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Executive Summary

Motivation: Commodity DRAM based PiM techniques improve the performance
and energy efficiency of computing systems at no additional DRAM hardware cost
Problem: Challenges of integrating these PiM techniques into real systems are not solved

General-purpose computing systems, special-purpose testing platforms, and
system simulators cannot be used to efficiently study system integration challenges

Goal: Design and implement a flexible framework that can be used to:
* solve system integration challenges

 analyze trade-offs of end-to-end implementations
of commodity DRAM-based-PiM techniques

Key idea: PIDRAM, an FPGA-based framework that enables:
* system integration studies
* end-to-end evaluations of PIM techniques using real unmodified DRAM chips

Evaluation: End-to-end integration of two PiM techniques on PIDRAM’s FPGA prototype
Case Study #1 - RowClone: In-DRAM bulk data copy operations

e 119x speedup for copy operations compared to CPU-copy with system support
* 198 lines of Verilog and 565 lines of C++ code over PIDRAM'’s flexible codebase

Case Study #2 - D-RaNGe: DRAM-based random number generation technique
e 8.30 Mb/s true random number generator (TRNG) throughput, 220 ns TRNG latency
e 190 lines of Verilog and 78 lines of C++ code over PIDRAM'’s flexible codebase

SAFARI PiDRAM: https://github.com/CMU-SAFARI/PiDRAM 2
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DRAM Organization
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DRAM Operation

(Activation Latency)
( Precharge Latency)

DRAM Command Sequence
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Processing-in-Memory Techniques

Commodity DRAM chips can already perform:

[Gao+, MICRO’19]-[Gao+, MICRO’22]
1) Row-copy: In-DRAM bulk data copy

(or initialization) at DRAM row granularity

(e.g., [Kim+, HPCA'19]-[Olgun+, ISCA’21])
2) True random number generation

SAFARI 6



Row-Copy: Key Idea (RowClone)

Sense Amplifiers

@ 1. Source row to sense amplifiers

2. Sense amplifiers to destination row
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RowClone in Real DRAM Chips

Key Idea: Use carefully created DRAM command sequences

« ACT - PRE = ACT command sequence
with greatly reduced DRAM timing parameters

 ComputeDRAM [Gao+, MICRO’19] demonstrates
in-DRAM copy operations in real DDR3 chips

“activate row S, precharge, then activate row D”

Standard
DRAM Timings

PRE
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In-DRAM TRNG: Key Idea (D-RaNGe)

High % chance to fail 50% chance Low % chance to fail
with reduced to fail with reduced
access latency access latency

Row Decoder

SA SA SA SA SA SA SA

Commodity DRAM chips can already perform D-RaNGe
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System Support for PIM

?

SAFARI

System Software ||

SW/HW Interface

Row Buffer

DRAM Chip
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PiDRAM

Bridge the “system gap”
with customizable
HW/SW components

in doing so,
allow users to

rapidly implement PiM techniques,
solve system integration challenges,
analyze end-to-end implementations

Row Buffer

DRAM Chip
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PIDRAM: Key Components
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operation

PiM
Operations
Controller

PiM
Operations
Library

~

Interface for
Applications

SAFARI

Supervisor

Memory controller for
custom timing parameters

PiDRAM
Memory
Controller

Custom

Software

91eM}j0oS 9lempJe FN

/

Supervisor software
for basic system support

12



PiDRAM: System Design

Key components attached to a real computing system
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PiM Operations Controller (POC)

Receive instructions over memory-mapped interface

Simple interface to the PiDRAM memory controller
(i) send request, (ii) wait until completion, (iii) read results
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PIDRAM Memory Controller

+ I Easily replicate a state machine to implement a new operation I
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PiIM Operations Library (pimolib)

Contains customizable functions that interface with the POC

Software interface for performing PiM operations

Executes LOAD & STORE requests to communicate with the POC

Rocket
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Custom Supervisor Software

Exposes PiM operations to the user application via system calls

Contains the necessary OS primitives to develop end-to-end PiM techniques
(e.g., memory management and allocation for RowClone)

User Application
A~
: 1+ System Calls
"4
Custom Supervisor Software
A~
. 1+ Function Calls

pimolib €)
pimolib function
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PiM Operation Execution Flow

