Hands-on Lab
Programming and Understanding a Real Processing-in-Memory Architecture

Dr. Juan Gómez Luna
Professor Onur Mutlu

ETH Zürich

SAFARI

Sunday, October 29, 2023
Programming and Understanding a Real Processing-in-Memory Architecture

Instructor: Dr. Juan Gómez Luna, Prof. Chien-Ming Wu

1. Introduction

In this lab, you will work hands-on with a real processing-in-memory (PIM) architecture. You will program the UPMEM PIM architecture \([1,2,3,4]\) for several workloads and will experiment with them. Your main goals are (1) to become familiar with the UPMEM PIM system organization (as an example of real-world memory-centric computing systems), (2) to understand the UPMEM programming model and write your own code, and (3) to understand the microarchitecture and instruction set architecture (ISA) of UPMEM's PIM core (called DRAM Processing Unit, DPU).

As we introduced in this tutorial, the UPMEM PIM architecture is composed of multiple DFUs (up to 2,560), each of which has access to its own DRAM bank (called Main RAM, MRAM) and its own scratchpad memory (called Working RAM, WRAM). You can find a full description of the UPMEM PIM system in [3,4].

2. Your Task 0/4: Accessing the UPMEM PIM Server

UPMEM has granted us with remote access to servers with UPMEM DIMMs in a datacenter.

Our username is ethmicro23 and we are part of the group upmem0071 (ETH MICRO 2023 team). You can download the SSH private key used to connect to the machines from here: https://events.safari.ethz.ch/micro-pim-tutorial/lib/uni/fetch.php?mode=upmemcloud.ethmicro23.zip (download and unzipped)

Put the following base configuration in your .ssh/config file:

```
Host upmemcloud
    User ethmicro23
    IdentityFile ~/.ssh/upmemcloud.ethmicro23

StrictHostChecking no
UserKnownHostsFile ~/.ssh/knownhosts
```

You can connect to the booked machine anytime until 12pm CET on Monday, October 30, 2023.

The booked machine for this period is upmemcloud8 with 20 UPMEM P21s. You can connect to it by doing:

```
ssh upmemcloud8
```

if you have the private key and the .ssh/config file provided above.

The machine is installed with the latest and greatest UPMEM SDK version (also available on https://sdk.upmem.com). As an introduction, the public demonstration program doing a trivial checksum in parallel on one DPU can be run by doing:

```
git clone https://github.com/upmem/dpu.demo.git
cd /dpu.demo/checksum

N=3
make test
```

Please read the entire Section 2.1 before you access the server.

In summary, the steps are:

1. Paste the configuration into .ssh/config.
2. Copy the private key upmemcloud.ethmicro23 to your ssh folder. You may need to change permissions, as indicated in Section 2.1
3. ssh upmemcloud8 from the terminal. Note that the server is already reserved for us. No booking is needed.
How to Access the UPMEM PIM Server?

1. Paste the configuration into .ssh/config
 Host upmemcloud*
 User ethmicro23
 Hostname %h.cloud.upmem.com
 IdentityFile ~/.ssh/upmemcloud_ethmicro23
 StrictHostKeyChecking no
 UserKnownHostsFile=/dev/null

2. Copy the private key upmemcloud_ethmicro23 to your .ssh folder. You may need to change permissions

3. ssh upmemcloud5 from the terminal
Template Files

• Contain templates for task 1 and task 2
• Task 2’s template can be used for the remaining tasks
Task 1: CPU-DPU and DPU-CPU Transfers

• Use serial, parallel, and broadcast transfers

Your tasks are as follows:

1. Write a host program that exercises all types of data transfers between the host main memory and one or multiple MRAM banks. Concretely, there are three types of data transfers [2]: (1) serial, (2) parallel, and (3) broadcast. Serial and parallel transfers move data from main memory to the MRAM banks or vice versa. Broadcast transfers can only happen from the main memory to the MRAM banks.

2. Evaluate all different types of data transfers for data transfers of size (1) 1MB, (2) 24MB, (3) 48MB per DPU. Use different numbers of DPUS between 1 and 64.

Serial Transfers
• dpu_copy_to();
• dpu_copy_from();
• We transfer (part of) a buffer to/from each DPU in the dpu_set
• DPU_MRAM_HEAP_POINTER_NAME: Start of the MRAM range that can be freely accessed by applications
 - We do not allocate MRAM explicitly

Parallel Transfers
• We push different buffers to/from a DPU set in one transfer
 - All buffers need to be of the same size
• First, prepare (dpu_prepare_xfer);
 then, push (dpu_push_xfer)
• Direction:
 - DPU_XFER_TO_DPU
 - DPU_XFER_FROM_DPU

Broadcast Transfers
• dpu_broadcast_to();
 - Only CPU to DPU
• We transfer the same buffer to all DPUS in the dpu_set
Task 2: AXPY

Your tasks are as follows:

1. Write a DPU kernel that executes the AXPY operation \(y = y + \alpha x \) \([5]\) on every element of a vector. You have to (1) transfer two input vectors, \(Y \) and \(X \), to the MRAM bank/s, (2) perform the AXPY operation with a variable number of tasklets, (3) write the results to the output vector, \(Y \), and (4) transfer the output vector back to the host main memory.

• VA is a good reference code for this task
Task 3: Operations and Datatypes

Your tasks are as follows:

1. Modify your AXPY DPU kernel to make it a vector addition \(y = y + x \) and to support other operations besides addition (i.e., subtraction, multiplication, division).

2. Evaluate the performance of your new kernel for different operations (addition, subtraction, multiplication, division) and data types (char, short, int, long long int, float, double).

• You will observe significant variations in arithmetic throughput for different operations and datatypes
Task 4: Vector Reduction

Your tasks are as follows:

1. Your vector reduction DPU kernel should have four different versions: (1) final reduction with a single tasklet, (2) final tree-based reduction with barriers, (3) final tree-based reduction with handshakes, (4) final reduction with mutexes.

• Performance differences due to the final reduction step
References

Appendix: Installing the UPMEM SDK

You can set up the UPMEM SDK on your machine to compile and run the code of this lab. If you have access to a system with a supported Linux version, you can install the UPMEM SDK natively from the UPMEM website [1][2]. If you encounter issues with the installation or do not have access to a system with a supported Linux version, you can use the Dockerfile we provide, along with the associated shell scripts for either Windows or Unix-based host systems.

Using the Dockerfile

Using the Dockerfile requires Docker [3] to be installed on your system. With Docker installed, you can execute the docker/start_docker.sh shell script (docker\start_docker.bat on Windows).

5: docker/start_docker.sh

The script will automatically build the Docker image (which will take a few minutes the first time) and then start an interactive shell within it. The working directory of the host machine where the docker was started will be mounted to the Docker (try running ls inside the docker). The code for this lab can then be compiled and executed using this interactive shell.
Hands-on Lab
Programming and Understanding a Real Processing-in-Memory Architecture

Dr. Juan Gómez Luna
Professor Onur Mutlu

Sunday, October 29, 2023