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In-Memory Databases & Join

« In-memory DBs store their tables in main memory.
» CPUs access the main memory, not disks, to access tuples.

 Join combines columns from 1+ tables into a new table.
* A key relational operation of in-memory DBs

*e.g., SELECT R.key, R.name, S.quantity FROM R, S
WHERE R.key = S.key

key | name key | quantity R.key [ R.name | S.quantity
0 A N 1 100 — 1 B 100
1 B Rkey = S.key 2 200 2 C 200
2 C 3 300
R S
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Join is Memory-Intensive!

* Join is a memory-intensive operation.
 Accesses throughout the two tables to join the tuples.

- High memory access bandwidth is essential.
» For accelerating the memory-intensive in-memory join

» Conventional systems suffer from limited memory B/W.
« Hard to achieve higher memory B/W over the memory channels

The "memory wall” has become a major

performance bottleneck for in-memory joins!

geny High Performance Computing Platforms Lab
RS¥ @ College of Computing, Yonsei University



Processing-In-Memory (PIM)

A promising solution to overcome the memory wall

* Achieves significantly higher memory B/W over CPUs!
* By offloading computation to the in-memory processors

Conventional System PIM-enabled System
CPU CPU
A Offload
The Memorv Wall - Hk
b | e,
Data Data Data Data ﬁ A o Al
Data Data Data Data I o _I_ I _ I
Data Data Data Data Data 1 Data I' Data @ Data
Data Data Data Data Data | Data v Data I Data
Standard Memory PIM-enabled Memory
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PIM Can Greatly Accelerate Joins!

* PIM provides 9.33x higher memory bandwidth!
« Adding more PIM devices further increases the B/W

« Not bounded to the count of memory channels
-Non-PIM__#PIM

800 1

--—- 716.8 GB/s with PIM

Bandwidth
[GB/s]

0 ——p———h——h kA 76.8 GB/s without PIM
1 2 3 4 5 6 / 8
# of DIMMs

PIM can fully exploit the high internal bandwidth

and can greatly accelerate in-memory joins!
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Prior Studies on PIM-Assisted Joins

- Key Limitation: Incompatible with PIM-enabled DIMMs

 Limitation #1: Focused on 3D-stacked memory (HMC)
* Exhibit architectural characteristics different from those of DIMMs

- Limitation #2: Rely on cycle-level timing simulations
» Inaccurate on real systems due to hardware modeling errors

Prior Study PIM Architecture Real System? Publicly Available?
Mirzadeh et al. [ABDS "15] 3D-Stacked X X
Drumond et al. [ISCA "17] 3D-Stacked X X
Kepe et al. [VLDB '19] 3D-Stacked X X
Boroumand et al. [ICDE 22] 3D-Stacked X X
PID-Join [SIGMOD '23] DIMM v 4 v 4

Prior studies on PIM-assisted join & our work
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Characteristic #1: Per-Bank Processors

* A DIMM has ranks, chips, and banks in a hierarchical manner.

- PIM-enabled DIMMs place one processor per bank.
 In-DIMM processors (IDPs) & working RAMs (WRAMs) to each bank
« IDPs can perform computation & WRAM-bank data transfers.
 e.g.,, UPMEM DIMMs [HotChips '19], Samsung AXDIMM [HotChips ‘21]

DIMM ,|Bank
Chip 0 Chip 7 { Proc?ssor
Baonk Ba7nk Baonk Ba7nk Working
t i A A \ RAtM
o4 48 18 \\ Memory
. 94 Rank 1 \ Ba”:;
Commercial PIM-enabled UPMEM DIMMs Internal architecture of an UPMEM DIMM
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Characteristic #2:
Shared-Nothing Architecture

DIMM

* No direct inter-bank
communication paths
between the banks.

 CPU must mediate all data

transfer through memory
channels.

« CPU needs to collect data
from the source banks and
distribute the data to the
destination banks.
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Characteristic #3: Memory Interleaving

. : DIMM
« Sequential data blocks get CPU Rank 0 [Grip 0
byte-interleaved across ol [
ranks/chips/banks. i s — s T
_ _ . | Last Level Chip 1
» Provide high memory band- | | cache LI
width by accessing multiple || **® <t ] | e == g
. 0|1|2|..|7 7 Chip 2
banks in parallel || CeTeaol fas b2 ——
_ [56]57]58] ... [63] [ 2 [10]..-[58]] ...
- Transpose is necessary : e
for transferring sequential Chip 7 __
: an an
data between the banks. Memory | e (7135} (&) .
Channel 8 : )
. - Rank 1
? 2L%Peggifrfé;ngimgewfimtletrigtg Platforms Lab Working model of memory interleaving of a DIMM




Design Goals

Fast in-memory joins on “real PIM-enabled DIMMs”

- Goal #1: Compatible with stock PIM-enabled DIMMs
* Prior studies only support 3D-stacked PIM and rely on simulations.