Copy () function called by the user to perform a RowClone-Copy operation in DRAM

o Application makes a system call:

a Custom Supervisor Software calls the pimolib function

b (S. D) S: source DRAM row
PY 4 D: destination DRAM row

User Application
S

i (D SystemCalls
Vv

Custom Supervisor Software
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PiM Operation Execution Flow

9 Copy (S, D) executes two store instructions in the CPU

e The first store updates the instruction register with Copy (S, D)

e The second store sets the “Start” flag in the flag register

Start (S)
1 Start the execution of PiM operation

User Application Rocket

A (@ System Calls el

: RISC-V
Custom Supervisor Software CPU Core

/:\ E @ COpy(S, D) flflll; ----- o-n
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PiIM Operation Execution Flow

@ POC instructs the memory controller to perform RowClone

@ POC resets the “Start” flag, and sets the “Ack” flag

@ PiDRAM memory controller issues commands
with violated timing parameters to the DDR3 module

User Application Rocket POC PiDRAM
o Chip

Memory Controller
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PiIM Operation Execution Flow

@ The memory controller sets the “Fin.” flag

@ Copy (S, D) periodically checks either “Ack” or “Fin.” flags
using LOAD instructions

Copy (S, D)returns when the periodically checked flag is set

User Application Rocket POC PiDRAM
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PiIM Operation Execution Flow

Data Register is not used in RowClone operations
because the result is stored in memory

It is used to read true random numbers generated by D-RaNGe

9[ Data Register |(-T
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PIDRAM Components Summary

Four key components orchestrate PiM operation execution
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PiIDRAM's FPGA Prototype

Full system prototype on Xilinx ZC706 FPGA board

« RISC-V System: In-order, pipelined RISC-V Rocket CPU core, L1D/1$, TLB
 PiM-Enabled DIMM (Commodity): Micron MT8]TF12864, 1 GiB, 8 banks

— Host Machine
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RowClone Implementation
=

“activate row S, precharge, then activate row D”

Standard
DRAM Timings

PRE

@ Extend the PIDRAM memory controller
to support the DRAM command sequence

@ Expose the operation to pimolib
by implementing the copy () PIDRAM instruction

[

SAFARI 26




RowClone System Integration

[dentify two challenges in end-to-end RowClone

[ @ Memory allocation (intra-subarray operation) J

@ Memory coherency (computation in DRAM)

Implement CLFLUSH instruction in the RISC-V CPU
Evict a cache block from the CPU caches to the DRAM module

SAFARI 27



RowClone Memory Allocation (I)

Memory allocation requirements

o Operands must occupy DRAM rows fully

SAFARI 28



RowClone Memory Allocation (I)

Memory allocation requirements
BANK X

| DRAMROW |
SA W | BV

e

e Operands must be placed at the same offset
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RowClone Memory Allocation (I)

Memory allocation requirements

BANK'Y

Source 1

Target 1 2

Source 3

Target 3
SAZ |

9 Operands must be placed in the same subarray
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RowClone Memory Allocation (I)

Memory allocation requirements

{@ Satisfies all three requirements }
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RowClone Memory Allocation (II)

Implement a new memory allocation function
to overcome the memory allocation challenges

Goal: Allocate virtual memory pages that are
mapped to the same DRAM subarray and aligned with each other

alloc align(
4 KiB,
“Subarray 07)

Subarray @

Mapping Page

Table

Table

@ Get physical address pointing to a DRAM row in subarray 0

@ Update the page table to map virtual address to subarray 0

SAFARI
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RowClone Memory Allocation (II)



https://arxiv.org/abs/2111.00082

Evaluation: Methodology

Table 2: PIDRAM system configuration

CPU: 50 MHz; in-order Rocket core [16]; TLB 4 entries DTLB; LRU policy

L1 Data Cache: 16 KiB, 4-way; 64 B line; random replacement policy
DRAM Memory: 1 GiB DDR3; 800MT/s; single rank| 8 KiB row size

in-DRAM copy/initialization

Microbenchmarks granularity

CPU-Copy (using LOAD /STORE instructions)

RowClone-Copy (using in-DRAM copy operations) with and without CLFLUSH
Copy/Initialization Heavy Workloads

forkbench (copy)

compile (initialization)
SPEC2006 libquantum: replace “calloc()” with in-DRAM initialization

