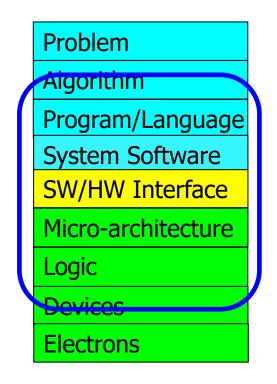
Real-world Processing-in-Memory Systems for Modern Workloads

PIM Adoption Issues How to Enable PIM Adoption?

Dr. Juan Gómez Luna Professor Onur Mutlu



Potential Barriers to Adoption of PIM

- 1. **Applications** & **software** for PIM
- 2. Ease of **programming** (interfaces and compiler/HW support)
- 3. **System** and **security** support: coherence, synchronization, virtual memory, isolation, communication interfaces, ...
- 4. **Runtime** and **compilation** systems for adaptive scheduling, data mapping, access/sharing control, ...
- 5. **Infrastructures** to assess benefits and feasibility

All can be solved with change of mindset

We Need to Revisit the Entire Stack

We can get there step by step

PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d

SAFARI Research Group

^aETH Zürich

^bCarnegie Mellon University

^cUniversity of Illinois at Urbana-Champaign

^dKing Mongkut's University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerging Computing: From Devices to Systems Looking Beyond Moore and Von Neumann, Springer, 2022.

Contents

1	Intr	oduction	2
2	Major Trends Affecting Main Memory		
3	The Need for Intelligent Memory Controllers to Enhance Memory Scaling		
4	Perils of Processor-Centric Design		
5	Proc	cessing-in-Memory (PIM): Technology	
	Ena	blers and Two Approaches	12
	5.1	New Technology Enablers: 3D-Stacked	
		Memory and Non-Volatile Memory	12
	5.2	Two Approaches: Processing Using	
		Memory (PUM) vs. Processing Near	
		Memory (PNM)	13
6		cessing Using Memory (PUM)	14
	6.1	RowClone	14
	6.2	Ambit	1.
	6.3	Gather-Scatter DRAM	1
	6.4	In-DRAM Security Primitives	1
7	Proc	cessing Near Memory (PNM)	18
•	7.1	Tesseract: Coarse-Grained Application-	-
	7.12	Level PNM Acceleration of Graph Pro-	
_		cessing	19
	7.2	Function-Level PNM Acceleration of	-
	7.2	Mobile Consumer Workloads	20
	7.3	Programmer-Transparent Function-	_
	7.5	Level PNM Acceleration of GPU	
		Applications	2
	7.4	Instruction-Level PNM Acceleration	_
	7	with PIM-Enabled Instructions (PEI)	2
	7.5	Function-Level PNM Acceleration of	_
	1.5	Genome Analysis Workloads	22
	7.6	Application-Level PNM Acceleration of	
	7.0	Time Series Analysis	23
		Time Series Analysis	۷.
8	Ena	bling the Adoption of PIM	2
-	8.1	Programming Models and Code Genera-	_
		tion for PIM	2
	8.2	PIM Runtime: Scheduling and Data	=
	0.2	Mapping	2:
	8.3	Memory Coherence	2
	8.4	Virtual Memory Support	2
	8.5	Data Structures for PIM	28
	8.6		20
	0.7	tures	29
	8.7	Real PIM Hardware Systems and Proto-	2
	0.0	types	30
	8.8	Security Considerations	30

9 Conclusion and Future Outlook

31

1. Introduction

Main memory, built using the Dynamic Random Access Memory (DRAM) technology, is a major component in nearly all computing systems, including servers, cloud platforms, mobile/embedded devices, and sensor systems. Across all of these systems, the data working set sizes of modern applications are rapidly growing, while the need for fast analysis of such data is increasing. Thus, main memory is becoming an increasingly significant bottleneck across a wide variety of computing systems and applications [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Alleviating the main memory bottleneck requires the memory capacity, energy, cost, and performance to all scale in an efficient manner across technology generations. Unfortunately, it has become increasingly difficult in recent years, especially the past decade, to scale all of these dimensions [1, 2, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], and thus the main memory bottleneck has been worsening.

A major reason for the main memory bottleneck is the high energy and latency cost associated with data movement. In modern computers, to perform any operation on data that resides in main memory, the processor must retrieve the data from main memory. This requires the memory controller to issue commands to a DRAM module across a relatively slow and power-hungry off-chip bus (known as the memory channel). The DRAM module sends the requested data across the memory channel, after which the data is placed in the caches and registers. The CPU can perform computation on the data once the data is in its registers. Data movement from the DRAM to the CPU incurs long latency and consumes a significant amount of energy [7, 50, 51, 52, 53, 54]. These costs are often exacerbated by the fact that much of the data brought into the caches is not reused by the CPU [52, 53, 55, 56], providing little benefit in return for the high latency and energy cost.

The cost of data movement is a fundamental issue with the *processor-centric* nature of contemporary computer systems. The CPU is considered to be the master in the system, and computation is performed only in the processor (and accelerators). In contrast, data storage and communication units, including the main memory, are treated as unintelligent workers that are incapable of computation. As a result of this processor-centric design paradigm, data moves a lot in the system between the computation units and communication/ storage units so that computation can be done on it. With the increasingly *data-centric* nature of contemporary and emerging appli-

PIM Review and Open Problems (II)

Processing Data Where It Makes Sense: Enabling In-Memory Computation

Onur Mutlu^{a,b}, Saugata Ghose^b, Juan Gómez-Luna^a, Rachata Ausavarungnirun^{b,c}

^aETH Zürich
^bCarnegie Mellon University
^cKing Mongkut's University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "Processing Data Where It Makes Sense: Enabling In-Memory
Computation

Invited paper in <u>Microprocessors and Microsystems</u> (**MICPRO**), June 2019. [arXiv version]

SAFARI

PIM Review and Open Problems (III)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory

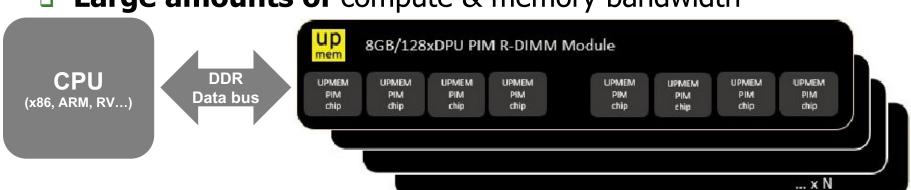
Saugata Ghose[†] Amirali Boroumand[†] Jeremie S. Kim[†]§ Juan Gómez-Luna[§] Onur Mutlu^{§†}

†Carnegie Mellon University §ETH Zürich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu, "Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on Hardware for Artificial Intelligence, to appear in November 2019.

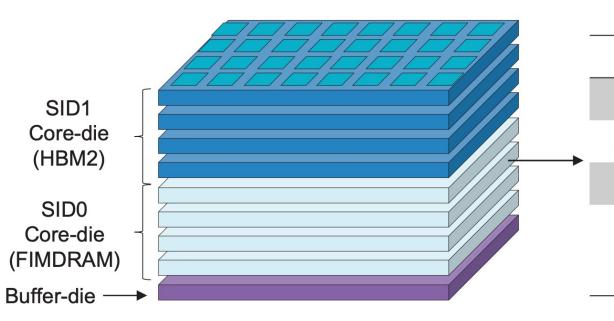
[Preliminary arXiv version]


SAFARI

Real PIM Hardware Systems and Prototypes

UPMEM Processing-in-DRAM Engine (2019)

- Processing in DRAM Engine
- Includes standard DIMM modules, with a large number of DPU processors combined with DRAM chips.
- Replaces standard DIMMs
 - DDR4 R-DIMM modules
 - 8GB+128 DPUs (16 PIM chips)
 - Standard 2x-nm DRAM process



Samsung Function-in-Memory DRAM (2021)

FIMDRAM based on HBM2

[3D Chip Structure of HBM with FIMDRAM]

Chip Specification

128DQ / 8CH / 16 banks / BL4

32 PCU blocks (1 FIM block/2 banks)

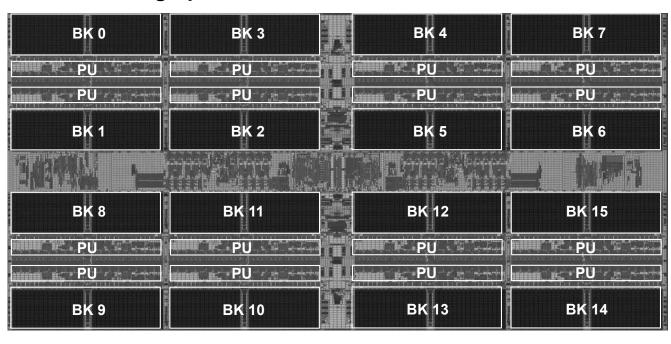
1.2 TFLOPS (4H)

FP16 ADD /
Multiply (MUL) /
Multiply-Accumulate (MAC) /
Multiply-and- Add (MAD)

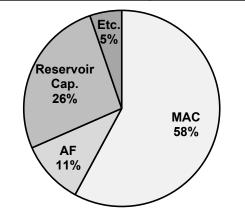
ISSCC 2021 / SESSION 25 / DRAM / 25.4

25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learning Applications

Young-Cheon Kwon', Suk Han Lee', Jaehoon Lee', Sang-Hyuk Kwon', Je Min Ryu', Jong-Pil Son', Seongil O', Hak-Soo Yu', Haesuk Lee', Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi', Hyun-Sung Shin', Jin Kim', BengSeng Phuah', HyoungMin Kim', Myeong Jun Song', Ahn Choi', Daeho Kim', Soo'Young Kim', Eun-Bong Kim', David Wang', Shinhaeng Kang', Yuhwan Ro', Seungwoo Seo', JoonHo Song', Jaeyoun Youn', Kyomin Sohn', Nam Sung Kim'

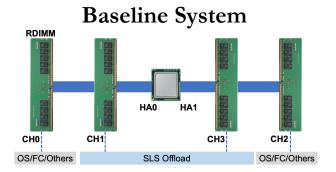

¹Samsung Electronics, Hwaseong, Korea ²Samsung Electronics, San Jose, CA ³Samsung Electronics, Suwon, Korea

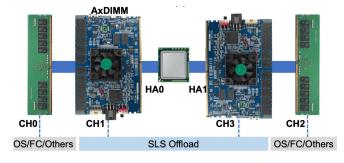
AiM: Chip Implementation


4 Gb AiM die with 16 processing units (PUs)

AiM Die Photograph

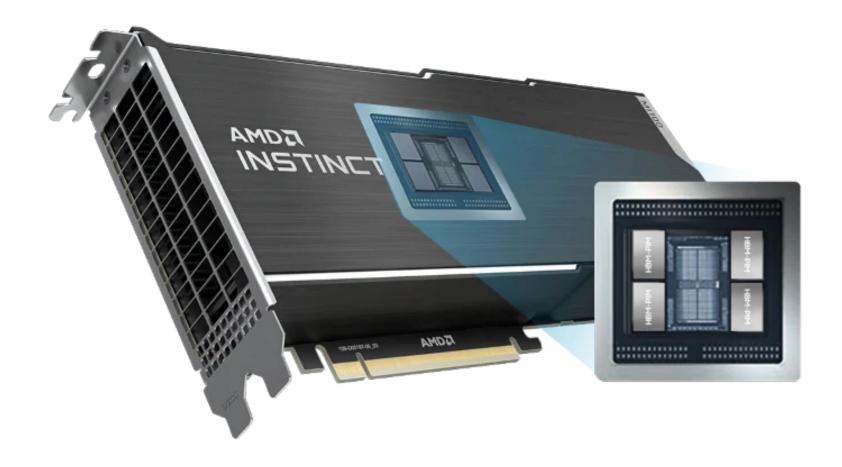
1 Process Unit (PU) Area


Total	0.19mm ²
MAC	0.11mm ²
Activation Function (AF)	0.02mm ²
Reservoir Cap.	0.05mm ²
Etc.	0.01mm ²


Samsung AxDIMM (2021)

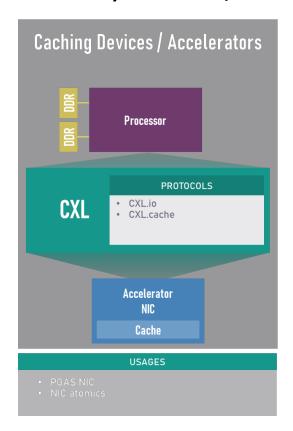
- DIMM-based PIM
 - DLRM recommendation system

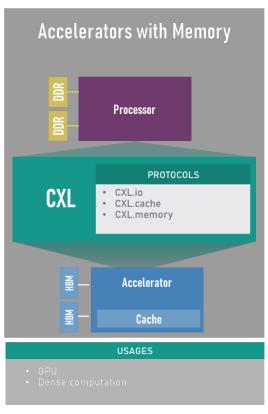
AxDIMM System

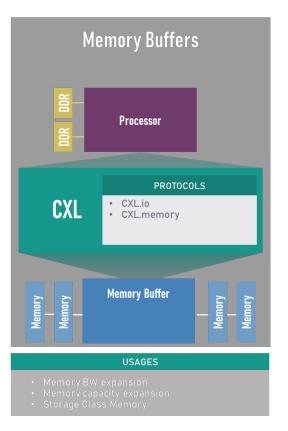

HB-PNM: Overall Architecture

 3D-stacked logic die and DRAM die vertically bonded by hybrid bonding (HB)

> 1Gb DRAM Core 3D-stacked illustration of the DRAM die and logic die 표 HB 128Mb 128Mb S ō (+8Mb*) (+8Mb) H DRAM die 128Mb S S (+8Mb) (+8Mb) HB 128Mb 128Mb ō (+8Mb) S (+8Mb) Decoder/Control/Buffer 표 128Mb 128Mb S S (+8Mb) (+8Mb) *On-die ECC DRAM array layout illustration and its imposed Logic die design constraints on logic die MC MC MC MC MC Paddin **Neural Engine** IP blocks MC MC MC MC MC Chip Package **Heat Sink** MC MC MC DRAM Die Padding MC MC Match Engine Substrate IP blocks MC MC MC Cross-section illustration of the logic die and DRAM die Logic die physical constraints due to hybrid vertically bonded by HB in a chip package bonding PHY and MC

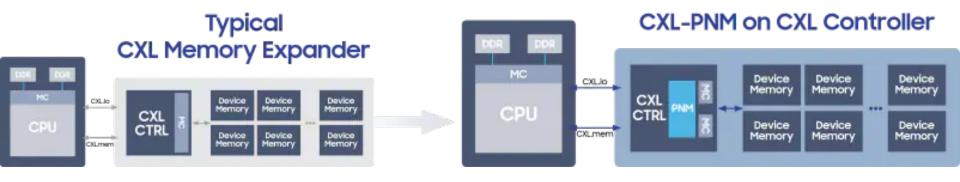

AMD GPU with HBM-PIM


AMD Instinct Mi100 + HBM-PIM

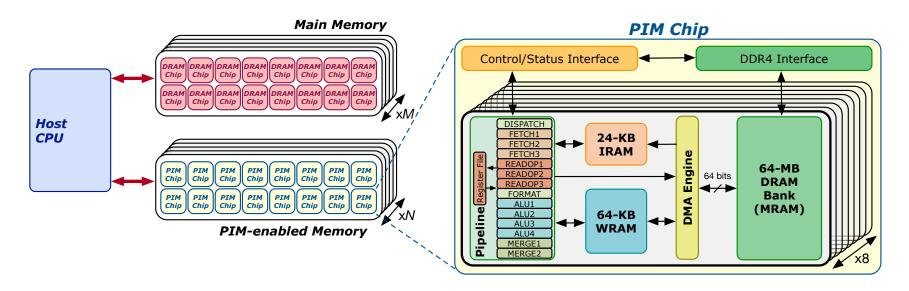


Compute Express Link (CXL)

 Compute Express Link (CXL) is an open industry standard interconnect offering high-bandwidth, low-latency connectivity between host processor and devices such as accelerators, memory buffers, and smart I/O devices



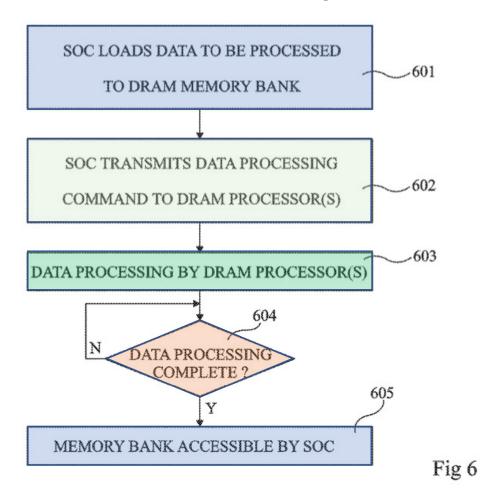
CXL and PIM


 CXL, as a high-bandwidth and low-latency interconnect, is a perfect complement for near-data processing

Programming Models and Code Generation for PIM

UPMEM System Organization

- A UPMEM DIMM contains 8 or 16 chips
 - Thus, 1 or 2 ranks of 8 chips each
- Inside each PIM chip there are:
 - 8 64MB banks per chip: Main RAM (MRAM) banks
 - 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per rank


Accelerator Model (I)

- UPMEM DIMMs coexist with conventional DIMMs
- Integration of UPMEM DIMMs in a system follows an accelerator model

- UPMEM DIMMs can be seen as a loosely coupled accelerator
 - Explicit data movement between the main processor (host CPU) and the accelerator (UPMEM)
 - Explicit kernel launch onto the UPMEM processors
- This resembles GPU computing

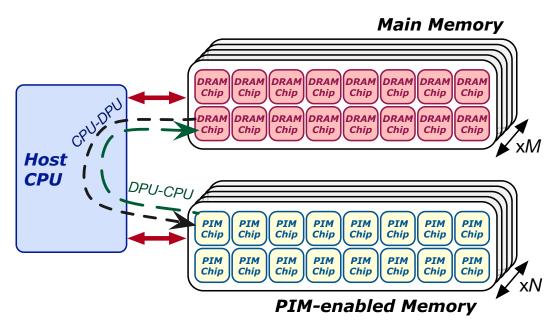
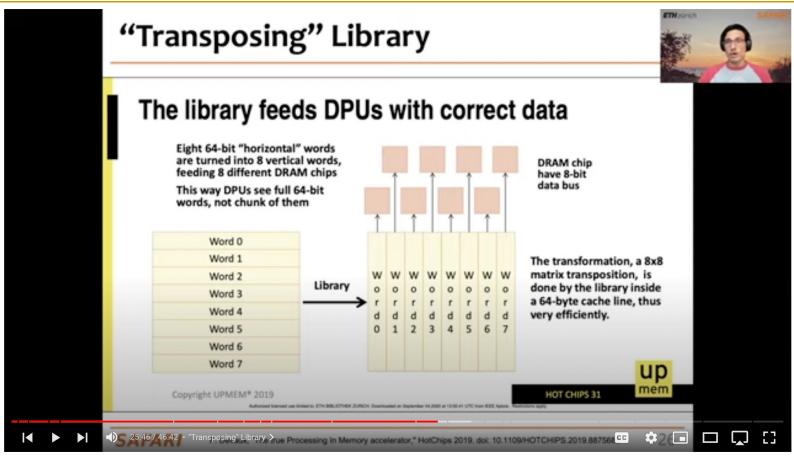
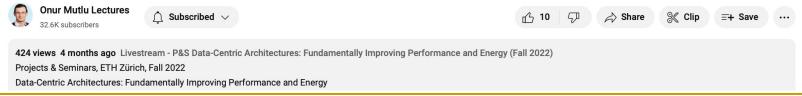