- Goal #2: Develop fast single-IDP join algorithms
« Each IDP can only access the data stored in its associated bank.

« Goal #3: Maximize inter-bank/host-PIM data xfer B/W

» Scaling the single-IDP join algorithm to multiple IDPs/DIMMs
requires fast and efficient inter-bank/DIMM data transfers.
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* PID-Join: Processing-In-DIMM Join Algorithm
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Processing-In-DIMM Join (PID-Join)

Challenges Key Ideas
Limited Capabilities of IDPs Fast Single-IDP Joins
Slow Inter-Bank Communication Rotate-and-Stream
Slow Host-PIM Data Transfer Unordered Scatter Gather
CPU PIM-Enabled DIMMs CPU PIM-Enabled DIMMs CPU
= gH{Patiton5E —==== ko _|(I0P#0 S5—[(sngelDP>a J} | &
RE—o®| —— 14 y |2®| RS
— 2 5% Partition HEH — = = = = ] >[IDP #1 EHE—| Single-IDP X |}~ .2
1 .; = L : "('g' .|‘.'| ; J .; et
| =@ : Sy, : x 9
] Col " o ! : ) c o
= — S PartitionHEH — = === (22 2 §[IDP #62 = B — [ Single-IDP I ]J A=
—] ) . )
— § Partition B — = = == = ° S[IDP #63 5B —( Single-IDP X ||~ 5

PID-Join’s working model
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Challenge #1: Limited Capability of IDPs

- Lack of native hardware support for complex arithmetic
* e.g., slow integer multiplication/division, floating-point operation

- Random bank access leads to significant B/W decrease
* 89% lower bandwidth than sequential WRAM-bank access
 Due to row activation of DRAM banks

&= 10 B XOR-based M Multiply-based Memory Bank Working RAM
7) e e — — e -
a w 0.8 - = 3 - 20%
I ;5. 1 6.75x | = 89% m $
35 I I ©, 0-67 O 2 -
o —
== < 0.4 - £
£z 7 5 8 ;.
D _ 0 ial 0 Sequential R
A Hash functions Sequential Random q andom
Single-IDP performance of various hash functions Bandwidth comparison on various access methods
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Key Idea #1: Optimized Single-IDP Joins

* Enforce sequential WRAM-memory bank accesses
* Filter random accesses (e.g., hash table lookups) to the WRAM

» Utilize a fast XOR-based hash function
« Maximize the computational throughput of a single IDP

Enable fast single-IDP hash joins

which fully exploit the architectural characteristics!
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Optimization of Other Join Algorithms

» Sort-merge join exploits range partitioning with the WRAM.
* Nested-loop join uses streaming memory access patterns.

= Random = Sequential = Random = Sequential
IDP Access Access 1DP Access AcCcess
Range Range .
e Sort Merge . Nested Loop Join |<—
_’[Partltlonlng] [ ] [ g ] [ Sort ] [Part|t|on|ng]‘- >[ P
I * T I
WRAM m m "WRAM
R Buffer S Buffer —
: X #Threads X #Threads
R Buffer | S BEffer I—|
Bank_ 3 Bank 3
R Tuples PR Partition]| IR M S| |S Partition'|: S Tuples R Tuples RIS S Tuples
e »IR Partition| [R X S| [S Partition}e IR e RXS =
TID| K —p|R Partition| |[R X S| [S Partitionl{— TID| K TID| K RXS TID| K

PID-Join’s single-IDP sort-merge join
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Challenge #2: Slow Inter-Bank Communication

* Require the CPU to mediate the communication
« No direct communication paths between the banks

- Must transpose per-bank data using the CPUs
 Transposing all transferred data incurs high computational overheads.

O Load ® Transpose ® Shuffle O Transpose ® Store
Chip 0 Bank 0 _ Tuole # Chip 0 Bank 0
Tuple #0 % % TEEI: #(1) Iﬁg:: Zg g e Tuple #0
Tupl=e #0 (i:i;;_;i ;_;l E E %%-- %;L Tupl=e #1
[ Tuple #0 | al Ll B A Tuple #7 Tuple #0 i Ll B [ Tuple #7 |
Chip 1 Bank 0 ol~| |~ Tuple #0 Tuple #1 —“l=]| |~ Chip 1 Bank 0
Tuple #1 b e I Tuple #1 Tuple #1 el 15 Tuple #0
Tuple #1 =1l S = - sls|~ S Tuple #1
: ~|~ o = ~ :
™ Tuple #1_| = Tuple #7 Tuple #1 [ Tuple 7]
ChiTP 7| B;gk 0 o[- [ Tuple #0 Tuple #7 NANEE ChiTP 7| Bzgk 0
uple uple
Tuple #7 2l2l-|8 T”plie #1 T”p'ie #7 2lal-(2 Tuple #1
[ Tuple #7 ] a Ll Tuple #7 Tuple #7 o Ll I [ Tuple #7 ]