SAFARI 34



Microbenchmark Copy/Initialization
Throughput Improvement

- B 150 | Initialize 0O Copy
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In-DRAM Copy and Initialization

improve throughput by 119x and 89x, respectively
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CLFLUSH Overhead

15
§_ 'qé; 12 @Copy DOlnitialize
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Dirty Cache Block Proportion

CLFLUSH dramatically reduces

the potential throughput improvement
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Other Workloads

forkbench (copy-heavy workload)

1.5 T »
_%- 14 | E==3RowClone Speedup 0.8 E
13 - Fraction of Time Spent on memcpy() 0.6 ;
5’,— 1.2 04 &
o 1.1 l 0.2 Cé
S 1 . o 2
(&)
= \(\?) A0 o o A2 o Qb‘%
A AN ST T o\ ,\O(\K@ \o<“" ‘\O(\(\»’\ \0(\(\«? Performance
improvement

Fork Configurations i
Increases

compile (initialization-heavy workload)

* 9% execution time reduction by in-DRAM initialization
- 17% of compile’s execution time is spent on initialization

SPEC2006 libquantum

* 1.3% end-to-end execution time reduction
- 2.3% of libquantum’s time is spent on initialization

SAFARI 37
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Recall: D-RaNGe Key Idea

High % chance to fail 50% chance Low % chance to fail
with reduced to fail with reduced
access latency access latency

Row Decoder

SA SA SA SA SA SA SA

Commodity DRAM chips can already perform D-RaNGe

SAFARI [Kim+ HPCA'19] 39



D-RaNGe Implementation

[dentify four DRAM cells that fail
randomly in a cache block

RNG Cell

[ sA |

SAFARI [Kim+ HPCA'19] 40




D-RaNGe Implementation

Periodically generate true random numbers
by accessing the identified cache block

* Reduce access latency
1 KiB random number buffer in POC

* Programmers read random numbers from the
data register using the rand dram () function call

| |

SAFARI 41




Methodology: Microbenchmark
that reads true random numbers

\\

220 350 480 610 740 870 1000
TRNG Period (ns)

Y
o

90000009

TRNG Throughput (Mb/s)
o N H (@)} 00

PiDRAM'’s D-RaNGe generates true random

numbers at 8.30 Mb/s throughput
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Executive Summary

Motivation: Commodity DRAM based PiM techniques improve the performance
and energy efficiency of computing systems at no additional DRAM hardware cost
Problem: Challenges of integrating these PiM techniques into real systems are not solved

General-purpose computing systems, special-purpose testing platforms, and
system simulators cannot be used to efficiently study system integration challenges

Goal: Design and implement a flexible framework that can be used to:
* solve system integration challenges

 analyze trade-offs of end-to-end implementations
of commodity DRAM-based-PiM techniques

Key idea: PIDRAM, an FPGA-based framework that enables:
* system integration studies
* end-to-end evaluations of PIM techniques using real unmodified DRAM chips

Evaluation: End-to-end integration of two PiM techniques on PIDRAM’s FPGA prototype
Case Study #1 - RowClone: In-DRAM bulk data copy operations

e 119x speedup for copy operations compared to CPU-copy with system support
* 198 lines of Verilog and 565 lines of C++ code over PIDRAM'’s flexible codebase

Case Study #2 - D-RaNGe: DRAM-based random number generation technique
e 8.30 Mb/s true random number generator (TRNG) throughput, 220 ns TRNG latency
e 190 lines of Verilog and 74 lines of C++ code over PIDRAM'’s flexible codebase

SAFARI PiDRAM: https://github.com/CMU-SAFARI/PiDRAM 4.4



PiIDRAM is Open Source

https://qgithub.com/CMU-SAFARI/PiDRAM

B CMU-SAFARI/ PiDRAM [ X Editpins ~ | [ @Watch @)+ | ¥ Fork @ | [ % sr @) | ~ |

<> Code (@ Issues §% Pullrequests @ Actions [ Projects [ wiki @ Security & Insights €83 Settings

¥ 2 branches © 0 tags [ Go to file ] [ Add file ~ ] About Q3

( ) PiDRAM is the first flexible end-to-end
olgunataberk Fix small mistake in README 46522cc on Dec 5,2021 ) 11 commits framework that enables system

integration studies and evaluation of real

B controller-hardware Add files via upload 7 months ago Processing-using-Memory techniques.