Accelerator Model (II)

 FIG. 6 is a flow diagram representing operations in a method of delegating a processing task to a DRAM processor according to an example embodiment


Inter-DPU Communication

There is no direct communication channel between DPUs



- Inter-DPU communication takes places via the host CPU using CPU-DPU and DPU-CPU transfers
- Example communication patterns:
 - Merging of partial results to obtain the final result
 - Only DPU-CPU transfers
 - Redistribution of intermediate results for further computation
 - DPU-CPU transfers and CPU-DPU transfers

Lecture on Programming UPMEM PIM

PIM Course: Lecture 9: Programming PIM Architectures - Fall 2022

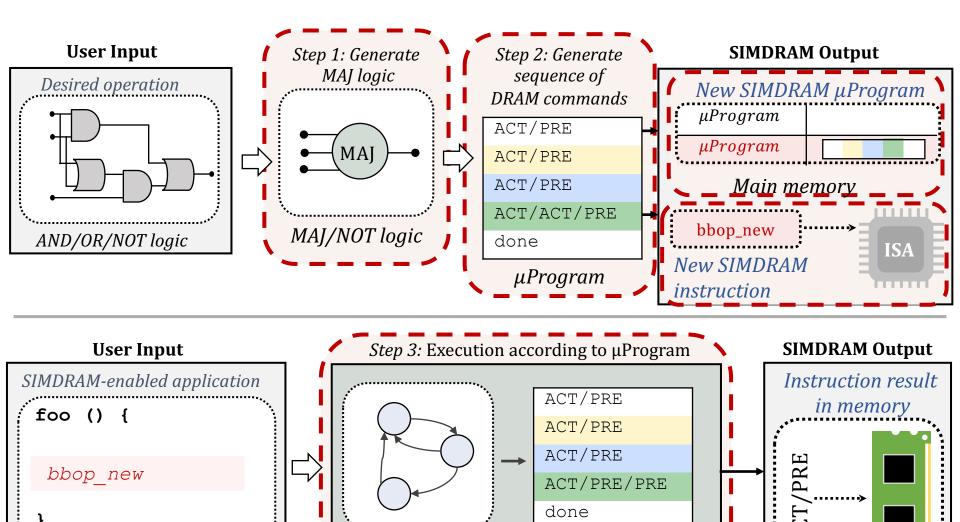
Another Lecture on PIM Programming

High-level Programming for PIM

Jinfan Chen, Juan Gómez-Luna, Izzat El Hajj, YuXin Guo, and <u>Onur Mutlu</u>,
 "SimplePIM: A Software Framework for Productive and Efficient <u>Processing in Memory"</u>

Proceedings of the <u>32nd International Conference on Parallel</u>

<u>Architectures and Compilation Techniques</u> (**PACT**), Vienna, Austria,
October 2023.


[Slides (pptx) (pdf)]
[SimplePIM Source Code]

SimplePIM: A Software Framework for Productive and Efficient Processing-in-Memory

Jinfan Chen¹ Juan Gómez-Luna¹ Izzat El Hajj² Yuxin Guo¹ Onur Mutlu¹

¹ETH Zürich ²American University of Beirut

SIMDRAM Framework

μProgram

Memory Controller

Control Unit

Programming Interface

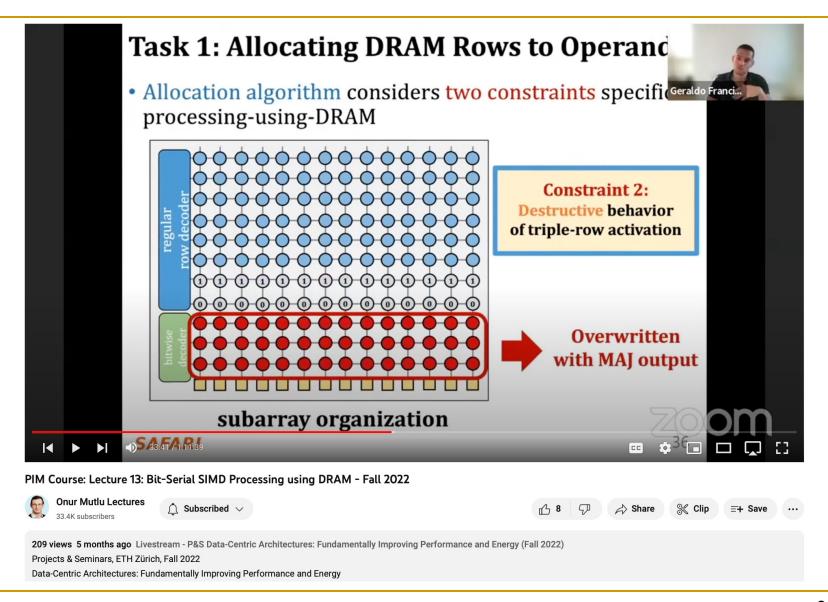
Four new SIMDRAM ISA extensions

Type	ISA Format
Initialization	bbop_trsp_init address, size, n
1-Input Operation	bbop_op dst, src, size, n
2-Input Operation	bbop_op dst, src_1, src_2, size, n
Predication	<pre>bbop_if_else dst, src_1, src_2, select, size, n</pre>

Code Using SIMDRAM Instructions

```
1  int size = 65536;
2  int elm_size = sizeof (uint8_t);
3  uint8_t *A , *B , *C = (uint8_t *) malloc(size * elm_size);
4  uint8_t *pred = (uint8_t *) malloc(size * elm_size);
5  ...
6  for (int i = 0; i < size ; ++ i){
7    bool cond = A[i] > pred[i];
8    if (cond)
9        C [i] = A[i] + B[i];
10    else
11        C [i] = A[i] - B [i];
12 }
```

← C code for vector add/sub with predicated execution


```
int size = 65536;
int elm_size = sizeof(uint8_t);
uint8_t *A , *B , *C = (uint8_t *) malloc(size * elm_size);

bbop_trsp_init(A , size , elm_size);
bbop_trsp_init(B , size , elm_size);
bbop_trsp_init(C , size , elm_size);
uint8_t *pred = (uint8_t *) malloc(size * elm_size);
// D, E, F store intermediate data
uint8_t *D , *E = (uint8_t *) malloc (size * elm_size);
bool *F = (bool *) malloc (size * sizeof(bool));

...
bbop_add(D , A , B , size , elm_size);
bbop_sub(E , A , B , size , elm_size);
bbop_greater(F , A , pred , size , elm_size);
bbop_if_else(C , D , E , F , size , elm_size);
```

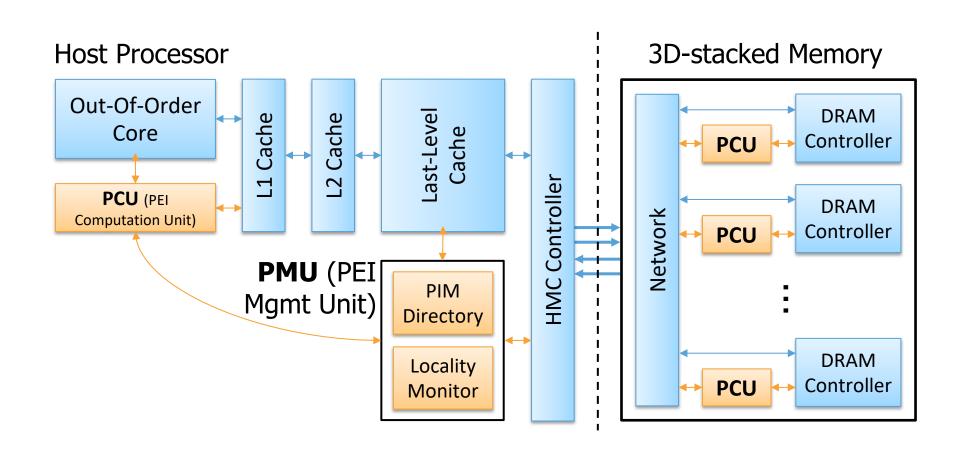
Equivalent code using SIMDRAM operations →

Lecture on SIMDRAM

PIM Runtime: Scheduling and Data Mapping

Simple PIM Operations as ISA Extensions (I)

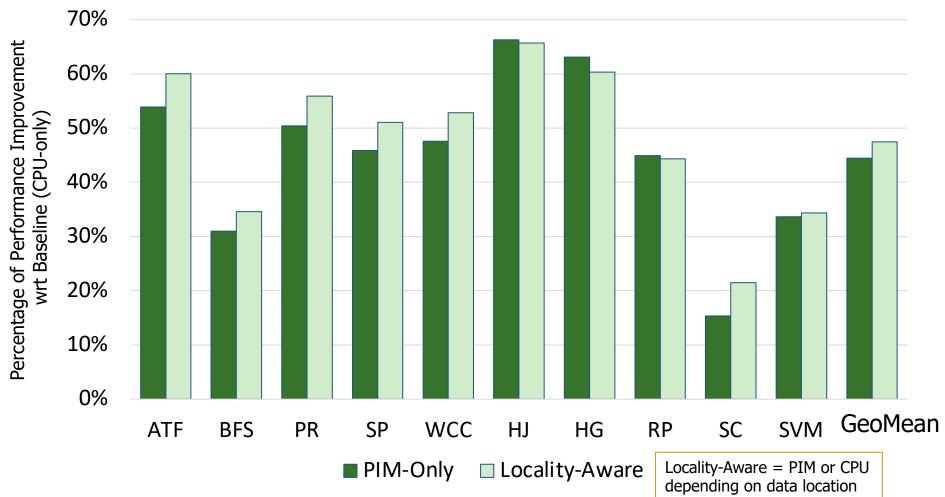
```
PageRank algorithm (Page et al. 1999)
for (v: graph.vertices) {
  value = weight * v.rank;
  for (w: v.successors) {
    w.next rank += value;
                                             Main Memory
      Host Processor
        w.next rank
                                              w.next rank
                           64 bytes in
                          64 bytes out
```

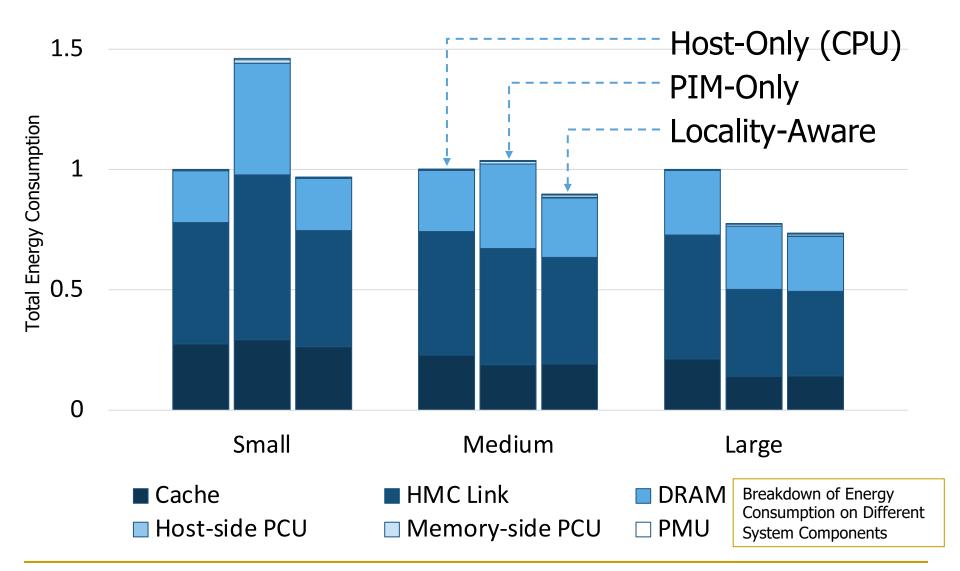

Conventional Architecture

Simple PIM Operations as ISA Extensions (II)

```
PageRank algorithm (Page et al. 1999)
for (v: graph.vertices) {
  value = weight * v.rank;
                                                   pim.add r1, (r2)
  for (w: v.successors) {
       pim_add(&w.next_rank, value);
                                             Main Memory
      Host Processor
                                              w.next rank
           value
                           8 bytes in
                           0 bytes out
```

In-Memory Addition

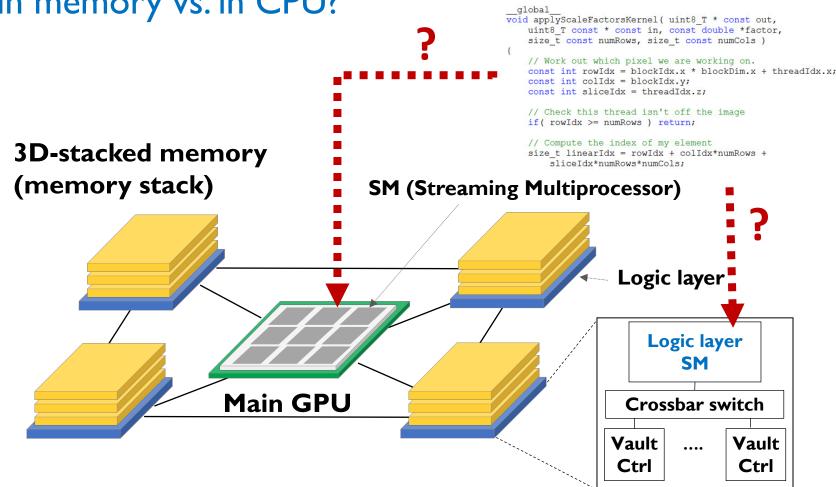

Example PEI Microarchitecture


Example PEI uArchitecture

PEI Performance Delta: Large Data Sets

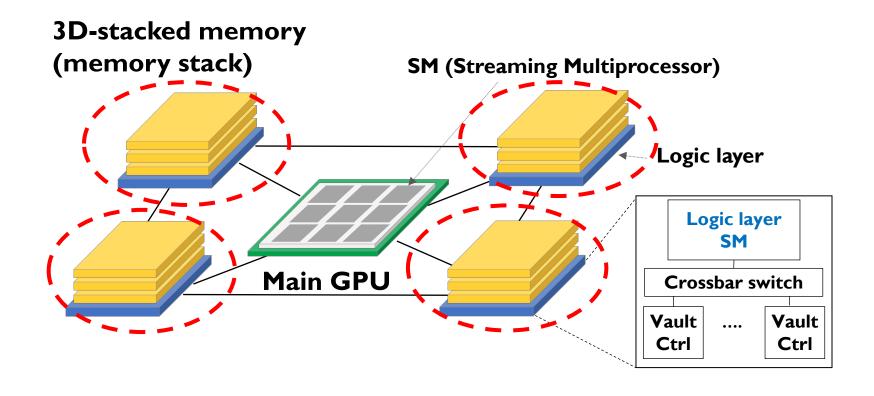
PEI Energy Consumption

More on PIM-Enabled Instructions


Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
 "PIM-Enabled Instructions: A Low-Overhead,
 Locality-Aware Processing-in-Memory Architecture"
 Proceedings of the <u>42nd International Symposium on</u>
 Computer Architecture (ISCA), Portland, OR, June 2015.
 [Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture

Junwhan Ahn Sungjoo Yoo Onur Mutlu[†] Kiyoung Choi junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr Seoul National University [†]Carnegie Mellon University


Key Challenge 1: Code Mapping

• Challenge 1: Which operations should be executed in memory vs. in CPU?

Key Challenge 2: Data Mapping

 Challenge 2: How should data be mapped to different 3D memory stacks?

How to Do the Code and Data Mapping?

Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler, "Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems"

Proceedings of the <u>43rd International Symposium on Computer</u>
<u>Architecture</u> (**ISCA**), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh[‡] Eiman Ebrahimi[†] Gwangsun Kim* Niladrish Chatterjee[†] Mike O'Connor[†] Nandita Vijaykumar[‡] Onur Mutlu^{§‡} Stephen W. Keckler[†] [‡]Carnegie Mellon University [†]NVIDIA *KAIST [§]ETH Zürich

How to Schedule Code? (I)

Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
 Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
 "Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities"

Proceedings of the <u>25th International Conference on Parallel</u>
<u>Architectures and Compilation Techniques</u> (**PACT**), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Ashutosh Pattnaik¹ Xulong Tang¹ Adwait Jog² Onur Kayıran³
Asit K. Mishra⁴ Mahmut T. Kandemir¹ Onur Mutlu^{5,6} Chita R. Das¹

¹Pennsylvania State University ²College of William and Mary

³Advanced Micro Devices, Inc. ⁴Intel Labs ⁵ETH Zürich ⁶Carnegie Mellon University

How to Schedule Code? (II)

Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
 "Accelerating Dependent Cache Misses with an Enhanced Memory Controller"

Proceedings of the <u>43rd International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Seoul, South Korea, June 2016. [Slides (pptx) (pdf)]

[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an Enhanced Memory Controller

Milad Hashemi*, Khubaib[†], Eiman Ebrahimi[‡], Onur Mutlu[§], Yale N. Patt*

*The University of Texas at Austin †Apple ‡NVIDIA §ETH Zürich & Carnegie Mellon University

How to Schedule Code? (III)

Milad Hashemi, Onur Mutlu, and Yale N. Patt,
 "Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads"
 Proceedings of the 49th International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
 [Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

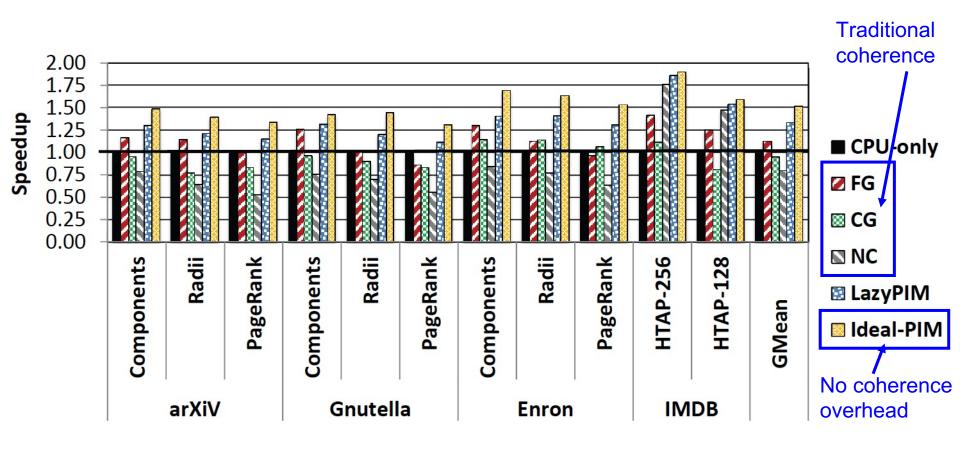
Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu§, Yale N. Patt*

*The University of Texas at Austin §ETH Zürich

Research Questions

What are simple mechanisms to enable and disable PIM execution? How can PIM execution be throttled for highest performance gains? How should data locations and access patterns affect where/whether PIM execution should occur?