Source (PIM) Host Memory (CPU) Destination (PIM)
)  Working model of inter-bank communication. The colors indicate the tuples’ destination banks. 16




Key Idea #2: Rotate-and-Stream

» Implement an IDP-CPU cooperative all-to-all shuffle
« Minimize the CPU consumption of the data transpose

 Exploit the identical data layout of the src. & dst. banks
» Eliminate adjustment of data layouts & enable streaming tuples

Enable fast inter-bank all-to-all communication

with a single-byte rotation & streaming tuples!

gz High The w_orkian model of Rotate-and-Stream. The colors indicate the tuples’ destination banks. 17
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Challenge #3: Slow Host-PIM Data Transfer

* Per-bank region splitting incurs random host mem. Access
* To identify what data to be stored in each destination bank
» Collecting the data to construct a cache line

- Redundant loads on the CPU side
* To collect and perform byte-wise transposing

O Collect ® Load ® Transpose O Store
T648 Cache ine” — 7 |6Ao VK Vacor Register "~ " T T1 | ChipOBanko
Per-bank Region, |—Tublé #0 Tuple #0 Tuple #0 g IR]' A Tuple #8
Tuple #8 Tuple #1 Tuple #1 ol o oll : ]
: : ‘_%T% : §_| : Chip 1 Bank 0
- Tuple #1 | Tuple #7 Tuple #7 | o I S NI e Tuple #1
Per-bank Region, — "0 &8 ————— 88" —_ """ _ _ ___ LALS s 34 Tuple #9
. I'e4B Cache line, ... 64B AVX Vector Register R —| { 5
v : Tuple #8 Tuple #8 -, Al®|l@| B[ Chip 7 Bank 0
. uple |: e, *(] 1> Tuple #7
- el ] Tu Ie #9 Tu Ie #9 o : p
Per-bank Region; [ Typle #15 }----: ¥ 2 P o (;;i %31 L] P Tuple %15
I: | v|F|F = L.
Host Memory Lo l._..._.T.l.J._Fflf_f.l._?.g..l._l | _T_upf fls_ _l'_ A A | '____: Destination
Working model of conventional Host-to-PIM data transfer
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Key Idea #3: Unordered Scatter Gather

» Joins do not impose strict ordering to input/output tuples.
« Scatter/gather input/outputs in any order to exploit all IDPs.

- Rank-wise host-PIM data transfers rather than bank-wise
* Remove the need for region splitting and exploits AVX vector registers

Achieve high bandwidth host-PIM data transfer

with sequential large granularity memory access!
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Experimental Setup

- Baseline & PIM Systems
» Intel Xeon Gold 5222 CPU

» Five DDR4 channels per system :
 Baseline: five standard DDR4 channels S ey
R |

Ay (8 UPMEM DIMMs, 4 Channels)

* PIM: four PIM + one standard channels

- Workloads | . T
 Synthetic benchmarks — UEF o
 32-bit integer join keys & tuple IDs

Host DRAM Devices
(2 DDR4 DIMMs, 1 Channel)

* |R| : |S| ratios from 1:1to 1:32 Our PIM system equipped it ight UPE DIMMs
« Adjust |S| from 64-M to 512-M tuples (a total of 1,024 IDPs)
« Uniform R, uniform/skewed S
« Four TPC-H queries involving a two-way join
High Performance Computing Platforms Lab 71
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Fast Join Executions

Nested-Loop (CPU) F
Cmseeeeee——— 1 0. 17X

Nested-Loop (PID-Join)
0 100 150 200 250

Latency [minute]

M-PASS
Sort-Merge (PID-Join) —————————————————— 6.26Xx

0 5 10 15 20 25 30 35 40
Latency [sec]

PRHO
Hash (PID-Join) m———— 2.4 3X

0 1 2 3 4 5 6 7 8 9
Latency [sec]

Latency of CPU-based join algorithms and PID-Join with | R|:| S| ratio of 1:1 with 512-M tuples of |S|

- Up to 2.43x faster join latency compared to PRHO*

* 1.92x (hash), 4.79x (sort-merge), 83.22x (nested-loop) geomean improvements

% High Performance Computing Platforms Lab
S & @ College of Computing, Yonsei University

22
* Histogram-based Optimized Parallel Radix Join (PRHO) [VLDB ‘13]