B fpga-zynq Adds instructions to reproduce two key results 7 months ago -Prototype on a RISC-V rocket Ch[.p sys-tem
implemented on an FPGA. Described in

3 README.md Fix small mistake in README 7 months ago our preprint:
https://arxiv.org/abs/2111.00082

‘= README.md / m Readme
¢ 21stars

PiDRAM ® 3vaciing

¥ 2 forks

PIDRAM is the first flexible end-to-end framework that enables system integration studies and evaluation of real
Processing-using-Memory (PuM) techniques. PIDRAM, at a high level, comprises a RISC-V system and a custom
memory controller that can perform PuM operations in real DDR3 chips. This repository contains all sources Releases
required to build PIDRAM and develop its prototype on the Xilinx ZC706 FPGA boards.

No releases published
Create a new release
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https://github.com/CMU-SAFARI/PiDRAM

Extended Version on ArXiv
https://arxiv.org/abs/2111.00082
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Processing-using-memory (PuM) techniques leverage the analog operation of memory cells to perform computation. Several recent works have demonstrated
PuM techniques in off-the-shelf DRAM devices. Since DRAM is the dominant memory technology as main memory in current computing systems, these PuM
techniques represent an opportunity for alleviating the data movement bottleneck at very low cost. However, system integration of PuM techniques imposes
non-trivial challenges that are yet to be solved. Design space exploration of potential solutions to the PuM integration challenges requires appropriate tools to
develop necessary hardware and software components. Unfortunately, current specialized DRAM-testing platforms, or system simulators do not provide the
flexibility and/or the holistic system view that is necessary to deal with PuM integration challenges.

We design and develop PIDRAM, the first flexible end-to-end framework that enables system integration studies and evaluation of real PuM techniques.
PiDRAM provides software and hardware components to rapidly integrate PuM techniques across the whole system software and hardware stack (e.g.,
necessary modifications in the operating system, memory controller). We implement PIDRAM on an FPGA-based platform along with an open-source RISC-V
system. Using PIDRAM, we implement and evaluate two state-of-the-art PuM techniques: in-DRAM (i) copy and initialization, (ii) true random number
generation. Our results show that the in-memory copy and initialization techniques can improve the performance of bulk copy operations by 12.6x and bulk
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https://arxiv.org/abs/2111.00082

Long Talk + Tutorial on Youtube
https://youtu.be/s z S6FYpC8

Alloc_align Example

A = alloc_align(16*1024, 0); B = alloc_align(16*1024, 0

Array A Array B
16 KBs 16 KBs

Virtual Addresses: 0x0000 0x1000 0x2000

Processing in Memory Course: Meeting 6: End-to-end Framework for Processing-using-Memory - Fall’21

615 views - Streamed live on 9 Nov 2021 « Project & Seminar, ETH Ziirich, Fall 202 Show more e 25 OGP Dislike > Share L Download 3¢ Clip =+ Save
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Factors Affecting DRAM Reliability and Latency

OGS b A

DRAM timing  [nter-cell =~ Manufacturing Temperature

. . , Voltage
violation interference process g

Factors affecting DRAM reliability and latency
cannot be properly modeled in simulation or analytically

We need to perform experimental studies
of real DRAM chips
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DRAM Testing Infrastructure

Allow experimental studies of real DRAM chips

Open-source FPGA-based testing infrastructure
* Publicly-available: Start using today
 Relatively low cost: An FPGA board + DRAM modules

SoftMC Litex Tester

_

' Chamber |

| \ .

H;ost
Machine
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Limitations of Existing Infrastructure

Testing Infrastructure Interface (IF) Restrictions | Ease of Use | Extensibility
SoRMC 134 — bwr | X [ %

LiteX RowHammer Tester (LRT) [17] Command & Data IF X v
DRAM Bender (s worl) | NoRestictioms | v [ 7

Impose restrictions on the DDR4 interface.