Which parts of a given application's code should be executed on PIM? What are simple mechanisms to identify when those parts of the application code can benefit from PIM?

What are scheduling mechanisms to share PIM engines between multiple requesting cores to maximize benefits obtained from PIM?

What are simple mechanisms to manage access to a memory that serves both CPU requests and PIM requests?

Memory Coherence

Challenge: Coherence for Hybrid CPU-PIM Apps

How to Maintain Coherence? (I)

 Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu, "LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory"

<u>IEEE Computer Architecture Letters</u> (**CAL**), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand[†], Saugata Ghose[†], Minesh Patel[†], Hasan Hassan[†], Brandon Lucia[†], Kevin Hsieh[†], Krishna T. Malladi^{*}, Hongzhong Zheng^{*}, and Onur Mutlu^{‡†}

† Carnegie Mellon University * Samsung Semiconductor, Inc. § TOBB ETÜ [‡] ETH Zürich

How to Maintain Coherence? (II)

 Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and <u>Onur Mutlu</u>, <u>"CoNDA: Efficient Cache Coherence Support for Near-Data Accelerators"</u>

Proceedings of the <u>46th International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Phoenix, AZ, USA, June 2019.

CoNDA: Efficient Cache Coherence Support for Near-Data Accelerators

Amirali Boroumand[†] Saugata Ghose[†] Minesh Patel^{*} Hasan Hasan^{*} Brandon Lucia[†] Rachata Ausavarungnirun^{†‡} Kevin Hsieh[†] Nastaran Hajinazar^{⋄†} Krishna T. Malladi[§] Hongzhong Zheng[§] Onur Mutlu^{*†}

> †Carnegie Mellon University *ETH Zürich ‡KMUTNB *Simon Fraser University \$Samsung Semiconductor, Inc.

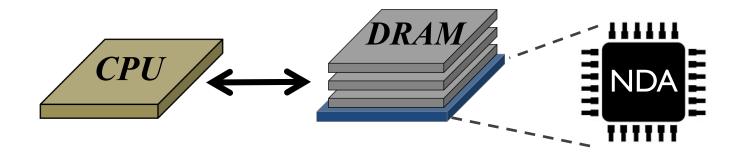
CoNDA:

Efficient Cache Coherence Support for Near-Data Accelerators

Amirali Boroumand

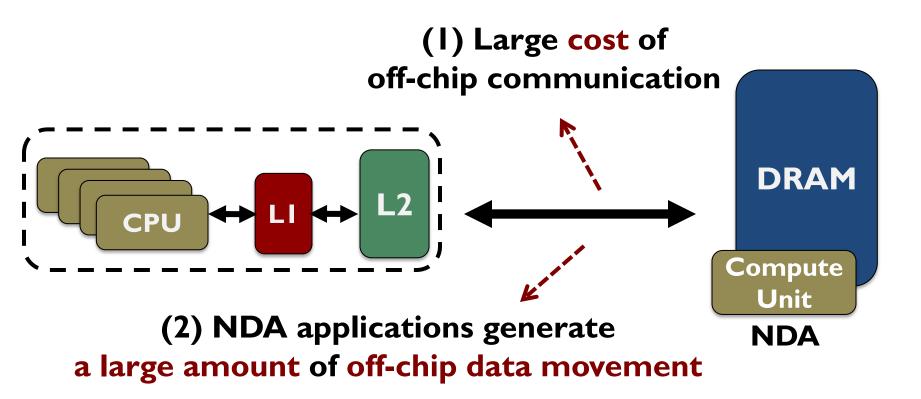
Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh, Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng, Onur Mutlu

Carnegie Mellon



Specialized Accelerators

Specialized accelerators are now everywhere!


Recent advancement in 3D-stacked technology enabled Near-Data Accelerators (NDA)

48

Coherence For NDAs

Challenge: Coherence between NDAs and CPUs

It is impractical to use traditional coherence protocols

SAFARI 49

Existing Coherence Mechanisms

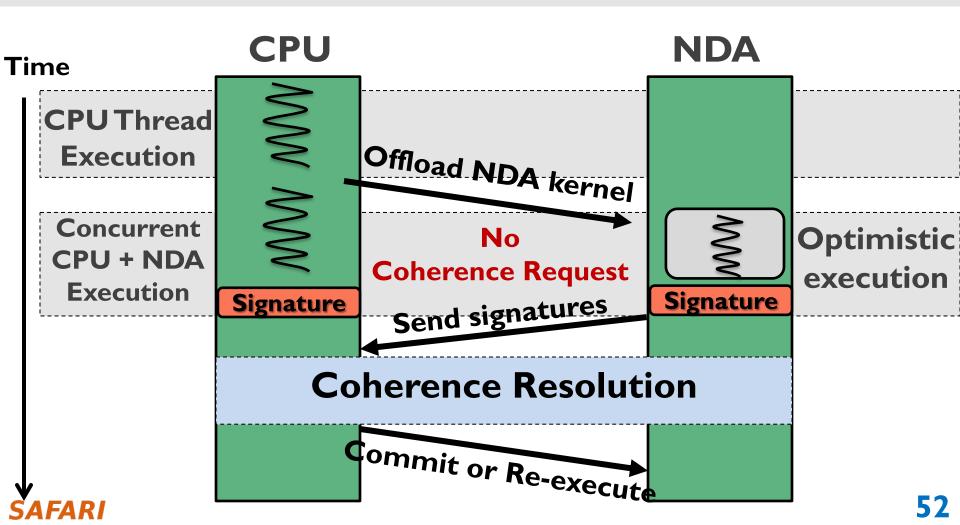
We extensively study existing NDA coherence mechanisms and make three key observations:

These mechanisms eliminate a significant portion of NDA's benefits

The majority of off-chip coherence traffic generated by these mechanisms is unnecessary

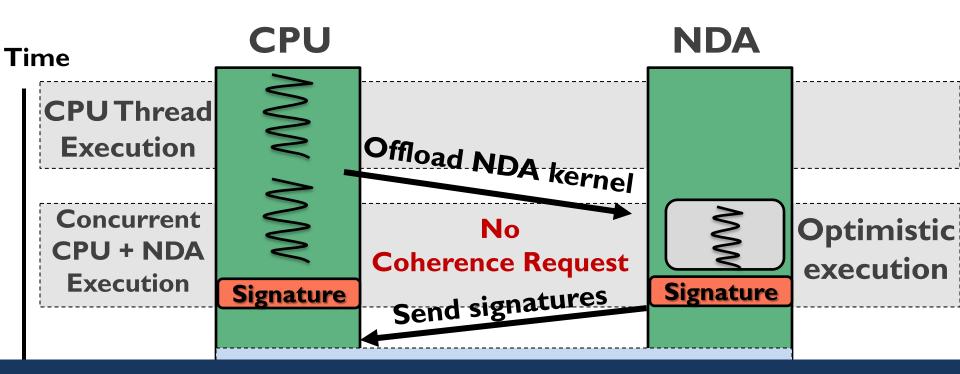
Much of the off-chip traffic can be eliminated if the coherence mechanism has insight into the memory accesses

5


An Optimistic Approach

We find that an optimistic approach to coherence can address the challenges related to NDA coherence

- Gain insights before any coherence checks happens
- **2** Perform only the necessary coherence requests


CoNDA

We propose CoNDA, a mechanism that uses optimistic NDA execution to avoid unnecessary coherence traffic

CoNDA

We propose CoNDA, a mechanism that uses optimistic NDA execution to avoid unnecessary coherence traffic

CoNDA comes within 10.4% and 4.4% of performance and energy of an ideal NDA coherence mechanism

SAFARI

53

CoNDA:

Efficient Cache Coherence Support for Near-Data Accelerators

Amirali Boroumand

Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh, Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng, Onur Mutlu

How to Maintain Coherence? (II)

 Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and <u>Onur Mutlu</u>, <u>"CoNDA: Efficient Cache Coherence Support for Near-Data Accelerators"</u>

Proceedings of the <u>46th International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Phoenix, AZ, USA, June 2019.

CoNDA: Efficient Cache Coherence Support for Near-Data Accelerators

Amirali Boroumand[†] Saugata Ghose[†] Minesh Patel^{*} Hasan Hasan^{*} Brandon Lucia[†] Rachata Ausavarungnirun^{†‡} Kevin Hsieh[†] Nastaran Hajinazar^{⋄†} Krishna T. Malladi[§] Hongzhong Zheng[§] Onur Mutlu^{*†}

> †Carnegie Mellon University *ETH Zürich ‡KMUTNB *Simon Fraser University \$Samsung Semiconductor, Inc.

Synchronization Support

How to Support Synchronization?

 Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas, Ivan Fernandez, Juan Gómez-Luna, Lois Orosa, Nectarios Koziris, Georgios Goumas, Onur Mutlu, "SynCron: Efficient Synchronization Support for Near-Data-Processing Architectures"

Proceedings of the <u>27th International Symposium on High-Performance Computer</u> <u>Architecture</u> (**HPCA**), Virtual, February-March 2021.

[Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[Talk Video (21 minutes)]

[Short Talk Video (7 minutes)]

SynCron: Efficient Synchronization Support for Near-Data-Processing Architectures

```
Christina Giannoula<sup>†‡</sup> Nandita Vijaykumar<sup>*‡</sup> Nikela Papadopoulou<sup>†</sup> Vasileios Karakostas<sup>†</sup> Ivan Fernandez<sup>§‡</sup>
Juan Gómez-Luna<sup>‡</sup> Lois Orosa<sup>‡</sup> Nectarios Koziris<sup>†</sup> Georgios Goumas<sup>†</sup> Onur Mutlu<sup>‡</sup>

<sup>†</sup>National Technical University of Athens <sup>‡</sup>ETH Zürich <sup>*</sup>University of Toronto <sup>§</sup>University of Malaga
```

SynCron

Efficient Synchronization Support for Near-Data-Processing Architectures

Christina Giannoula

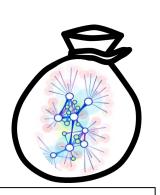
Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas Ivan Fernandez, Juan Gómez Luna, Lois Orosa Nectarios Koziris, Georgios Goumas, Onur Mutlu

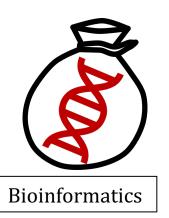
Executive Summary

Problem:

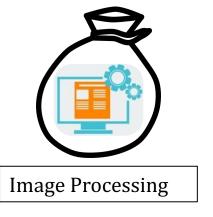
Synchronization support is **challenging** for NDP systems

Prior schemes are **not suitable** or **efficient** for NDP systems

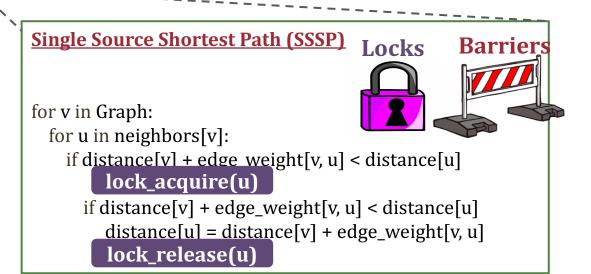

Contribution:

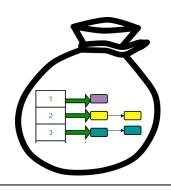

SynCron: the **first end-to-end** synchronization solution for NDP architectures

Key Results:

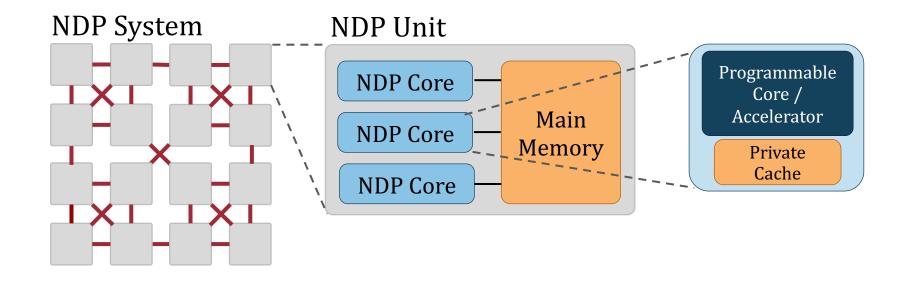

SynCron comes within **9.5%** and **6.2%** of performance and energy of an **Ideal** zero-overhead synchronization scheme

Synchronization is Necessary

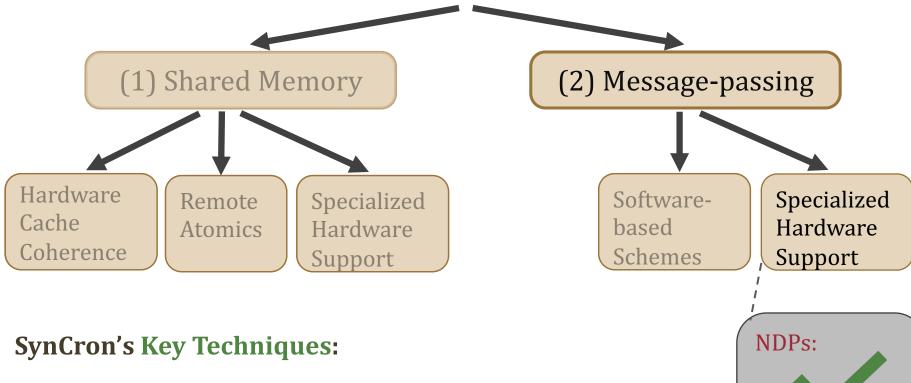


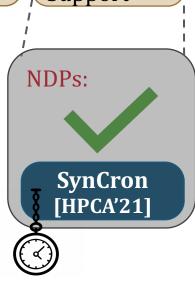


Graph Analytics

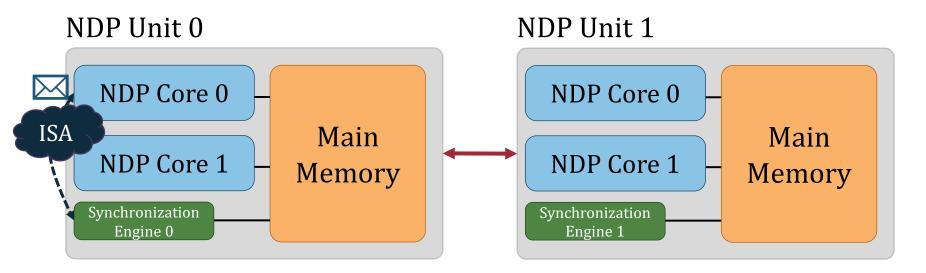

Databases

Concurrent Data Structures

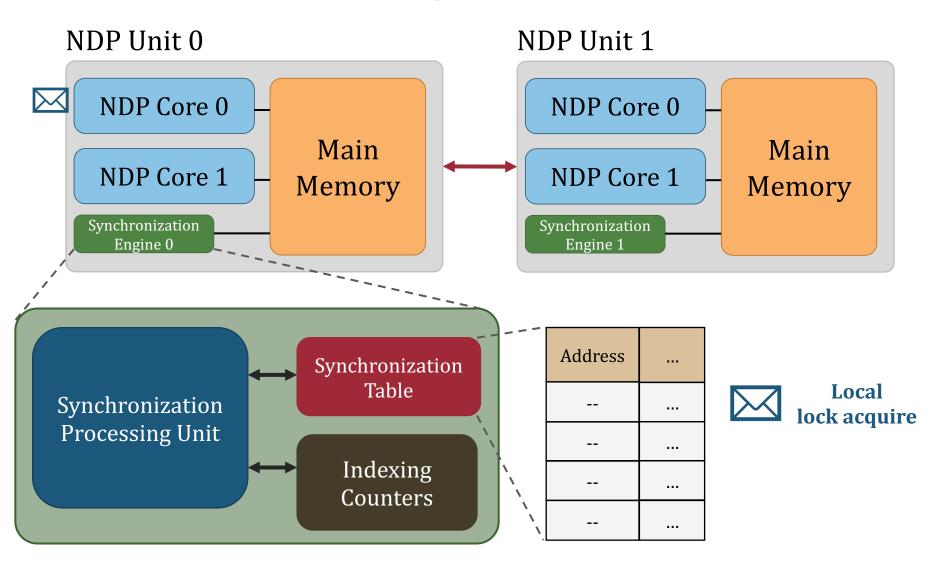

Baseline NDP Architecture

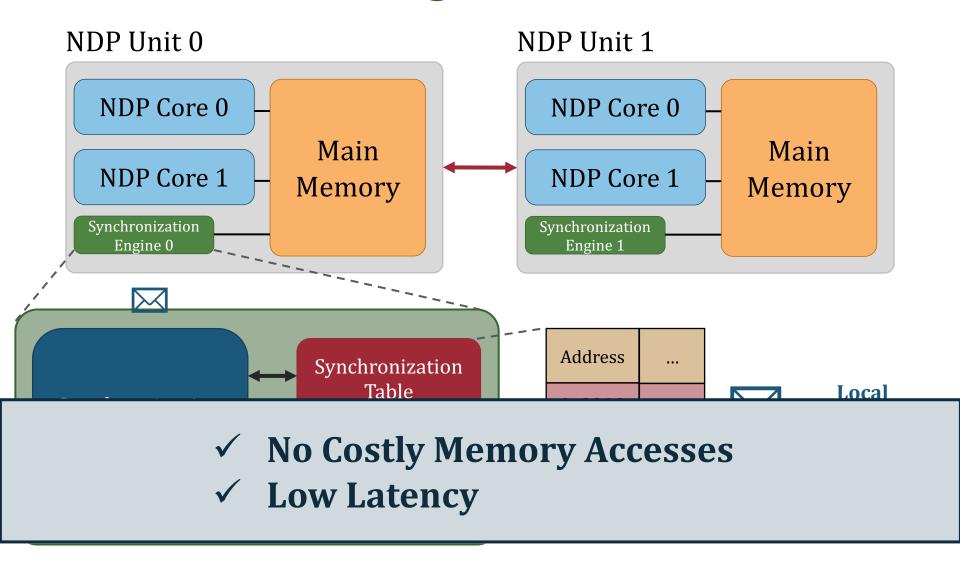

Synchronization challenges in NDP systems:

- (1) Lack of hardware cache coherence support
- (2) Expensive communication across NDP units
- (3) Lack of a shared level of cache memory

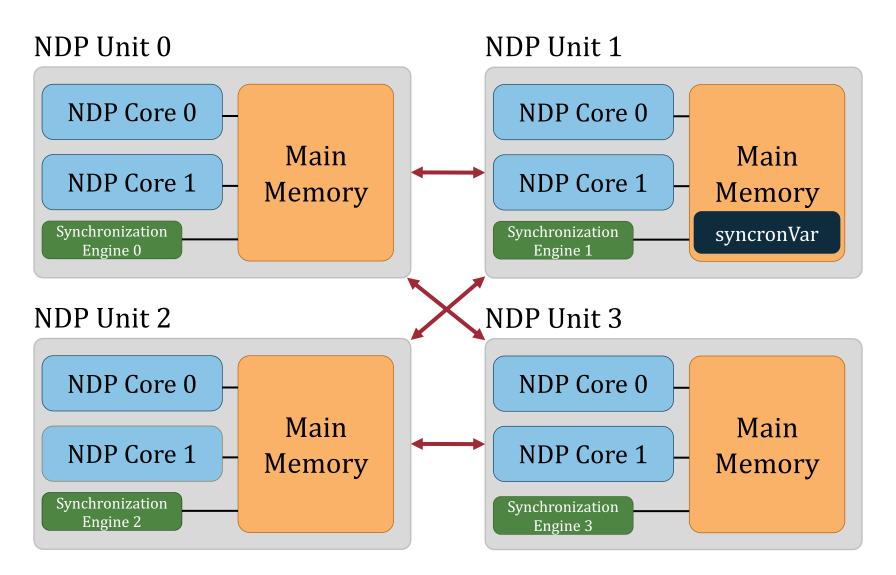

NDP Synchronization Solution Space

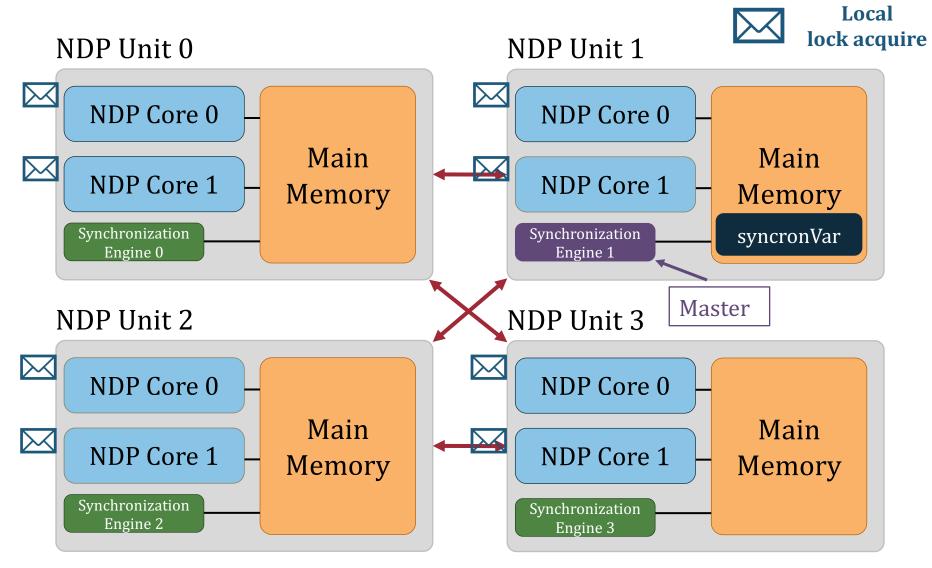
- 1. Hardware support for synchronization acceleration
- 2. **Direct buffering** of synchronization variables
- 3. Hierarchical message-passing communication
- 4. Integrated hardware-only overflow management

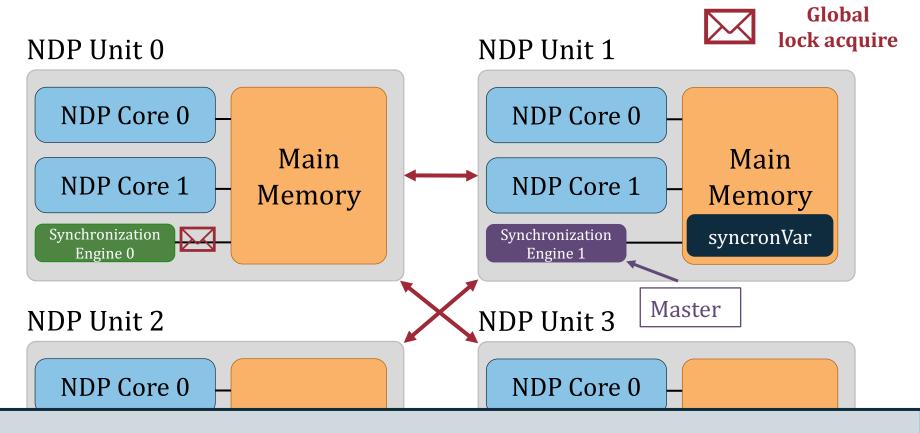

1. Hardware Synchronization Support



- **✓ No Complex Cache Coherence Protocols**
- **✓ No Expensive Atomic Operations**
- ✓ Low Hardware Cost


2. Direct Buffering of Variables


2. Direct Buffering of Variables


3. Hierarchical Communication

3. Hierarchical Communication

3. Hierarchical Communication

✓ Minimize Expensive Traffic

SynCron

The first end-to-end synchronization solution for NDP architectures

SynCron's Benefits:

- 1. High System Performance
- 2. Low Hardware Cost

SynCron comes within 9.5% and 6.2% of performance and energy of Ideal zero-overhead synchronization

SynCron

Efficient Synchronization Support for Near-Data-Processing Architectures

Christina Giannoula

Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas Ivan Fernandez, Juan Gómez Luna, Lois Orosa Nectarios Koziris, Georgios Goumas, Onur Mutlu

How to Support Synchronization?

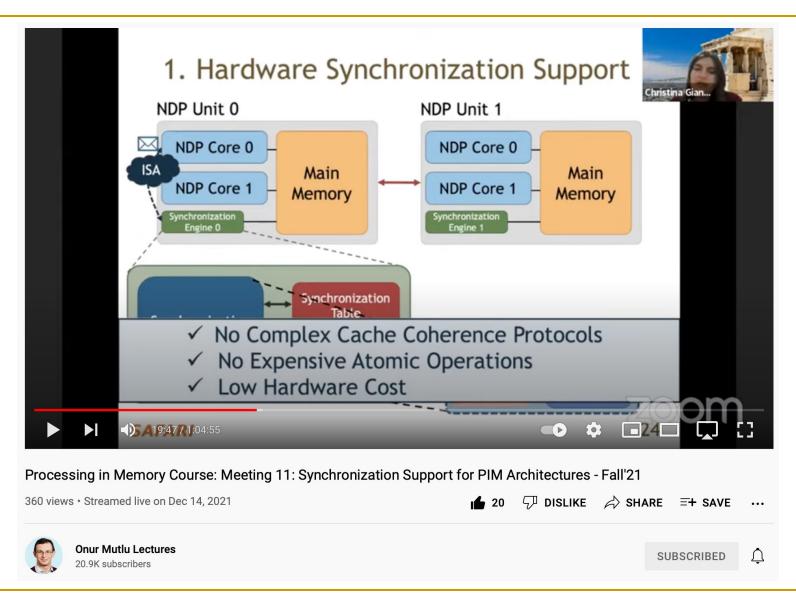
 Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas, Ivan Fernandez, Juan Gómez-Luna, Lois Orosa, Nectarios Koziris, Georgios Goumas, Onur Mutlu, "SynCron: Efficient Synchronization Support for Near-Data-Processing Architectures"

Proceedings of the <u>27th International Symposium on High-Performance Computer</u> <u>Architecture</u> (**HPCA**), Virtual, February-March 2021.

[Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[Talk Video (21 minutes)]


[Short Talk Video (7 minutes)]

SynCron: Efficient Synchronization Support for Near-Data-Processing Architectures

```
Christina Giannoula<sup>†‡</sup> Nandita Vijaykumar<sup>*‡</sup> Nikela Papadopoulou<sup>†</sup> Vasileios Karakostas<sup>†</sup> Ivan Fernandez<sup>§‡</sup> Juan Gómez-Luna<sup>‡</sup> Lois Orosa<sup>‡</sup> Nectarios Koziris<sup>†</sup> Georgios Goumas<sup>†</sup> Onur Mutlu<sup>‡</sup> 

†National Technical University of Athens <sup>‡</sup>ETH Zürich *University of Toronto <sup>§</sup>University of Malaga
```

Lecture on Synchronization Support for PIM

How to Design Data Structures for PIM?

Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu, "Concurrent Data Structures for Near-Memory Computing" Proceedings of the <u>29th ACM Symposium on Parallelism in Algorithms</u> and Architectures (SPAA), Washington, DC, USA, July 2017. [Slides (pptx) (pdf)]

Concurrent Data Structures for Near-Memory Computing

Zhiyu Liu
Computer Science Department
Brown University
zhiyu_liu@brown.edu

Maurice Herlihy
Computer Science Department
Brown University
mph@cs.brown.edu

Irina Calciu VMware Research Group icalciu@vmware.com

Onur Mutlu
Computer Science Department
ETH Zürich
onur.mutlu@inf.ethz.ch

Virtual Memory Support

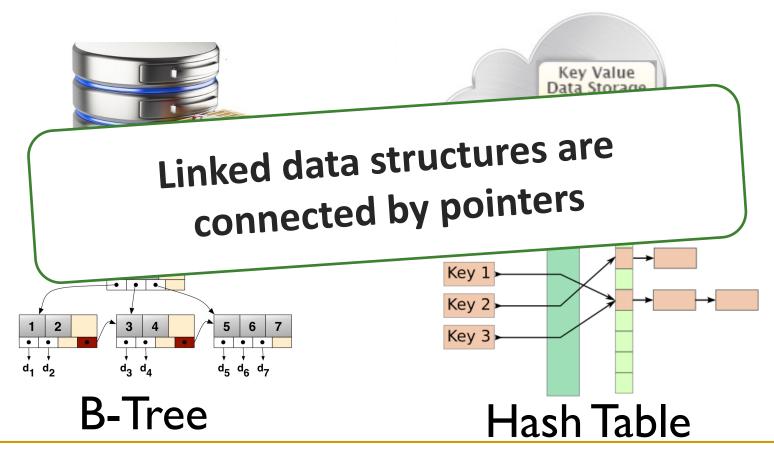
Accelerating Linked Data Structures

Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, and Onur Mutlu,
 "Accelerating Pointer Chasing in 3D-Stacked Memory:
 Challenges, Mechanisms, Evaluation"
 Proceedings of the 34th IEEE International Conference on Computer
 Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation

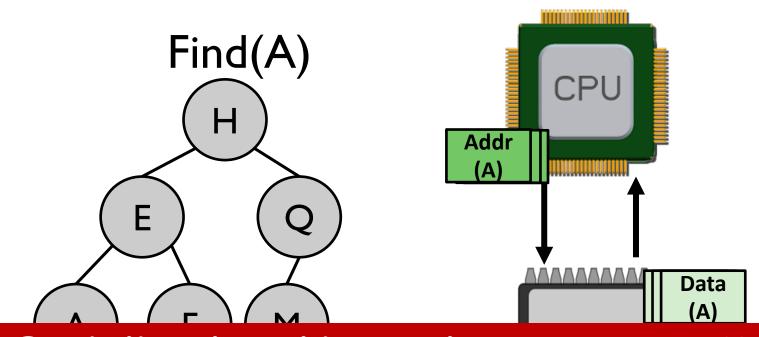
Kevin Hsieh[†] Samira Khan[‡] Nandita Vijaykumar[†] Kevin K. Chang[†] Amirali Boroumand[†] Saugata Ghose[†] Onur Mutlu^{§†} [†] Carnegie Mellon University [‡] University of Virginia [§] ETH Zürich

Executive Summary


- Our Goal: Accelerating pointer chasing inside main memory
- Challenges: Parallelism challenge and Address translation challenge
- Our Solution: In-Memory PoInter Chasing Accelerator (IMPICA)
 - Address-access decoupling: enabling parallelism in the accelerator with low cost
 - IMPICA page table: low cost page table in logic layer

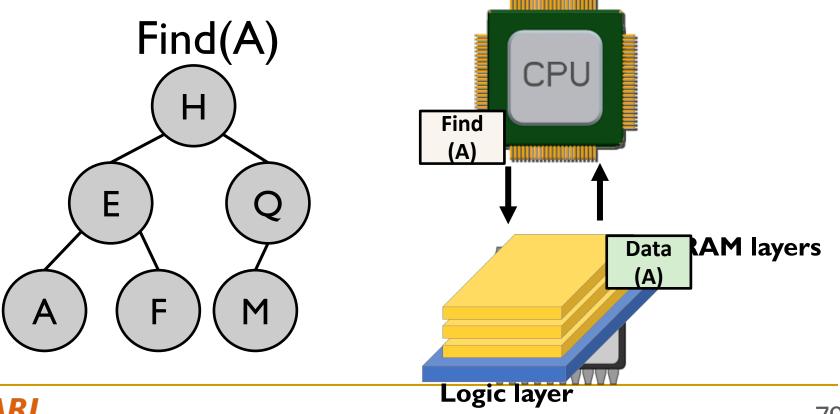
Key Results:

- 1.2X 1.9X speedup for pointer chasing operations, +16% database throughput
- □ 6% 41% reduction in energy consumption

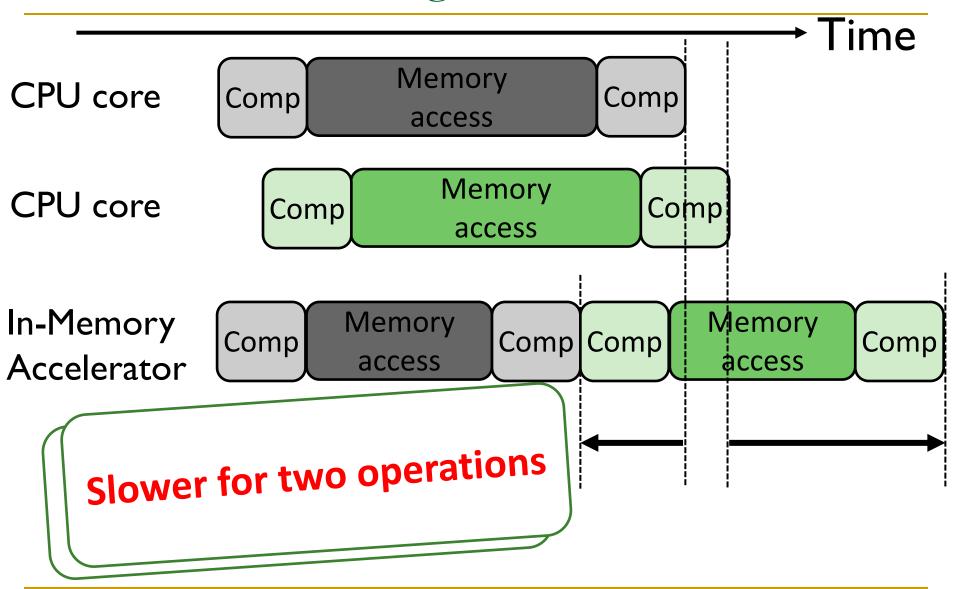

Linked Data Structures

 Linked data structures are widely used in many important applications

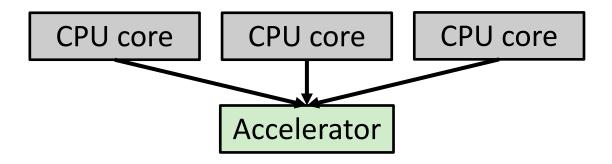
The Problem: Pointer Chasing


 Traversing linked data structures requires chasing pointers

Serialized and irregular access pattern 6X cycles per instruction in real workloads

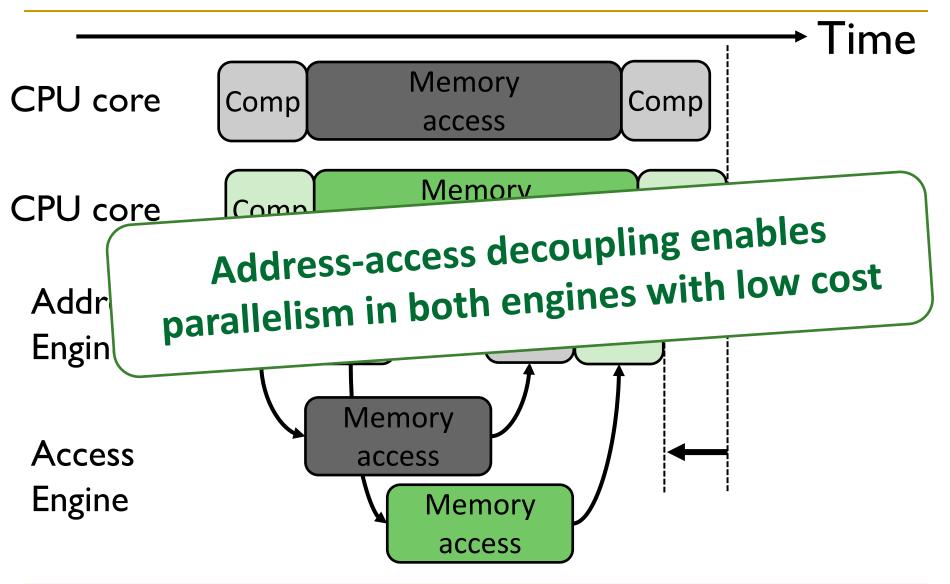

Our Goal

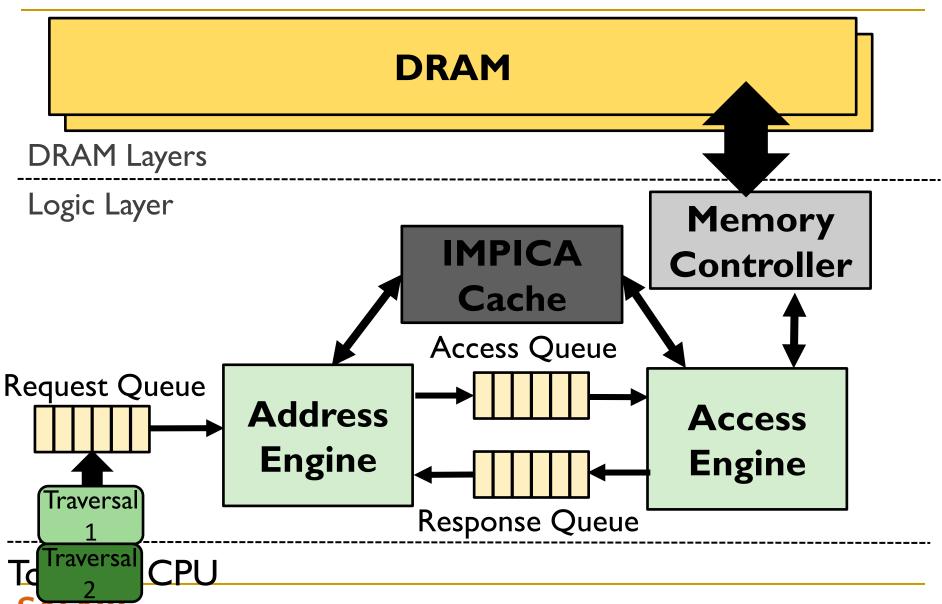
Accelerating pointer chasing inside main memory


