
on

S
Partiti
on

S

Ran
ge
Parti
tion

Ran
ge
Parti
tion

R
SR
SR
S

Me
rge

Sor
t-
Me
rge
ed
R

Sor
t-
Me
rge
ed
S

Sor
t-
Me
rge

Sor
t-
Me
rge

Single-IDP sort-merge 
join

R Tuples S TuplesR S
R S
R S

WRAM

Bank

IDP

Random 
Access

Sequential 
Access

JKTID
JKTID
JKTID

JKTID
JKTID
JKTID

Merge

S Buffer

S Buffer
⁝ x #Threadsx #Threads

R Buffer

R Buffer
⁝

Nested Loop Join



•Require the CPU to mediate the communication
• No direct communication paths between the banks

•Must transpose per-bank data using the CPUs
• Transposing all transferred data incurs high computational overheads.

Working model of inter-bank communication. The colors indicate the tuples’ destination banks. 16

Challenge #2: Slow Inter-Bank Communication
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Key Idea #2: Rotate-and-Stream
• Implement an IDP-CPU cooperative all-to-all shuffle
• Minimize the CPU consumption of the data transpose

• Exploit the identical data layout of the src. & dst. banks
• Eliminate adjustment of data layouts & enable streaming tuples

17The working model of Rotate-and-Stream. The colors indicate the tuples’ destination banks.
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• Per-bank region splitting incurs random host mem. Access
• To identify what data to be stored in each destination bank
• Collecting the data  to construct a cache line

•Redundant loads on the CPU side
• To collect and perform byte-wise transposing
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Working model of conventional Host-to-PIM data transfer
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• Joins do not impose strict ordering to input/output tuples.
• Scatter/gather input/outputs in any order to exploit all IDPs.

•Rank-wise host-PIM data transfers rather than bank-wise
• Remove the need for region splitting and exploits AVX vector registers

Key Idea #3: Unordered Scatter Gather
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with sequential large granularity memory access!
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Experimental Setup
• Baseline & PIM Systems
• Intel Xeon Gold 5222 CPU
• Five DDR4 channels per system
• Baseline: five standard DDR4 channels
• PIM: four PIM + one standard channels

•Workloads
• Synthetic benchmarks
• 32-bit integer join keys & tuple IDs
• |R|:|S| ratios from 1:1 to 1:32

• Adjust |S| from 64-M to 512-M tuples
• Uniform R, uniform/skewed S

• Four TPC-H queries involving a two-way join
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Our PIM system equipped with eight UPMEM DIMMs
(a total of 1,024 IDPs)



Fast Join Executions

•Up to 2.43x faster join latency compared to PRHO*
• 1.92x (hash), 4.79x (sort-merge), 83.22x (nested-loop) geomean improvements
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Latency of CPU-based join algorithms and PID-Join with |R|:|S| ratio of 1:1 with 512-M tuples of |S|

* Histogram-based Optimized Parallel Radix Join (PRHO) [VLDB ‘13]
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Fast Inter-Bank Communication & 
Host-PIM Data Transfers

• Can be achieved by enabling streaming transposes 
• with large access granularity using vector registers.
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Effect of Data Transfer Optimizations
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Varying Rank Counts

• Easily scales-out with varying rank counts.
• The number of IDPs increases accordingly
• Some memory padding incurs little latency increase
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Varying Collision Handling Methods

•Linear probe shows the highest hash performance.
• Due to its low computational overhead.
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Potential Speedup with TPC-H Queries

• Up to 3.41x faster two-way join for TPC-H queries
• Geomean speedup of 2.55x with joins of the queries

• Up to 1.26x faster TPC-H queries
• Geomean estimated speedup of 1.14x with four two-way join queries.
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Conclusion
• PIM is highly promising for accelerating in-memory joins.
• Achieve significantly higher memory bandwidth over the CPU

• First study which accelerates join on PIM-enabled DIMMs
• The existing PIM-assisted joins focus on 3D-stacked PIM devices.
• The existing PIM-assisted joins rely on cycle-level simulations.

• PID-Join, a fast PIM-assisted in-memory join algorithm
• First work that implements PIM-assisted join on the real system
• Optimized single-IDP joins, Rotate-and-Stream, and Unordered Scatter-Gather
• Achieve geometric-mean speedup of 1.92x vs. PRHO
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Thank You!
•Any questions?
• Please refer to our paper for more details & experimental results!
• https://github.com/yonsei-hpcp/pid-join
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