Restrictions limit various characterization experiments.
-

Difficult to set up (based on discontinued HW/SW)

and use (require developing HW)
-

Monolithic hardware design
makes extensions (new standards, prototypes) relatively difficult

SAFARI 52



DRAM Bender: Design Goals

* Flexibility
- Ability to test any DRAM operation

- Ability to test any combination of DRAM operations
and custom timing parameters

* Ease of use
- Simple programming interface (C++)
- Minimal programming effort and time
- Accessible to a wide range of users
* who may lack experience in hardware design

* Extensibility
- Modular design
- Well-defined interfaces between hardware modules

SAFARI 53



DRAM Bender: Overview

Publicly-available FPGA-based
DDR4/3 (and HBM2) characterization infrastructure

Easily programmable using the DRAM Bender C++ API

Xilinx Alveo U200 DRAM
FPGA Board Module

with DRAM Bender) S
, PLOBB-P POWER SUPPLY SWA ' ‘ R S R
— ST \ - . N SR ]
— y QR AR N
cc @ seTTinGs : : U R LA e et LERR
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DRAM Bender: Prototypes

Testing Infrastructure Protocol Support FPGA Support
SoftMC [134] DDR3 One Prototype

LiteX RowHammer Tester (LRT) [17] DDR3/4, LPDDR4 Two Prototypes
DRAM Bender (this work) DDR3/DDR4 Five Prototypes

Five out of the box FPGA-based prototypes

Xilinx Alveo U200 DRAM
FPGA Board Module
o ﬁm&w“h DRAM Bender)

PCIl-e Connection

to the Host Machine
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DRAM Bender is Flexible

1. RowHammer: Interleaving Pattern of Activations

- Interleaving pattern significantly affects
the number of RowHammer bitflips

2. RowHammer: Random Data Patterns
- Use 512-bit random data patterns
- Uncover more bitflips than 8-bit SoftMC random patterns

3. In-DRAM Bitwise Operations

- Demonstrate in-DRAM bitwise AND /OR capability
in real DDR4 chips

DRAM Bender is flexible:
supports many different types of experiments
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DRAM Bender is Easy to Use

Easily programmable using the DRAM Bender C++ API

3. In-DRAM Bitwise Operations

1 p.appendACT(BANK, false, R1l, false, N);
2 p.appendPRE(BANK, false, false, M);
3 p.appendACT(BANK, false, R2, false);

Listing 3: DRAM Bender code segment to perform a bitwise
majority operation

Easy to devise new experiments to uncover new insights
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More in the paper (1I)

* DRAM Bender design details

DRAM Bender instruction set architecture

Hardware & software modules

Prototype design

Temperature controller setup

* DRAM Bender application programming interface
e Detailed results for three case studies

* Future work & improvements
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More in the paper (II)

DRAM Bender: An Extensible and Versatile FPGA-based Infrastructure
to Easily Test State-of-the-art DRAM Chips

Ataberk Olgun®  Hasan Hassan®  A. Giray Yaglikci®  Yahya Can Tugrul®'
Lois Orosa’®  Haocong Luo®  Minesh Patel®  Oguz Ergin’  Onur Mutlu®
SETH Ziirich "TOBB ETU ©Galician Supercomputing Center

https://arxiv.org/abs/2211.05838
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Research DRAM Bender Enabled

I 1) [ISCA’23] Luo+, “RowPress: Amplifying Read Disturbance in Modern DRAM Chips”

2) [DSN’23 Disrupt] Olgun+, "An Experimental Analysis of RowHammer on HBM2 DRAM Chips”

3) [arXiv Preprint, 2023] Orosa+, "SpyHammer: Using RowHammer to Remotely Spy on Temperature”

4) [MICRO’22] Yaglikci+, “HIRA: Hidden Row Activation for Reducing Refresh Latency of Off-the-Shelf DRAM Chips”

5) [DSN’22] Yaglikci+, “Understanding RowHammer Under Reduced Wordline Voltage: An Experimental Study Using Real DRAM Devices”

6) [MICRO’21] Orosa+, “A Deeper Look into RowHammer’s Sensitivities: Experimental Analysis of
Real DRAM Chips and Implications on Future Attacks and Defenses”

7) [MICRO’21] Hassan+, “Uncovering In-DRAM RowHammer Protection Mechanisms:
A New Methodology, Custom RowHammer Patterns, and Implications”

8) [ISCA’21] Olgun+, “QUAC-TRNG: High-Throughput True Random Number Generation
Using Quadruple Row Activation in Commodity DRAM Chips”

9) [ISCA’21] Orosa+, “CODIC: A Low-Cost Substrate for Enabling Custom In-DRAM Functionalities and Optimizations”