Fast Inter-Bank Communication &

Host-PIM Data Transfers

B Conventional @ Rotate-and-Stream

B IDP-wise Data Transfer B Rank-wise USG

D) 12 - 6.42x ‘w12 1
~ ~
(=] ] 8 -
S, S,
_I-E 8 A -|-=-l 4 -
= =
S S 0 -
T 4 - o
; ;
@ @
0- Host-to-PIM PIM-to-Host
32MB 128MB  512MB 2GB 050 0-Hos
Transfer Size Transfer Size
All-to-all communication bandwidth comparison Host-PIM data transfer bandwidth comparison

- Can be achieved by enabling streaming transposes

- with large access granularity using vector registers.
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Effect of Data Transfer Optimizations

1.92x 3.03x

|

—
N
J

O Gather

@ Join

O Inter-IDP Communication

Latency [Sec]
(0 0)

4 -
—_ = B Partitioning
0
PRHO  IDP-  4pps  4usg | [ EDCatter
friendly
Join

Join execution latency of PRHO and PID-Join with |R|:|S|=1:1and |S|=512-M tuples

* Achieved 1.92x speedup with rotate-and-stream
* Achieved 3.03x speedup RnS + unordered scatter/gather!
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Varying Rank Counts

Bl n-CPU Processing EmIn-PID Processing -0-Throughput
'g' 300 -'é- z 'g' 2 - 300 ¥ E
)] ) 7)) Qwn
—_— 0 e L O
> 200 @5 > - 200 og
Q = 5 Q 1 - 3 5
S E S =
% 100 £ = % - 100 £ =
- | -
0 0 -
|R|:|S| Ratio / # of Ranks |R|:|S| Ratio / # of Ranks
(a) Zipf factor = 0.0 (b) Zipf factor = 0.5

Join execution latency of PID-Join with varying rank counts and |R|:|S| ratios

- Easily scales-out with varying rank counts.
« The number of IDPs increases accordingly
« Some memory padding incurs little latency increase
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Varying Collision Handling Methods

1.5 1 - 100% . 15 - - 100%
9 c
c Q
9 75% 8 & 75% 9
® 1.0 Iy _B' 1.0 S
3 50% & N 50% S
= % '_é’ 0.5 %
© 0.5 = ) =
£ 25% S & 25% G
o =
=

0.0 0% 0.0 0%

Collision Handling Method / |R|:|S]| Ratio Collision Handling Method / Zipf Factor

Single-IDP performance of PID-Join with varying collision handling methods

- Linear probe shows the highest hash performance.
* Due to its low computational overhead.

geen® High Performance Computing Platforms Lab %
v ¢ @ College of Computing, Yonsei University




Potential Speedup with TPC-H Queries

— 40 mOthers  ®Join —-+-Join _ -#-Query
3 4 1 '
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'S 20 I I A
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o
L 2ls_| 8]z 8|5 | 8[| 32 a
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c (R c a5 c 0 —x c a5 (7)) F
S |sal g |BA| & |BA| & |BA 1 - — -
S o S o S o S o
> > = > 0 . . .
Q4 Q12 Q14 Q19 Q4 Q12 Q14 Q19
TPC-H Query TPC-H Query
Breakdown of the TPC-H query execution latency of MonetDB The potential speedup of PID-Join

« Up to 3.41x faster two-way join for TPC-H queries
« Geomean speedup of 2.55x with joins of the queries

« Up to 1.26x faster TPC-H queries
_» Geomean estimated speedup of 1.14x with four two-way join queries.

geeny High Performance Computing Platforms Lab
&g @ College of Computing, Yonsei University

27



Conclusion

* PIM is highly promising for accelerating in-memory joins.
* Achieve significantly higher memory bandwidth over the CPU

» First study which accelerates join on PIM-enabled DIMMs

* The existing PIM-assisted joins focus on 3D-stacked PIM devices.
« The existing PIM-assisted joins rely on cycle-level simulations.

* PID-Join, a fast PIM-assisted in-memory join algorithm
* First work that implements PIM-assisted join on the real system
« Optimized single-IDP joins, Rotate-and-Stream, and Unordered Scatter-Gather
« Achieve geometric-mean speedup of 1.92x vs. PRHO
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Thank Youl!

* Any questions?
* Please refer to our paper for more details & experimental results!

 https://github.com/yonsei-hpcp/pid-join

Youngsok Kim

Assistant Professor

Department of Computer Science
College of Computing

Yonsei University

Email: youngsok@yonsei.ac.kr
Website: https://hpcp.yonsei.ac.kr/~youngsok

5 High Performance Computing Platforms Lab
Ry @ College of Computing, Yonsei University

29