SAFARI

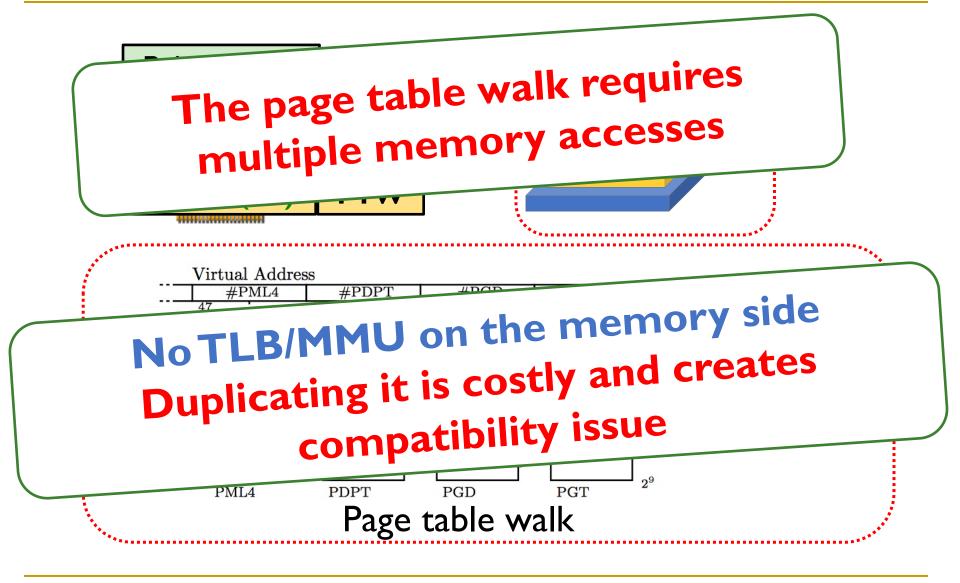
Parallelism Challenge

Parallelism Challenge and Opportunity

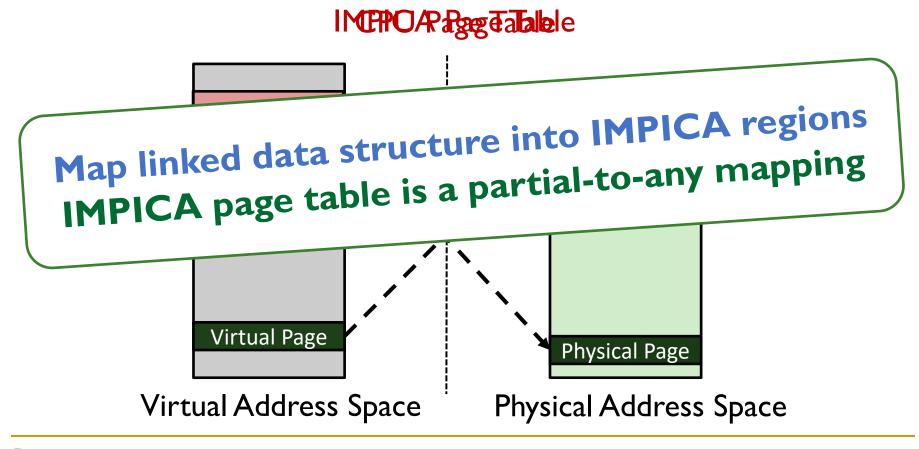

 A simple in-memory accelerator can still be slower than multiple CPU cores


 Opportunity: a pointer-chasing accelerator spends a long time waiting for memory

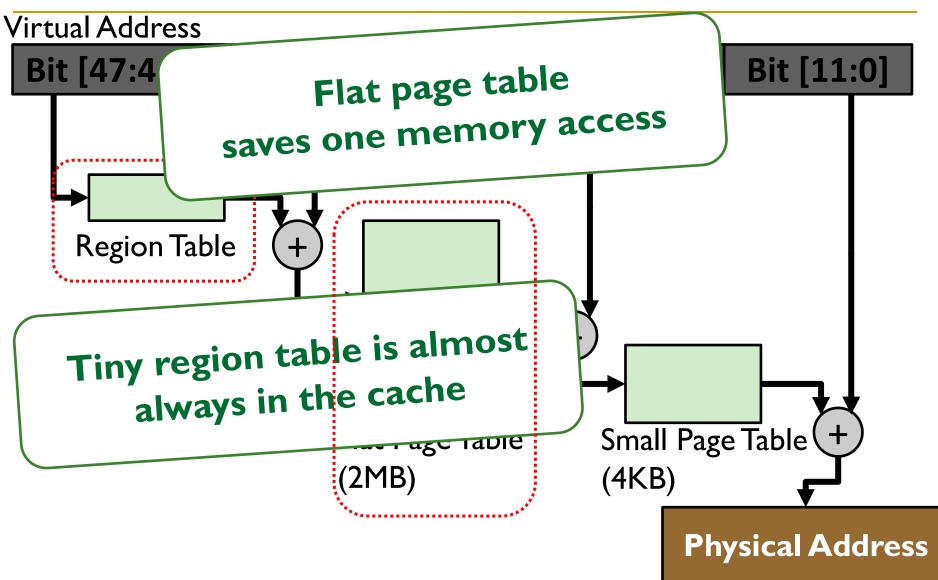
Our Solution: Address-Access Decoupling



IMPICA Core Architecture


83

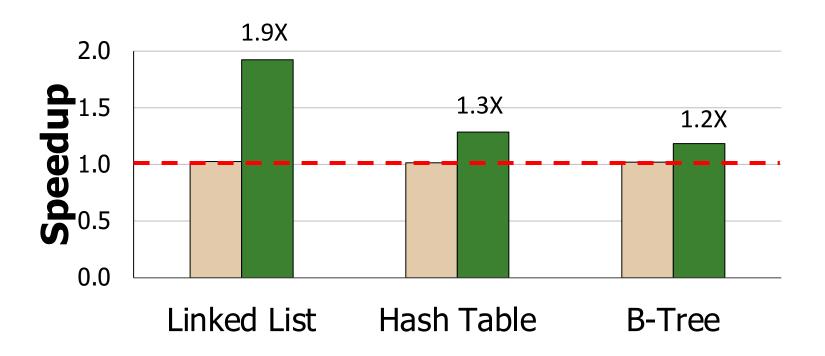
Address Translation Challenge



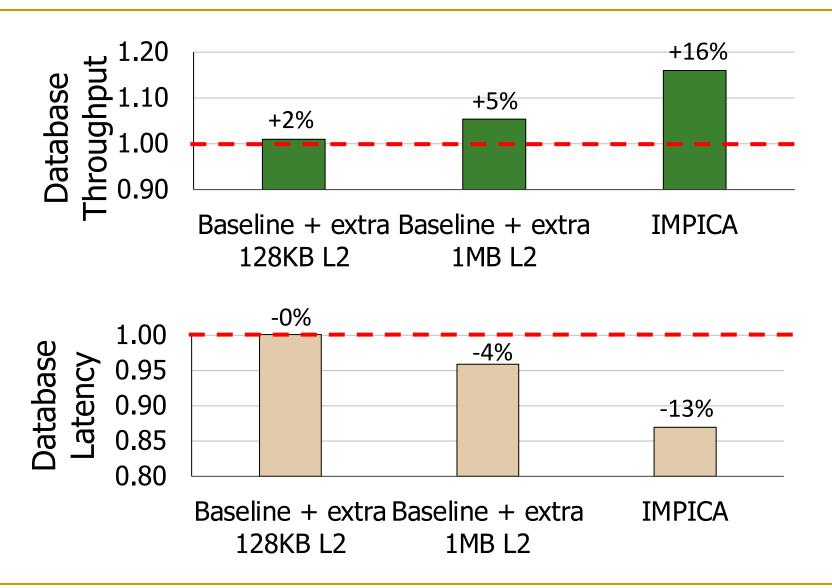
Our Solution: IMPICA Page Table

 Completely decouple the page table of IMPICA from the page table of the CPUs

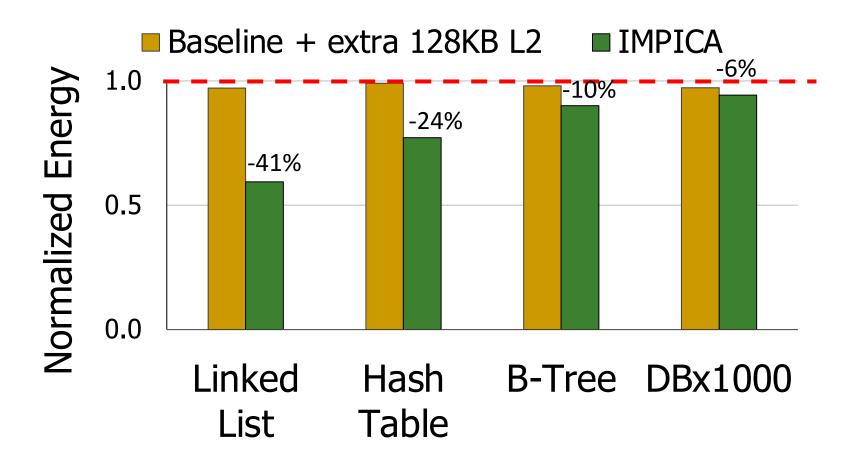
IMPICA Page Table: Mechanism



Evaluation Methodology


- Simulator: gem5
- System Configuration
 - CPU
 - 4 OoO cores, 2GHz
 - Cache: 32KB L1, 1MB L2
 - IMPICA
 - 1 core, 500MHz, 32KB Cache
 - Memory Bandwidth
 - 12.8 GB/s for CPU, 51.2 GB/s for IMPICA
- Our simulator code is open source
 - https://github.com/CMU-SAFARI/IMPICA

Result – Microbenchmark Performance


■ Baseline + extra 128KB L2 ■ IMPICA

Result – Database Performance

System Energy Consumption

Area and Power Overhead

CPU (Cortex-A57)	5.85 mm ² per core
L2 Cache	5 mm ² per MB
Memory Controller	10 mm ²
IMPICA (+32KB cache)	0.45 mm ²

Power overhead: average power increases by 5.6%

How to Support Virtual Memory?

Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, and Onur Mutlu, "Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation" Proceedings of the 34th IEEE International Conference on Computer Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation

Kevin Hsieh[†] Samira Khan[‡] Nandita Vijaykumar[†] Kevin K. Chang[†] Amirali Boroumand[†] Saugata Ghose[†] Onur Mutlu^{§†} [†] Carnegie Mellon University [‡] University of Virginia [§] ETH Zürich

Rethinking Virtual Memory

Nastaran Hajinazar, Pratyush Patel, Minesh Patel, Konstantinos Kanellopoulos, Saugata Ghose, Rachata Ausavarungnirun, Geraldo Francisco de Oliveira Jr., Jonathan Appavoo, Vivek Seshadri, and Onur Mutlu, "The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory Framework"

Proceedings of the <u>47th International Symposium on Computer Architecture</u> (**ISCA**), Virtual, June 2020.

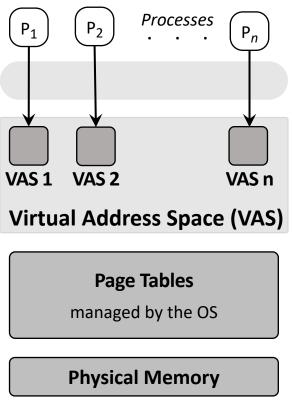
[Slides (pptx) (pdf)]

[<u>Lightning Talk Slides (pptx) (pdf)</u>]

[ARM Research Summit Poster (pptx) (pdf)]

[Talk Video (26 minutes)]

[Lightning Talk Video (3 minutes)]

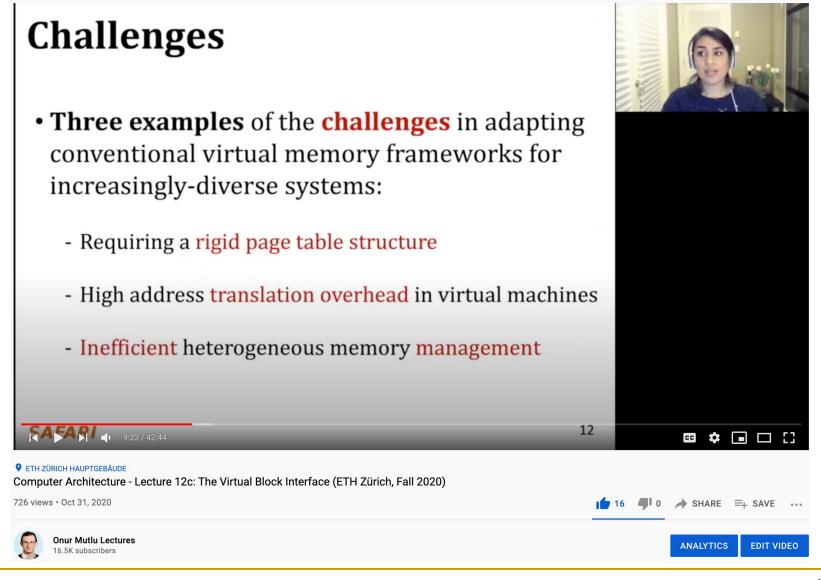

[Lecture Video (43 minutes)]

The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory Framework

Nastaran Hajinazar*† Pratyush Patel™ Minesh Patel* Konstantinos Kanellopoulos* Saugata Ghose‡ Rachata Ausavarungnirun[⊙] Geraldo F. Oliveira* Jonathan Appavoo[⋄] Vivek Seshadri[▽] Onur Mutlu*‡

*ETH Zürich † Simon Fraser University $^{\bowtie}$ University of Washington ‡ Carnegie Mellon University $^{\odot}$ King Mongkut's University of Technology North Bangkok $^{\diamond}$ Boston University $^{\triangledown}$ Microsoft Research India

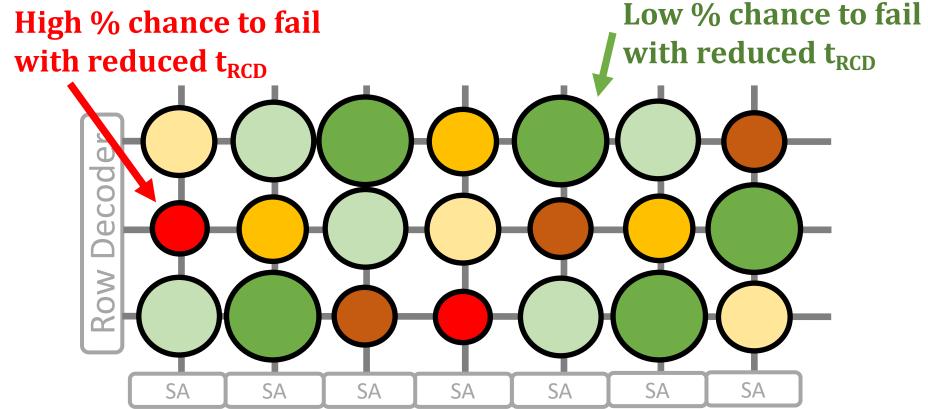
VBI: Overview



VB 1 VB 4 VBI Address Space Memory Translation Layer in the memory controller **Physical Memory Conventional Virtual Memory VBI**

SAFARI

Processes


Lecture on Virtual Block Interface

Security Considerations

DRAM Latency PUF Key Idea

- A cell's latency failure probability is inherently related to random process variation from manufacturing
- We can provide repeatable and unique device signatures using latency error patterns

DRAM Latency Physical Unclonable Functions

Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,
 "The DRAM Latency PUF: Quickly Evaluating Physical Unclonable
 Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM Devices"

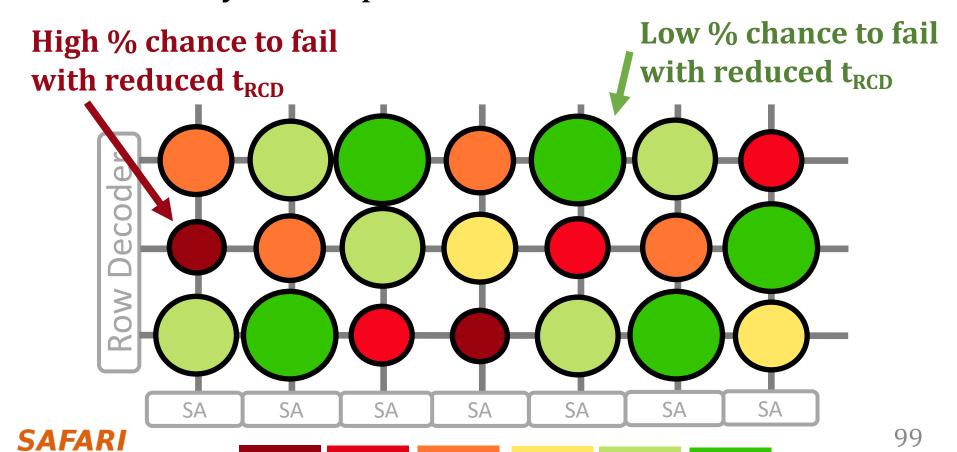
Proceedings of the <u>24th International Symposium on High-Performance Computer</u> <u>Architecture</u> (**HPCA**), Vienna, Austria, February 2018.