10) [ISCA’20] Kim+, “Revisiting RowHammer: An Experimental Analysis of Modern Devices and Mitigation Techniques”
11) [S&P’20] Frigo+, “TRRespass: Exploiting the Many Sides of Target Row Refresh”

12) [HPCA’19] Kim+, “D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput”

13) [MICRO’19] Koppula+, “EDEN: Enabling Energy-Efficient, High-Performance Deep Neural Network Inference Using Approximate DRAM”

14) [SIGMETRICS’18] Ghose+, “What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed Experimental Study”

15) [SIGMETRICS’17] Chang+, “Understanding Reduced-Voltage Operation in Modern DRAM Devices:
Experimental Characterization, Analysis, and Mechanisms”

16) [MICRO’17] Khan+, “Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content”

17) [SIGMETRICS’16] Chang+, “Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization”
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https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21.pdf
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https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20.pdf
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19.pdf
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18_pomacs18-twocolumn.pdf
https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17.pdf
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https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf

A Highlight: RowPress

Keeping a DRAM row open for a long time
causes bitflips in adjacent rows

These bitflips do NOT require many row activations

Only one activation is enough in some cases!

RowHammer °prem =~
Aggressor Row close

36ns, 47K activations to induce bitflips

RowPress  Open 1( )I__l ['
Aggressor Row close — - _____ L _____________

7.8us, only 5K activations to induce bitflips
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RowPress Results & Source Code

RowPress: Amplifying Read Disturbance in Modern DRAM Chips

Haocong Luo Ataberk Olgun A. Giray Yaglik¢i Yahya Can Tugrul Steve Rhyner
Meryem Banu Cavlak  Joél Lindegger Mohammad Sadrosadati Onur Mutlu

ETH Zurich

Fully open source and artifact evaluated
» https://github.com/CMU-SAFARI/RowPress
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RowPress [isca 2023]

* Haocong Luo, Ataberk Olgun, Giray Yaglikci, Yahya Can Tugrul, Steve Rhyner, M.
Banu Cavlak, Joel Lindegger, Mohammad Sadrosadati, and Onur Mutlu,
"RowPress: Amplifying Read Disturbance in Modern DRAM Chips"
Proceedings of the 50th International Symposium on Computer Architecture (ISCA),
Orlando, FL, USA, June 2023.

[Slides (pptx) (pdf]]

[Lightning Talk Slides (pptx) (pdf]]

[Lightning Talk Video (3 minutes)]

[RowPress Source Code and Datasets (Officially Artifact Evaluated with All Badges]]
Officially artifact evaluated as available, reusable and reproducible.

Best artifact award at ISCA 2023.

RowPress: Amplifying Read-Disturbance
in Modern DRAM Chips

Haocong Luo Ataberk Olgun A. Giray Yaglik¢t Yahya Can Tugrul Steve Rhyner
Meryem Banu Cavlak Joél Lindegger Mohammad Sadrosadati Onur Mutlu
ETH Ziirich


https://people.inf.ethz.ch/omutlu/pub/RowPress_isca23.pdf
http://iscaconf.org/isca2023/
https://people.inf.ethz.ch/omutlu/pub/RowPress_isca23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/RowPress_isca23-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/RowPress_isca23-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/RowPress_isca23-lightning-talk.pdf
https://www.youtube.com/watch?v=R3VKbbbWMnY
https://github.com/CMU-SAFARI/RowPress

More Research DRAM Bender Enabled

18) [DRAMSec’23] Lang+, “BLASTER: Characterizing the Blast Radius of Rowhammer”

19) [Applied Sciences’22] Bepary+, “DRAM Retention Behavior with Accelerated Aging in Commercial Chips”
20) [ETS’21] Farmani+, “RHAT: Efficient RowHammer-Aware Test for Modern DRAM Modules”
21) [HOST’20] Talukder+, “Towards the Avoidance of Counterfeit Memory: Identifying the DRAM Origin”

22) [MICRO’19] Gao+, “ComputeDRAM: In-Memory Compute Using Off-the-Shelf DRAMs”

23) [IEEE Access’19] Talukder+, “PreLatPUF: Exploiting DRAM Latency Variations for Generating Robust Device Signatures”

24) [ICCE’18] Talukder+, “Exploiting DRAM Latency Variations for Generating True Random Numbers”
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Functionally-Complete Real PUM Prototype

= Ismail Emir Yuksel, Yahya Can Tugrul, Ataberk Olgun,
Nisa Bostanci, A. Giray Yaglikci, Geraldo F. Oliveira, Haocong Luo,
Juan Gomez-Luna, Mohammad Sadrosadati, and Onur Mutlu,
"Functionally-Complete Boolean Logic in DRAM: An

Experimental Characterization and Analysis of

Real DRAM Chips,"
Proceedings of the 50th International Symposium on

High-Performance Computer Architecture (HPCA),
Edinburgh, Scotland, March 2024.