[Lightning Talk Video]

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

[Full Talk Lecture Video (28 minutes)]

The DRAM Latency PUF:


Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices

Jeremie S. Kim^{†§} Minesh Patel[§] Hasan Hassan[§] Onur Mutlu^{§†}

[†]Carnegie Mellon University [§]ETH Zürich

D-RaNGe Key Idea

- A cell's latency failure probability is inherently related to random process variation from manufacturing
- We can extract random values by observing DRAM cells' latency failure probabilities

DRAM Latency True Random Number Generator

Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu,
 "D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput"

Proceedings of the <u>25th International Symposium on High-Performance Computer</u> <u>Architecture</u> (**HPCA**), Washington, DC, USA, February 2019.

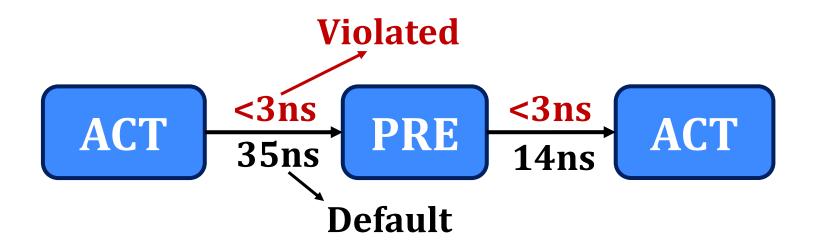
[Slides (pptx) (pdf)]

[Full Talk Video (21 minutes)]

[Full Talk Lecture Video (27 minutes)]

Top Picks Honorable Mention by IEEE Micro.

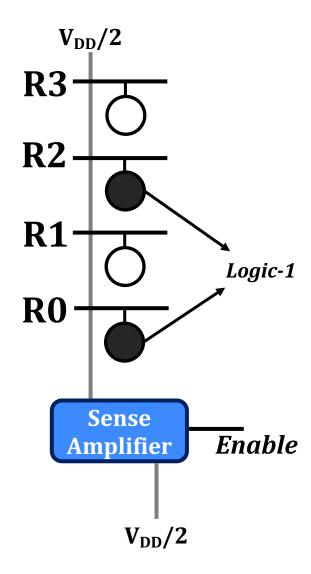
D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput

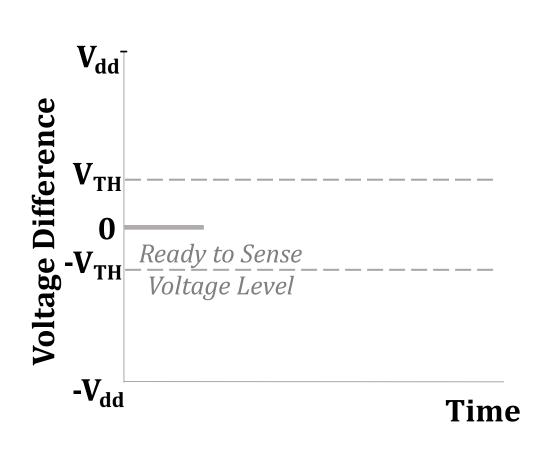

Jeremie S. Kim^{‡§} Minesh Patel[§] Hasan Hassan[§] Lois Orosa[§] Onur Mutlu^{§‡}
[‡]Carnegie Mellon University [§]ETH Zürich

100

Quadruple Activation (QUAC)

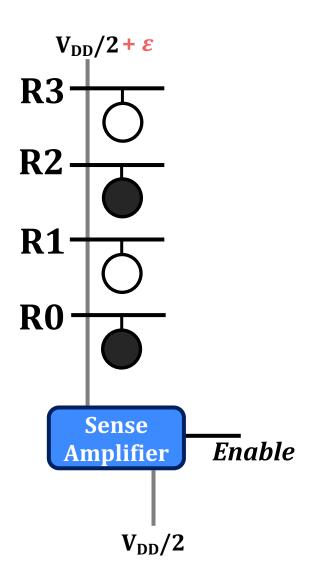
New Observation

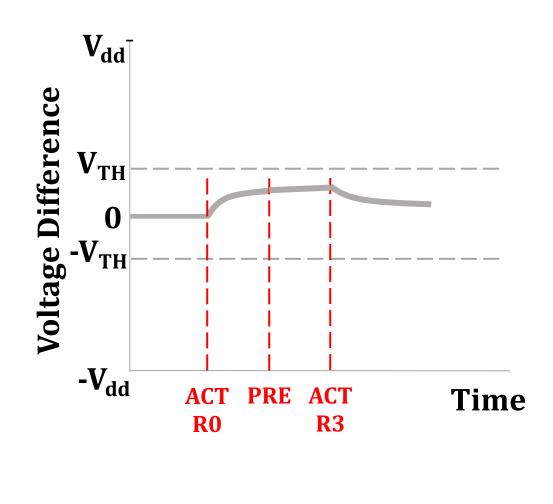

Carefully-engineered DRAM commands can activate four rows in real DRAM chips



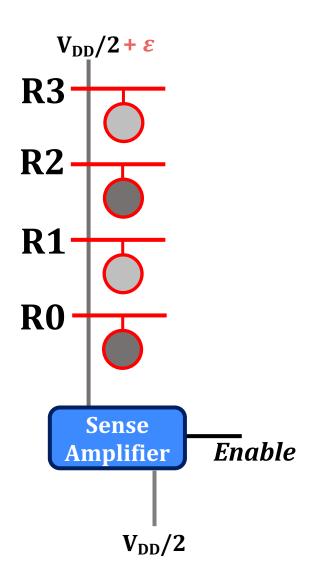
Activate four rows with two ACT commands

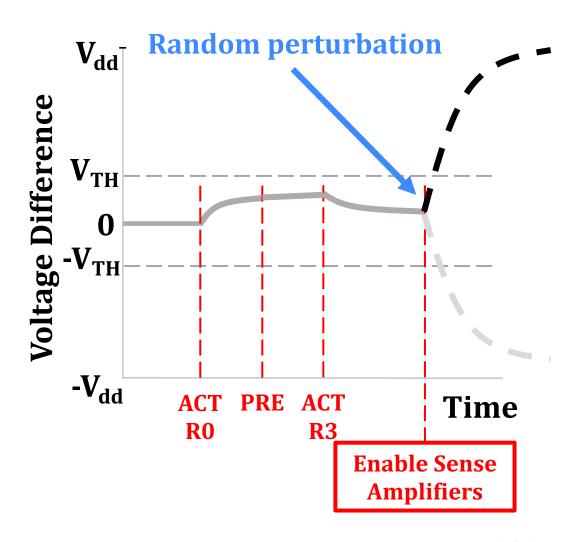
Generating Random Values via QUAC



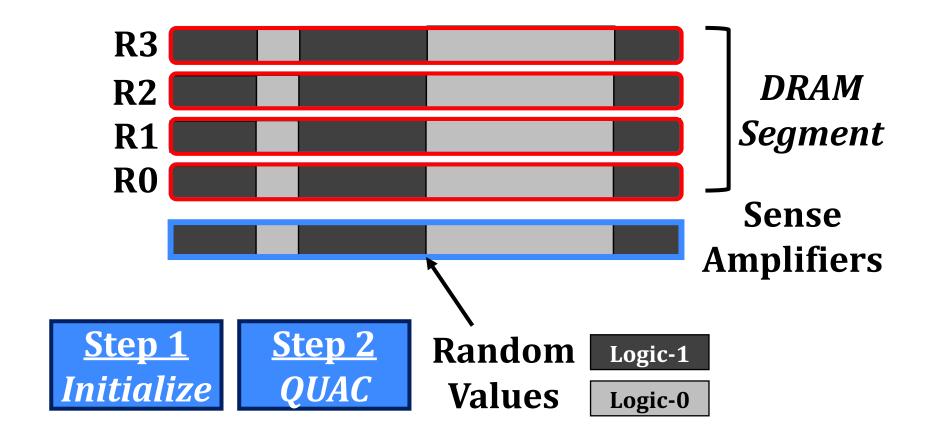


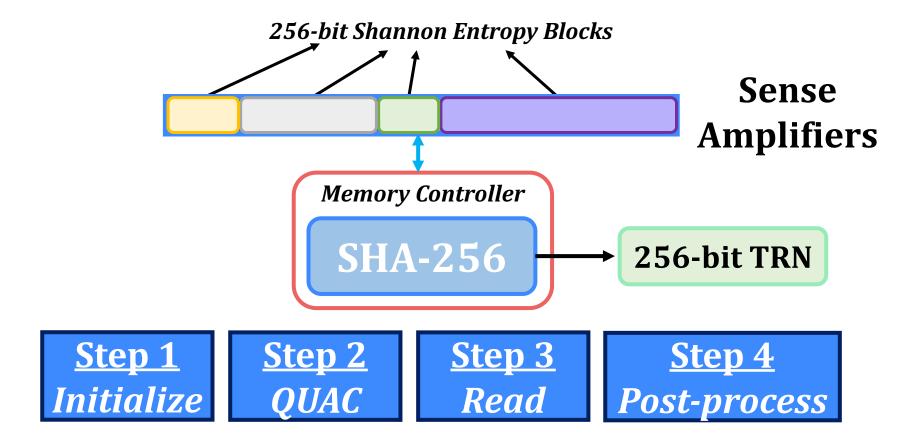
Generating Random Values via QUAC





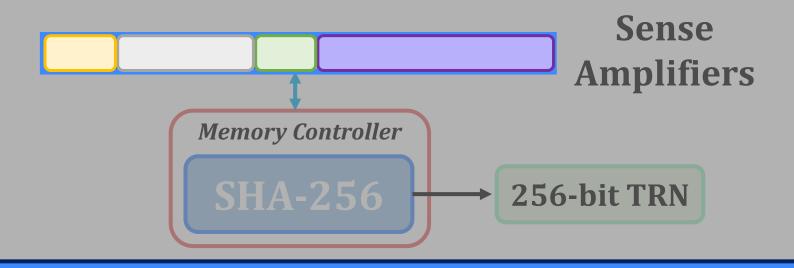
Generating Random Values via QUAC




QUAC-TRNG

Key Idea: Leverage random values on sense amplifiers generated by QUAC operations as source of entropy

QUAC-TRNG


Key Idea: Leverage random values on sense amplifiers generated by QUAC operations as source of entropy

QUAC-TRNG

Key Idea: Leverage random values on sense amplifiers generated by QUAC operations as source of entropy

Generates a 256-bit random number for every 256-bit Shannon Entropy block

In-DRAM True Random Number Generation

 Ataberk Olgun, Minesh Patel, A. Giray Yaglikci, Haocong Luo, Jeremie S. Kim, F. Nisa Bostanci, Nandita Vijaykumar, Oguz Ergin, and Onur Mutlu,

"QUAC-TRNG: High-Throughput True Random Number Generation Using Quadruple Row Activation in Commodity DRAM Chips"

Proceedings of the <u>48th International Symposium on Computer Architecture</u> (**ISCA**), Virtual, June 2021.

[Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[Talk Video (25 minutes)]

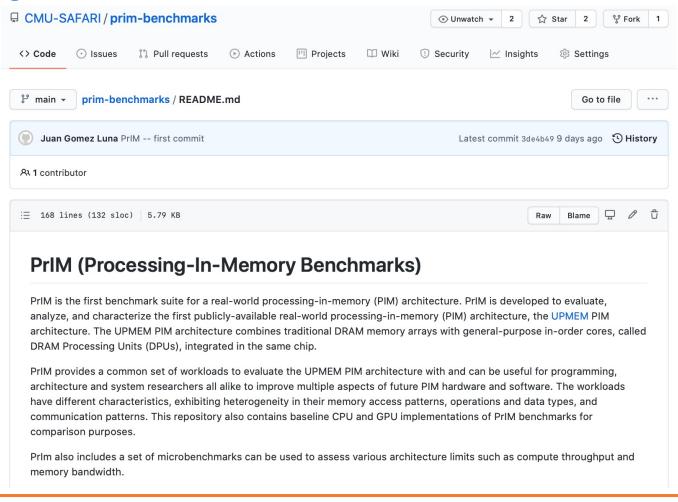
[SAFARI Live Seminar Video (1 hr 26 mins)]

QUAC-TRNG: High-Throughput True Random Number Generation Using Quadruple Row Activation in Commodity DRAM Chips

Ataberk Olgun^{§†} Minesh Patel[§] A. Giray Yağlıkçı[§] Haocong Luo[§] Jeremie S. Kim[§] F. Nisa Bostancı^{§†} Nandita Vijaykumar^{§⊙} Oğuz Ergin[†] Onur Mutlu[§]

§ETH Zürich † TOBB University of Economics and Technology $^{\odot}$ University of Toronto

SAFARI 108


Benchmarks and Simulation Infrastructures

PrIM Benchmarks: Application Domains

Domain	Benchmark	Short name
Dance linear algebra	Vector Addition	VA
Dense linear algebra	Matrix-Vector Multiply	GEMV
Sparse linear algebra	Sparse Matrix-Vector Multiply	SpMV
Databasas	Select	SEL
Databases	Unique	UNI
Data analytica	Binary Search	BS
Data analytics	Time Series Analysis	TS
Graph processing	Breadth-First Search	BFS
Neural networks	Multilayer Perceptron	MLP
Bioinformatics	Needleman-Wunsch	NW
luna da mua assalin d	Image histogram (short)	HST-S
Image processing	Image histogram (large)	HST-L
	Reduction	RED
Devallal maioriticas	Prefix sum (scan-scan-add)	SCAN-SSA
Parallel primitives	Prefix sum (reduce-scan-scan)	SCAN-RSS
	Matrix transposition	TRNS

PrIM Benchmarks are Open Source

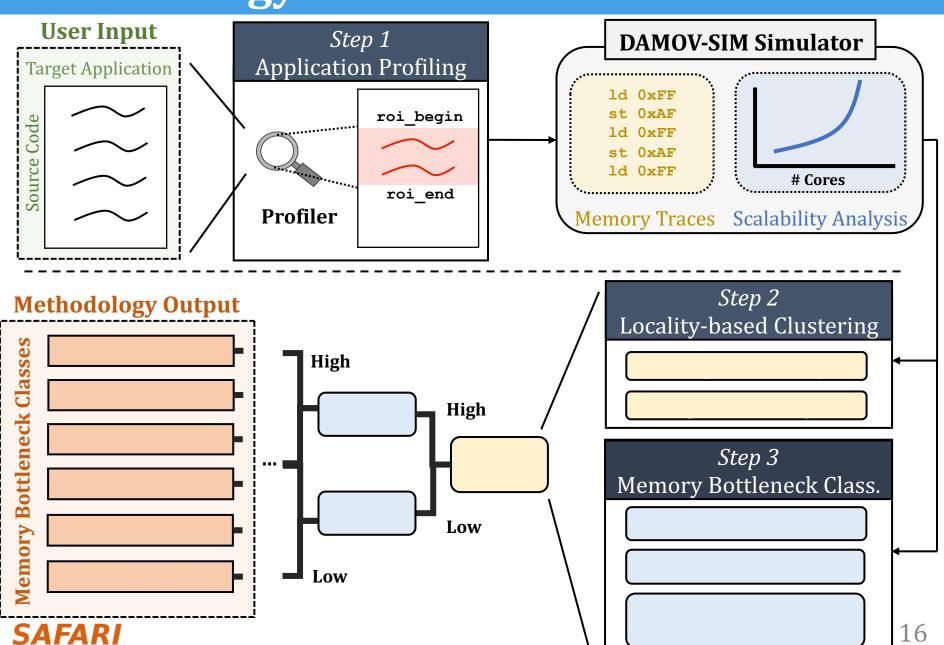
- All microbenchmarks, benchmarks, and scripts
- https://github.com/CMU-SAFARI/prim-benchmarks

Lecture on PrIM Benchmarks

DAMOV Analysis Methodology & Workloads

DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

GERALDO F. OLIVEIRA, ETH Zürich, Switzerland
JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland
LOIS OROSA, ETH Zürich, Switzerland
SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA
NANDITA VIJAYKUMAR, University of Toronto, Canada
IVAN FERNANDEZ, University of Malaga, Spain & ETH Zürich, Switzerland
MOHAMMAD SADROSADATI, Institute for Research in Fundamental Sciences (IPM), Iran & ETH
Zürich, Switzerland
ONUR MUTLU, ETH Zürich, Switzerland


Data movement between the CPU and main memory is a first-order obstacle against improving performance, scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP), where some computation is moved close to memory. Prior NDP works investigate the root causes of data movement bottlenecks using different profiling methodologies and tools. However, there is still a lack of understanding about the key metrics that can identify different data movement bottlenecks and their relation to traditional and emerging data movement mitigation mechanisms. Our goal is to methodically identify potential sources of data movement over a broad set of applications and to comprehensively compare traditional compute-centric data movement mitigation techniques (e.g., caching and prefetching) to more memory-centric techniques (e.g., NDP), thereby developing a rigorous understanding of the best techniques to mitigate each source of data movement.

With this goal in mind, we perform the first large-scale characterization of a wide variety of applications, across a wide range of application domains, to identify fundamental program properties that lead to data movement to/from main memory. We develop the first systematic methodology to classify applications based on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K functions across 345 applications, we select 144 functions to form the first open-source benchmark suite (DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and (2) come from a wide range of application domains. Using NDP as a case study, we identify new insights about the different data movement bottlenecks and use these insights to determine the most suitable data movement mitigation mechanism for a particular application. We open-source DAMOV and the complete source code for our new characterization methodology at https://github.com/CMU-SAFARI/DAMOV.

SAFARI

https://arxiv.org/pdf/2105.03725.pdf

Methodology Overview

More on DAMOV

Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata Ghose, Nandita Vijaykumar, Ivan Fernandez, Mohammad Sadrosadati, and Onur Mutlu,
 "DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks"

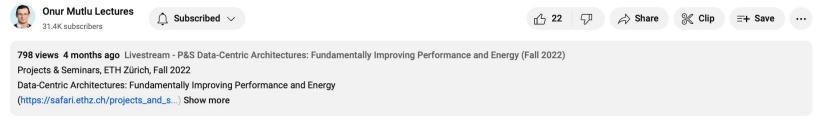
Preprint in <u>arXiv</u>, 8 May 2021.

[arXiv preprint]

[DAMOV Suite and Simulator Source Code]

[SAFARI Live Seminar Video (2 hrs 40 mins)]

[Short Talk Video (21 minutes)]


DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

GERALDO F. OLIVEIRA, ETH Zürich, Switzerland
JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland
LOIS OROSA, ETH Zürich, Switzerland
SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA
NANDITA VIJAYKUMAR, University of Toronto, Canada
IVAN FERNANDEZ, University of Malaga, Spain & ETH Zürich, Switzerland
MOHAMMAD SADROSADATI, ETH Zürich, Switzerland
ONUR MUTLU, ETH Zürich, Switzerland

Lecture on DAMOV

PIM Course: Lecture 2: How to Evaluate Data Movement Bottlenecks - Fall 2022

Simulation Infrastructures for PIM

- Ramulator extended for PIM
 - Flexible and extensible DRAM simulator
 - Can model many different memory standards and proposals
 - Kim+, "Ramulator: A Flexible and Extensible DRAM Simulator", IEEE CAL 2015.
 - https://github.com/CMU-SAFARI/ramulator-pim
 - https://github.com/CMU-SAFARI/ramulator
 - Source Code for Ramulator-PIM

Ramulator: A Fast and Extensible DRAM Simulator

Yoongu Kim¹ Weikun Yang^{1,2} Onur Mutlu¹
¹Carnegie Mellon University ²Peking University

Simulation Infrastructures for PIM (in SSDs)

 Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, Saugata Ghose, and <u>Onur Mutlu</u>,

"MQSim: A Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices"

Proceedings of the <u>16th USENIX Conference on File and Storage</u>

Technologies (FAST), Oakland, CA, USA, February 2018.

[Slides (pptx) (pdf)]

Source Code

MQSim: A Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices

Arash Tavakkol[†], Juan Gómez-Luna[†], Mohammad Sadrosadati[†], Saugata Ghose[‡], Onur Mutlu^{†‡}

†ETH Zürich [‡]Carnegie Mellon University

NAPEL: Near-Memory Computing Application Performance Prediction via Ensemble Learning

<u>Gagandeep Singh</u>, Juan Gomez-Luna, Giovanni Mariani, Geraldo F. Oliveira, Stefano Corda, Sander Stuijk, Onur Mutlu, Henk Corporaal

56th Design Automation Conference (DAC), Las Vegas 4th-June-2019

Executive Summary

- Motivation: A promising paradigm to alleviate data movement bottleneck is nearmemory computing (NMC), which consists of placing compute units close to the memory subsystem
- **Problem:** Simulation times are extremely slow, imposing long run-time especially in the early-stage design space exploration
- Goal: A quick high-level performance and energy estimation framework for NMC architectures
- Our contribution: NAPEL
 - Fast and accurate performance and energy prediction for previously-unseen applications using ensemble learning
 - Use intelligent statistical techniques and micro-architecture-independent application features to minimize experimental runs

Evaluation

- NAPEL is, on average, 220x faster than state-of-the-art NMC simulator
- Error rates (average) of 8.5% and 11.5% for performance and energy estimation

We open source Ramulator-PIM: https://github.com/CMU-SAFARI/ramulator-pim/

NMC Simulators

- Simulation for:
 - Design space exploration (DSE)
 - Workload suitability analysis
- NMC Simulators:
 - Sinuca, 2015
 - HMC-SIM, 2016
 - CasHMC, 2016
 - Smart Memory Cube (SMC), 2016
 - CLAPPS, 2017
 - Gem5+HMC, 2017
 - Ramulator-PIM¹, 2019

¹Ramulator-PIM: https://github.com/CMU-SAFARI/ramulator-pim/

NMC Simulators

- Simulation for:
 - Design space exploration (DSE)
 - Workload suitability analysis
- NMC Simulators:

Simulation of real workloads can be 10000x slower than native-execution!!!

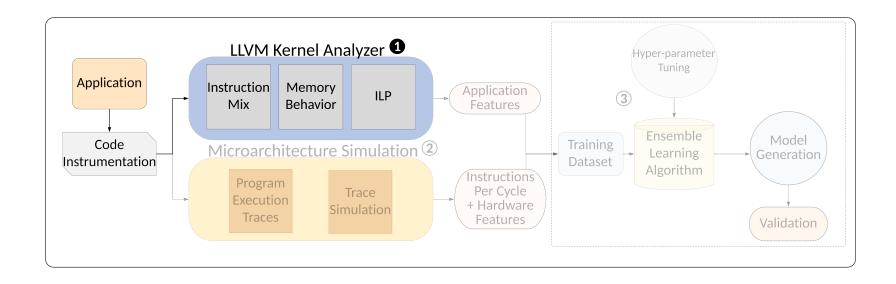
- Gem5+HMC, 2017
- Ramulator-PIM¹, 2019

¹Ramulator-PIM: https://github.com/CMU-SAFARI/ramulator-pim/

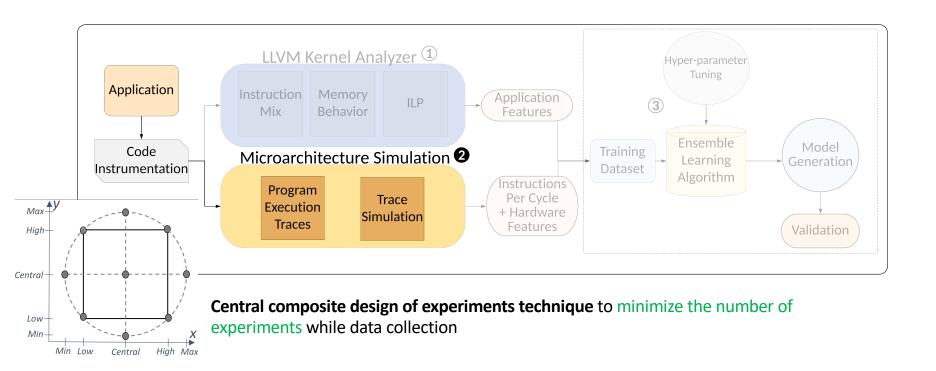
NMC Simulators

- Simulation for:
 - Design space exploration (DSE)
 - Workload suitability analysis
- NMC Simulators:

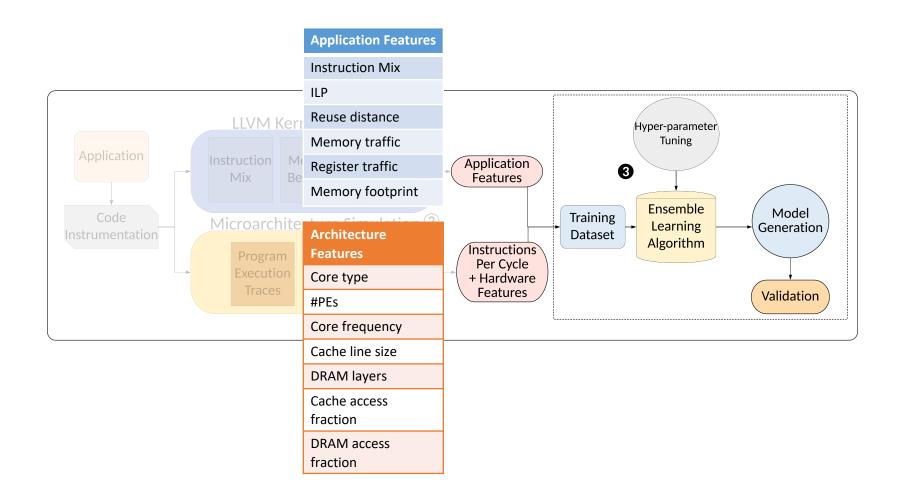
Idea: Leverage ML with statistical techniques for quick NMC performance/energy prediction

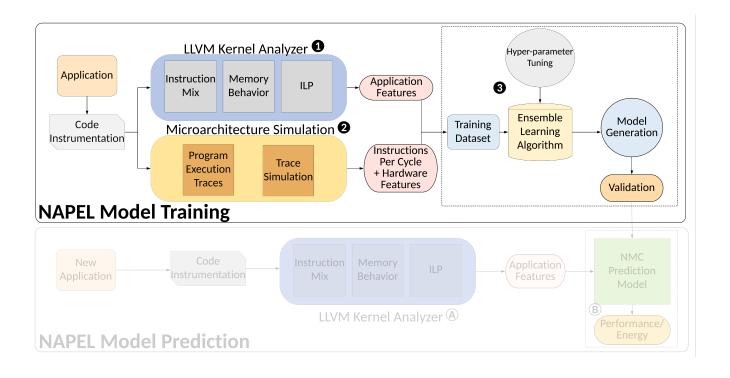

- Gem5+HMC, 2017
- Ramulator-PIM¹, 2019

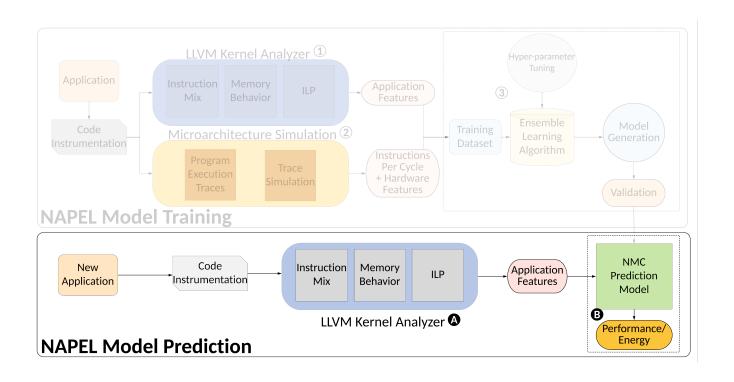
¹Ramulator-PIM: https://github.com/CMU-SAFARI/ramulator-pim/


NAPEL: Near-Memory Computing Application Performance Prediction via Ensemble Learning

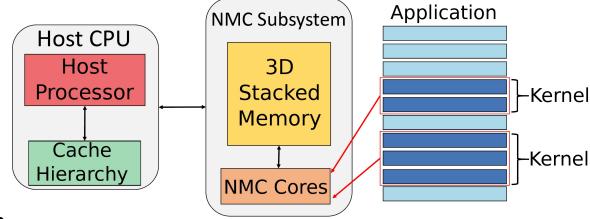
NAPEL Model Training LLVM Kernel Analyzer 1 Hyper-parameter Tuning Application Memory Instruction Application ILP 3 Mix **Behavior Features** Ensemble Model Code **Training** Microarchitecture Simulation 2 Learning Generation Instrumentation Dataset Algorithm Instructions **Program** Per Cycle Trace Execution + Hardware Simulation Traces Features Validation


Phase 1: LLVM Analyzer

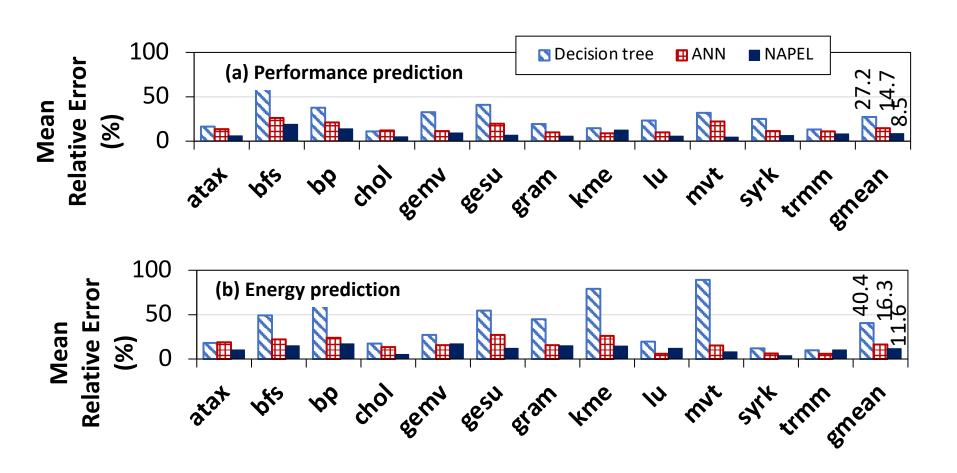

Phase 2: Microarchitecture Simulation


Phase 3: Ensemble ML Training

NAPEL Framework

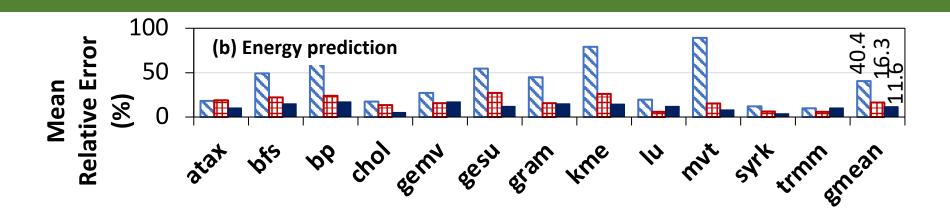


NAPEL Prediction

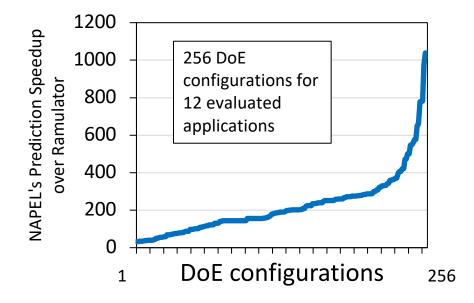

Experimental Setup

- Host System
 - IBM POWER9
 - Power: AMESTER
- NMC Subsystem
 - Ramulator-PIM¹
- Workloads
 - PolyBench and Rodinia
 - Heterogeneous workloads such as image processing, machine learning, graph processing etc.
- Accuracy in terms of mean relative error (MRE)

1https://github.com/CMU-SAFARI/ramulator-pim/


NAPEL Accuracy: Performance and Energy Estimates

NAPEL Accuracy: Performance and Energy Estimates

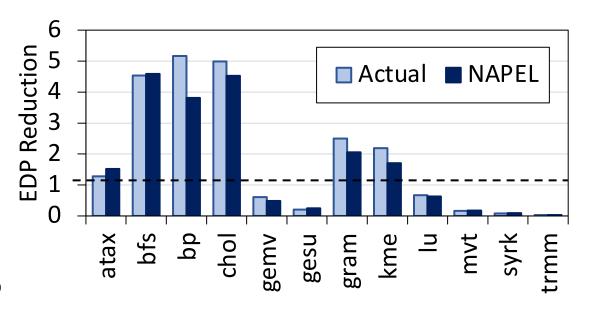


MRE of 8.5% and 11.6% for performance and energy

Speed of Evaluation

Application	Training/Prediction Time					
Name	#DoE conf.	DoE run (mins)	Train+Tune (mins)	Pred. (mins)		
atax	11	522	34.9	0.49		
bfs	31	1084	34.2	0.48		
bp	31	1073	43.8	0.47		
chol	19	741	34.9	0.49		
gemv	19	741	24.4	0.51		
gesu	19	731	36.1	0.51		
gram	19	773	36.5	0.52		
kme	31	742	36.9	0.55		
lu	19	633	37.9	0.51		
mvt	19	955	38.0	0.54		
syrk	19	928	35.7	0.51		
trmm	19	898	37.6	0.48		

Speed of Evaluation


220x (up to 1039x) faster than NMC simulator

kme	31	742	36.9	0.55	IL's
lu	19	633	37.9	0.51	뷥 200 -
mvt	19	955	38.0	0.54	4
syrk	19	928	35.7	0.51	0
trmm	19	898	37.6	0.48	DoE configurations
					— 1 DoE configurations 256

Use Case: NMC Suitability Analysis

- Assess the potential of offloading a workload to NMC
- NAPEL provides accurate prediction of NMC suitability

 MRE between 1.3% to 26.3% (average 14.1%)

Performance & Energy Models for PIM

Gagandeep Singh, Juan Gomez-Luna, Giovanni Mariani, Geraldo F.
 Oliveira, Stefano Corda, Sander Stujik, Onur Mutlu, and Henk Corporaal,
 "NAPEL: Near-Memory Computing Application Performance
 Prediction via Ensemble Learning"

Proceedings of the <u>56th Design Automation Conference</u> (**DAC**), Las Vegas, NV, USA, June 2019.

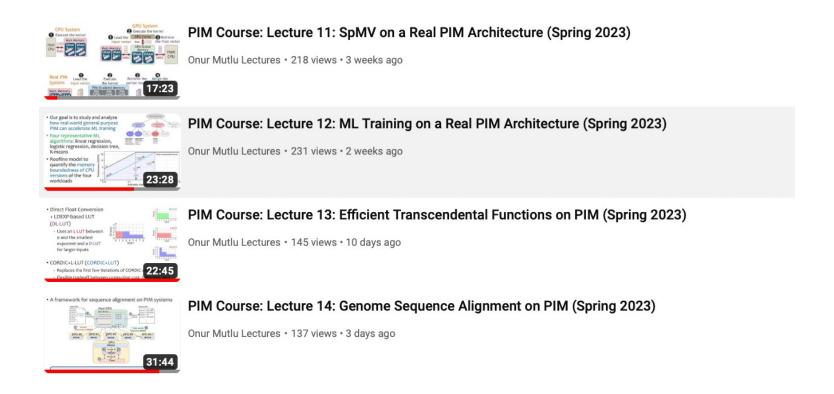
[Slides (pptx) (pdf)]

[Poster (pptx) (pdf)]

[Source Code for Ramulator-PIM]

NAPEL: Near-Memory Computing Application Performance Prediction via Ensemble Learning

Gagandeep Singh a,c Juan Gómez-Luna b Stefano Corda a,c Sander Stuijk a a Eindhoven University of Technology b E


Juan Gómez-Luna^b Giovanni Mariani^c Geraldo F. Oliveira^b
Sander Stuijk^a Onur Mutlu^b Henk Corporaal^a

iversity of Technology bETH Zürich cIBM Research - Zurich

Applications that Benefit from PIM

Lectures about Applications on Real PIM Systems

https://www.youtube.com/playlist?list=PL5Q2soXY2Zi EObuoAZVSq o6UySWQHvZ

New Applications and Use Cases for PIM

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu, "GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies" <u>BMC Genomics</u>, 2018.

Proceedings of the <u>16th Asia Pacific Bioinformatics Conference</u> (**APBC**), Yokohama, Japan, January 2018. arxiv.org Version (pdf)

GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies

Jeremie S. Kim^{1,6*}, Damla Senol Cali¹, Hongyi Xin², Donghyuk Lee³, Saugata Ghose¹, Mohammed Alser⁴, Hasan Hassan⁶, Oguz Ergin⁵, Can Alkan^{4*} and Onur Mutlu^{6,1*}

From The Sixteenth Asia Pacific Bioinformatics Conference 2018 Yokohama, Japan. 15-17 January 2018

Genome Read In-Memory (GRIM) Filter:

Fast Seed Location Filtering in DNA Read Mapping using Processing-in-Memory Technologies

Jeremie Kim,

Damla Senol, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu

Executive Summary

- Genome Read Mapping is a very important problem and is the first step in many types of genomic analysis
 - Could lead to improved health care, medicine, quality of life
- Read mapping is an approximate string matching problem
 - □ Find the best fit of 100 character strings into a 3 billion character dictionary
 - Alignment is currently the best method for determining the similarity between two strings, but is very expensive
- We propose an in-memory processing algorithm GRIM-Filter for accelerating read mapping, by reducing the number of required alignments
- We implement GRIM-Filter using in-memory processing within 3D-stacked memory and show up to 3.7x speedup.