2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

Functionally-Complete Boolean Logic in DRAM:
An Experimental Characterization and Analysis of
Real DRAM Chips
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Summary

DRAM Bender

The first publicly-available DDR4 characterization infrastructure

* Flexible and Easy to Use

 Source code available: ilinx Alveo U200 DRAM

,,,,,, FPGA Board Module
— EIAIWi DRAM Bender)

PCl-e Connection
to the Host Machine

[Yaglikci+, DSN'22]

github.com/CMU-
SAFARI/DRAMBender

DRAM Bender enables many studies, ideas,

and methodologies in the design of future memory systems
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DRAM Bender

= Ataberk Olgun, Hasan Hassan, A Giray Yaglikcl, Yahya Can Tugrul, Lois Orosa,
Haocong Luo, Minesh Patel, Oguz Ergin, and Onur Mutlu,
"DRAM Bender: An Extensible and Versatile FPGA-based Infrastructure
to Easily Test State-of-the-art DRAM Chips"
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systemns (TCAD), 2023.
[Extended arXiv version]
[DRAM Bender Source Code]
[DRAM Bender Tutorial Video (43 minutes)]

DRAM Bender: An Extensible and Versatile FPGA-based Infrastructure
to Easily Test State-of-the-art DRAM Chips

Ataberk Olgun®  Hasan Hassan®  A. Giray Yaglik®  Yahya Can Tugrul®'
Lois Orosa’®  Haocong Luo®  Minesh Patel’ Oguz Ergin' Onur Mutlu®
SETH Ziirich "TOBB ETU ©Galician Supercomputing Center
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https://arxiv.org/abs/2211.05838
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DRAM Bender
An Extensible and Versatile
FPGA-based Infrastructure to
Easily Test State-of-the-art DRAM Chips

Ataberk Olgun Hasan Hassan A. Giray Yaglikci
Yahya Can Tugrul Lois Orosa Haocong Luo

Minesh Patel Oguz Ergin Onur Mutlu
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Accessing a DRAM Cell

wordline
capacitor bitline
v access
transistor
enable
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Accessing a DRAM Cell

enable o1 dline

wordline 4T

capacitor

access
transistor

G enable enable

sense amp

SAFARI [Seshadri+ MICRO’17]

o deviation in
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alloc align () function

SubArray Mapping Table (SAMT) enables alloc align ()

SAMT
Physical addresses
Subarray 0 of DRAM rows

Subarray 1

Subarray N

alloc align( @ @
4 KiB, > SAMT > Page
“Subarray 0”) Table

@ Retrieve a physical address pointing to a DRAM row in subarray 0

@ Update the page table to map programmer-allocated address to subarray 0
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Initializing SAMT

SAMT
SAMT Physical addresses
Subarray 0 Entry of DRAM rows

Subarray 1

Subarray N

Perform in-DRAM copy using every DRAM row address
as source and destination rows

If the in-DRAM copy operation succeeds
source and destination rows are in the same subarray
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Allocate 128 KiB A and B to same subarray

o

Initialize Subarray
Mapping Table

Allocation
ID Table

A = alloc_align(128*1024, 0);
B = alloc_align(128*1024, 0);
Bank 0
VA 400 >
— Bank >
A H
L]
Bank 7|\
VAps1 | >
VAne BankO>
Array .
B

n
L]
:I_I Bank 7|

Arrays are splitinto 4KB blocks

Subarray
Mapping Table

Characterize RowClone
Success Rate

PA,, PA;, PA, PA,,

DRAM ROW

@ Copy 128 KiBs from A to B

rcc(A, B, 128*1024);

Access page table to find
source and destination

DRAM rows

Page Table
Physical Address
B0 SA0OROWO

B1 SAOROWO
B2 SAOROWO

Virt. Addr.