Accelerating Approximate String Matching

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis"

Proceedings of the <u>53rd International Symposium on Microarchitecture</u> (MICRO), Virtual,

[<u>Lighting Talk Video</u> (1.5 minutes)] [<u>Lightning Talk Slides (pptx) (pdf)</u>] [<u>Talk Video</u> (18 minutes)] [<u>Slides (pptx) (pdf)</u>]

October 2020.

GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis

Damla Senol Cali^{†™} Gurpreet S. Kalsi[™] Zülal Bingöl[▽] Can Firtina[⋄] Lavanya Subramanian[‡] Jeremie S. Kim^{⋄†} Rachata Ausavarungnirun[⊙] Mohammed Alser[⋄] Juan Gomez-Luna[⋄] Amirali Boroumand[†] Anant Nori[™] Allison Scibisz[†] Sreenivas Subramoney[™] Can Alkan[▽] Saugata Ghose^{*†} Onur Mutlu^{⋄†▽}

† Carnegie Mellon University [™] Processor Architecture Research Lab, Intel Labs [▽] Bilkent University [⋄] ETH Zürich

‡ Facebook [⊙] King Mongkut's University of Technology North Bangkok ^{*} University of Illinois at Urbana–Champaign

Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

Carnegie Mellon

Accelerating Climate Modeling

 Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal, "NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling"

Proceedings of the <u>30th International Conference on Field-Programmable Logic</u> <u>and Applications</u> (**FPL**), Gothenburg, Sweden, September 2020.

[Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (23 minutes)]

Nominated for the Stamatis Vassiliadis Memorial Award.

NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling

Gagandeep Singh a,b,c Dionysios Diamantopoulos c Christoph Hagleitner c Juan Gómez-Luna b Sander Stuijk a Onur Mutlu b Henk Corporaal a Eindhoven University of Technology b ETH Zürich c IBM Research Europe, Zurich

Accelerating Time Series Analysis

Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan Gómez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu, "NATSA: A Near-Data Processing Accelerator for Time Series Analysis" Proceedings of the 38th IEEE International Conference on Computer Design (ICCD), Virtual, October 2020.

NATSA: A Near-Data Processing Accelerator for Time Series Analysis

Ivan Fernandez§ Ricardo Quislant§ Christina Giannoula† Mohammed Alser‡ Juan Gómez-Luna‡ Eladio Gutiérrez§ Oscar Plata§ Onur Mutlu‡ §University of Malaga †National Technical University of Athens ‡ETH Zürich

Epilogue

PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d

SAFARI Research Group

^aETH Zürich

^bCarnegie Mellon University

^cUniversity of Illinois at Urbana-Champaign

^dKing Mongkut's University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerging Computing: From Devices to Systems
Looking Beyond Moore and Von Neumann, Springer, 2022.

-	
Car	iteni
	пеш

1	Introduction	2
2	Major Trends Affecting Main Memory	4
3	The Need for Intelligent Memory Controllers	
	to Enhance Memory Scaling	6
4	Perils of Processor-Centric Design	9
5	Processing-in-Memory (PIM): Technology	
	Enablers and Two Approaches	12
	5.1 New Technology Enablers: 3D-Stacked	
	Memory and Non-Volatile Memory	12
	5.2 Two Approaches: Processing Using	
	Memory (PUM) vs. Processing Near	
	Memory (PNM)	13
6	Processing Using Memory (PUM)	14
U	6.1 RowClone	14
	6.2 Ambit	15
		17
	6.3 Gather-Scatter DRAM	
	6.4 In-DRAM Security Primitives	17
7	Processing Near Memory (PNM)	18
	7.1 Tesseract: Coarse-Grained Application-	
	Level PNM Acceleration of Graph Pro-	
	cessing	19
	7.2 Function-Level PNM Acceleration of	
	Mobile Consumer Workloads	20
	7.3 Programmer-Transparent Function-	
	Level PNM Acceleration of GPU	
	Applications	21
	7.4 Instruction-Level PNM Acceleration	
	with PIM-Enabled Instructions (PEI)	21
	7.5 Function-Level PNM Acceleration of	
	Genome Analysis Workloads	22
_	7.6 Application-Level PNM Acceleration of	
L	Time Series Analysis	23
8	Enabling the Adoption of PIM	24
	8.1 Programming Models and Code Genera-	
	tion for PIM	24
	8.2 PIM Runtime: Scheduling and Data	
	Mapping	25
	8.3 Memory Coherence	27
	8.4 Virtual Memory Support	27
	8.5 Data Structures for PIM	28
	8.6 Benchmarks and Simulation Infrastruc-	
	tures	29
	8.7 Real PIM Hardware Systems and Proto-	-
	types	30
	8.8 Security Considerations	30
9	Conclusion and Future Outlook	31

1. Introduction

Main memory, built using the Dynamic Random Access Memory (DRAM) technology, is a major component in nearly all computing systems, including servers, cloud platforms, mobile/embedded devices, and sensor systems. Across all of these systems, the data working set sizes of modern applications are rapidly growing, while the need for fast analysis of such data is increasing. Thus, main memory is becoming an increasingly significant bottleneck across a wide variety of computing systems and applications [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Alleviating the main memory bottleneck requires the memory capacity, energy, cost, and performance to all scale in an efficient manner across technology generations. Unfortunately, it has become increasingly difficult in recent years, especially the past decade, to scale all of these dimensions [1, 2, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], and thus the main memory bottleneck has been worsening.

A major reason for the main memory bottleneck is the high energy and latency cost associated with data movement. In modern computers, to perform any operation on data that resides in main memory, the processor must retrieve the data from main memory. This requires the memory controller to issue commands to a DRAM module across a relatively slow and power-hungry off-chip bus (known as the memory channel). The DRAM module sends the requested data across the memory channel, after which the data is placed in the caches and registers. The CPU can perform computation on the data once the data is in its registers. Data movement from the DRAM to the CPU incurs long latency and consumes a significant amount of energy [7, 50, 51, 52, 53, 54]. These costs are often exacerbated by the fact that much of the data brought into the caches is not reused by the CPU [52, 53, 55, 56], providing little benefit in return for the high latency and energy cost.

The cost of data movement is a fundamental issue with the processor-centric nature of contemporary computer systems. The CPU is considered to be the master in the system, and computation is performed only in the processor (and accelerators). In contrast, data storage and communication units, including the main memory, are treated as unintelligent workers that are incapable of computation. As a result of this processor-centric design paradigm, data moves a lot in the system between the computation units and communication/ storage units so that computation can be done on it. With the increasingly data-centric nature of contemporary and emerging appli-

PIM Review and Open Problems (II)

Processing Data Where It Makes Sense: Enabling In-Memory Computation

Onur Mutlu^{a,b}, Saugata Ghose^b, Juan Gómez-Luna^a, Rachata Ausavarungnirun^{b,c}

^aETH Zürich
^bCarnegie Mellon University
^cKing Mongkut's University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, Processing Data Where It Makes Sense: Enabling In-Memory
Computation

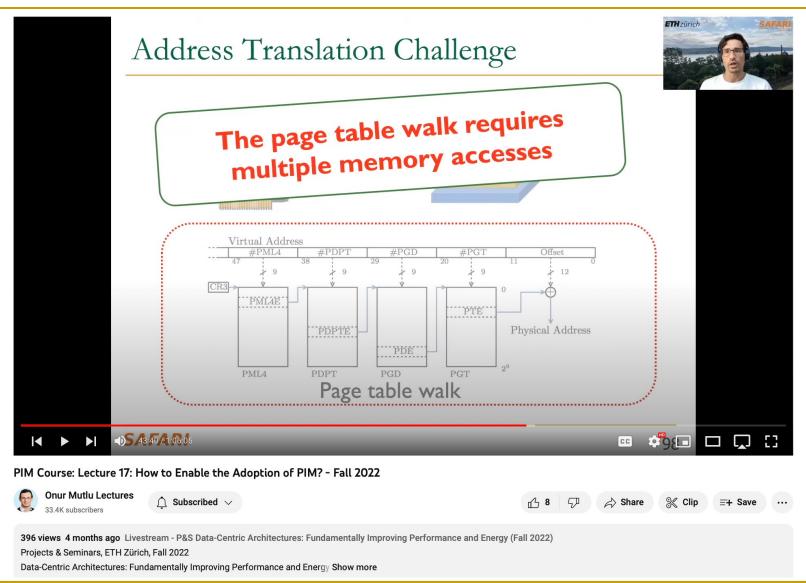
Invited paper in <u>Microprocessors and Microsystems</u> (**MICPRO**), June 2019. [arXiv version]

SAFARI

PIM Review and Open Problems (III)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory

Saugata Ghose[†] Amirali Boroumand[†] Jeremie S. Kim[†]§ Juan Gómez-Luna[§] Onur Mutlu^{§†}


[†]Carnegie Mellon University §ETH Zürich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu, "Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on Hardware for Artificial Intelligence, to appear in November 2019.

[Preliminary arXiv version]

Longer Lecture on Enabling PIM Adoption

Challenge and Opportunity for Future

Fundamentally **Energy-Efficient** (Data-Centric) Computing Architectures

Challenge and Opportunity for Future

Fundamentally High-Performance (Data-Centric) Computing Architectures

Challenge and Opportunity for Future

Computing Architectures with Minimal Data Movement

A Tutorial on Memory-Centric Systems

Onur Mutlu,

"Memory-Centric Computing Systems"

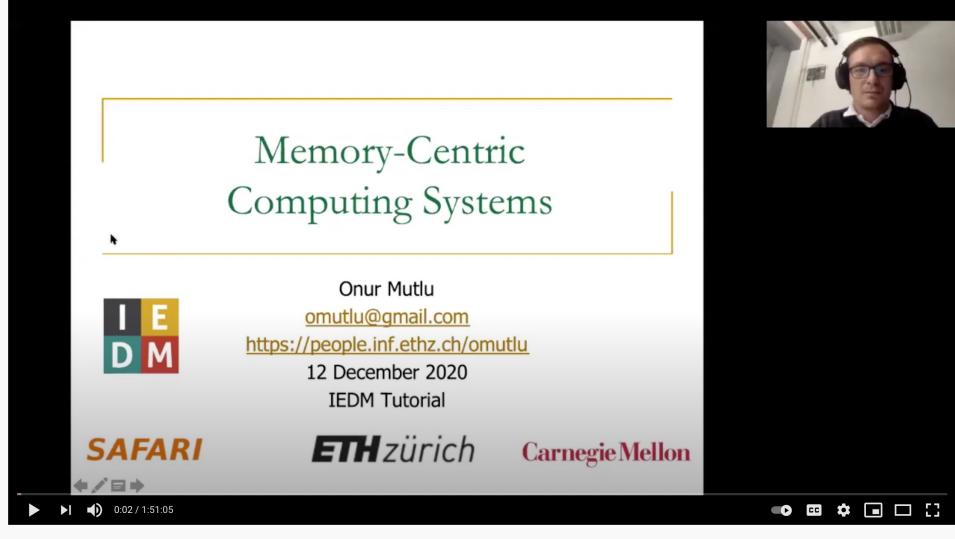
Invited Tutorial at <u>66th International Electron Devices</u>

Meeting (IEDM), Virtual, 12 December 2020.

[Slides (pptx) (pdf)]

[Executive Summary Slides (pptx) (pdf)]

[<u>Tutorial Video</u> (1 hour 51 minutes)]


[Executive Summary Video (2 minutes)]

Abstract and Bio

[Related Keynote Paper from VLSI-DAT 2020]

[Related Review Paper on Processing in Memory]

https://www.youtube.com/watch?v=H3sEaINPBOE

IEDM 2020 Tutorial: Memory-Centric Computing Systems, Onur Mutlu, 12 December 2020

1,862 views • Dec 23, 2020 SHARE

Onur Mutlu Lectures

15.2K subscribers

ANALYTICS

EDIT VIDEO

Speaker: Professor Onur Mutlu (https://people.inf.ethz.ch/omutlu/)

Date: December 12, 2020

Abstract and Bio: https://ieee-iedm.org/wp-content/uplo...

A Tutorial on Memory-Centric Computing

Onur Mutlu,

"Memory-Centric Computing"

Education Class at <u>Embedded Systems Week (**ESWEEK**)</u>, Virtual, 9 October 2021.

[Slides (pptx) (pdf)]

[Abstract (pdf)]

[Talk Video (2 hours, including Q&A)]

[Invited Paper at DATE 2021]

["A Modern Primer on Processing in Memory" paper]

https://www.youtube.com/watch?v=N1Ac1ov1JOM

Memory-Centric Computing

omutlu@gmail.com

Onur Mutlu

https://people.inf.ethz.ch/omutlu

9 October 2021

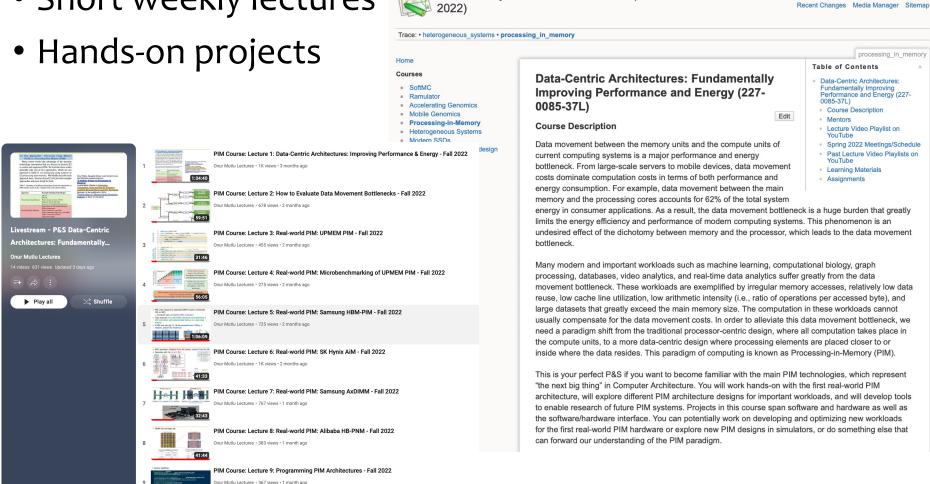

ESWEEK Education Class

SAFARI

1:08 / 2:00:10

Carnegie Mellon

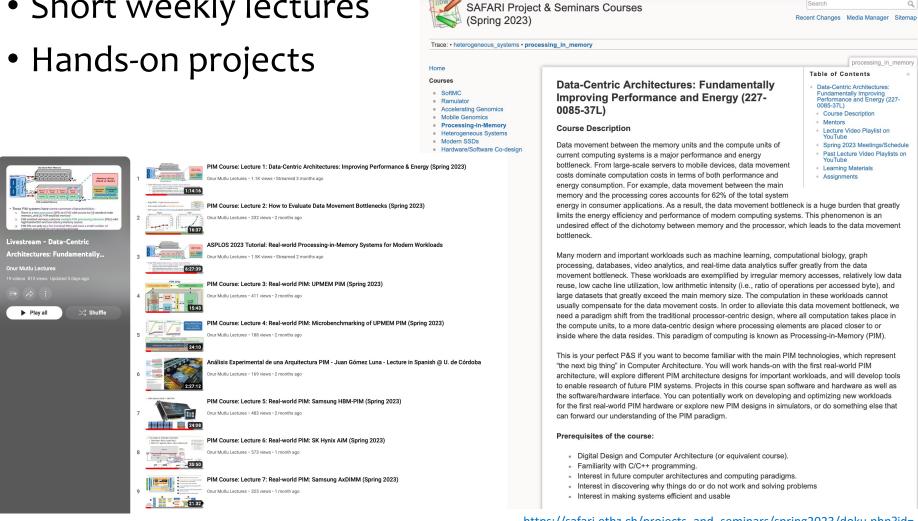
509 views · Premiered Dec 6, 2021



Processing-in-Memory Course (Fall 2022)

SAFARI Project & Seminars Courses (Fall

Short weekly lectures



https://youtube.com/playlist?list=PL5Q2soXY2Zi8KzG2CQYRNQOVD0GOBrnKv

https://safari.ethz.ch/projects and seminars/fall2022/doku.php?id=pro cessing in memory

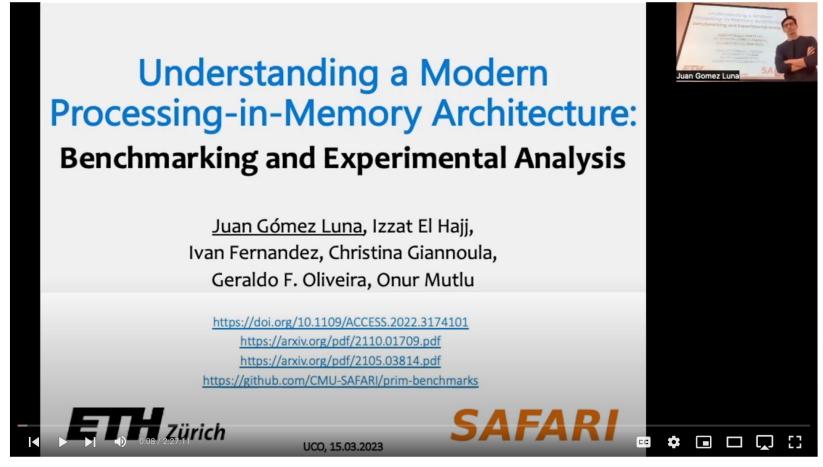
Processing-in-Memory Course (Spring 2023)

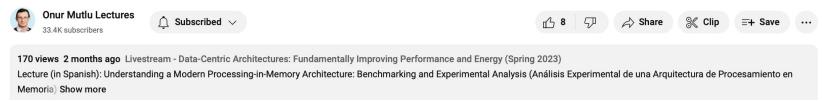
Short weekly lectures

https://www.youtube.com/playlist?list=PL5Q2soXY2Zi EObuoAZVSg o6UySWQHvZ

https://safari.ethz.ch/projects and seminars/spring2023/doku.php?id= processing in memory

Introducción al Procesamiento en Memoria


(en Español)


PIM for Future Computing Systems (in Spanish) - Juan Gómez Luna - Lecture @ Univ. of Córdoba

Análisis de una Arquitectura Real de Procesamiento en Memoria (en Español)

Análisis Experimental de una Arquitectura PIM - Juan Gómez Luna - Lecture in Spanish @ U. de Córdoba

Real-world Processing-in-Memory Systems for Modern Workloads

PIM Adoption Issues How to Enable PIM Adoption?

Dr. Juan Gómez Luna Professor Onur Mutlu