B1 SA0ROWO

B0 SAOROW4
B1 SA0ROW4

Consecutive blocks are assigned to DRAM rows in different DRAM banks



Table 1: PuM techniques that can be studied using PIDRAM. PuM techniques that we implement in this work are highlighted in bold

PuM Technique

Description

Integration Challenges

RowClone [91]

Bulk data-copy and initializa-
tion within DRAM

(1) memory allocation and alignment mechanisms that map source & destination operands of a copy operation into
same DRAM subarray; (ii) memory coherence, i.e., source & destination operands must be up-to-date in DRAM.

D-RaNGe [62]

True random number genera-
tion using DRAM

(i) periodic generation of true random numbers; (ii) memory scheduling policies that minimize the interference
caused by random number requests.

Ambit [89]

Bitwise operations in DRAM

(1) memory allocation and alignment mechanisms that map operands of a bitwise operation into same DRAM sub-
array; (ii) memory coherence, i.e., operands of the bitwise operations must be up-to-date in DRAM.

SIMDRAM [43]

Arithmetic  operations in
DRAM

(1) memory allocation and alignment mechanisms that map operands of an arithmetic operation into same DRAM
subarray; (ii) memory coherence, i.e., operands of the arithmetic operations must be up-to-date in DRAM; (iii) bit
transposition, i.e., operand bits must be laid out vertically in a single DRAM bitline.

DL-PUF [61]

Physical unclonable functions
in DRAM

memory scheduling policies that minimize the interference caused by generating PUF responses.

QUAC-TRNG [82]

True random number genera-
tion using DRAM

(i) periodic generation of true random numbers; (ii) memory scheduling policies that minimize the interference
caused by random number requests; (iii) efficient integration of the SHA-256 cryptographic hash function.




Memory

Operands Blocks DRAM Device

Figure 6: Overview of our memory allocation mechanism



Physical

Address Physical Page Number Page Offset
29 12 11 5
E;t{:el\:s Row Bank | Column | Byte Offset

29 16 15 1312 3 9 0

Figure 8: Physical address to DRAM address mapping in
PiDRAM. Byte offset is used to address the byte in the DRAM
burst.
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Figure 9: RowClone-Copy and RowClone-Initialize over tradi-
tional CPU-copy and -initialization for the Bare-Metal config-
uration



Table 4: Comparison of PiIDRAM with related state-of-the-art prototyping and evaluation platforms

| Platforms || Interface with real DRAM chips | Flexible MC for PuM | System software support | Open-source |
Silent-PIM [78] X X v X
SoftMC [60] v/ (DDR3) X X v
ComputeDRAM [44] v (DDR3) X X X
MEG [174] v (HBM) X v v
PiMulator [119] X v X v
Commercial platforms (e.g., ZYNQ [166]) v'(DDR3/4) X v X
Simulators [18,35, 90, 132, 140, 169, 170, 175] X v v (potentially) v

| PiDRAM (this work) I v'(DDR3) v v v




DRAM Organization

Sense Amplifiers

Wordline

Drivers

Sense Amplifiers

Wordlite

Drivers

1

Capacitor

DRAM

>
T
C =0
L8 T B>
; EE
s | =5
a
SAFARI
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DRAM Operation

(Activation Latency)
( Precharge Latency)

DRAM Command Sequence

(m)(m}(m)cm)@@(m)

time
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Row-copy in ComputeDRAM

SAFARI [Gao+, MICRO’19] 82



More in ComputeDRAM

ComputeDRAM: In-Memory Compute Using Off-the-Shelf

DRAMs
Fei Gao Georgios Tziantzioulis David Wentzlaff
feig@princeton.edu georgios.tziantzioulis@princeton.edu wentzlaf@princeton.edu
Department of Electrical Engineering Department of Electrical Engineering Department of Electrical Engineering
Princeton University Princeton University Princeton University
Majority Function L.
jortty Row-copy/Majority

Vaa .. [ | l | ]
— [
2
R5=00, changing { \
Operand:1 row
address

01 R, [':IT.
ReAN IR [;lt
]

o
L]

Characterization

EEH=DEXA D

R,=10,
Operand:0

el *51 =1

o o 9. 0 32 DDR3 Modules
=
el ~256 DRAM Chips
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