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Executive	Summary
Motivation:	Commodity	DRAM	based	PiM techniques	improve	the	performance	
and	energy	efficiency	of	computing	systems	at	no	additional	DRAM	hardware	cost
Problem:	Challenges	of	integrating these	PiM techniques	into	real	systems	are	not	solved
General-purpose	computing	systems,	special-purpose	testing	platforms,	and	
system	simulators	cannot be	used	to	efficiently	study	system	integration	challenges
Goal: Design	and	implement	a	flexible	framework	that	can	be	used	to:
• solve	system	integration	challenges	
• analyze	trade-offs	of	end-to-end	implementations	
of	commodity	DRAM-based-PiM techniques

Key	idea:	PiDRAM, an FPGA-based framework	that	enables:
• system	integration	studies
• end-to-end	evaluations	of	PIM	techniques	using	real	unmodified	DRAM	chips
Evaluation: End-to-end	integration	of	two	PiM techniques on	PiDRAM’s FPGA	prototype
Case	Study	#1	– RowClone: In-DRAM	bulk	data	copy	operations
• 119x	speedup	for	copy	operations	compared	to	CPU-copy	with	system	support
• 198	lines	of	Verilog	and	565	lines	of	C++	code	over	PiDRAM’s flexible codebase
Case	Study	#2	– D-RaNGe: DRAM-based	random	number	generation	technique
• 8.30	Mb/s true	random	number	generator	(TRNG)	throughput,	220	ns TRNG	latency
• 190	lines	of	Verilog	and	78	lines	of	C++ code	over	PiDRAM’s flexible codebase

PiDRAM:	https://github.com/CMU-SAFARI/PiDRAM
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DRAM Organization
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DRAM	Operation
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Processing-in-Memory	Techniques
Use	operational	principles	of	memory
to	perform	bulk	data	movement	and computation

Commodity	DRAM	chips	can	already perform:

1) Row-copy:	In-DRAM	bulk	data	copy	
(or	initialization)	at	DRAM	row	granularity

2) True	random	number	generation

3) Physical	uncloneable functions

4)Majority	operation

[Gao+,	MICRO’19]-[Gao+,	MICRO’22]

(e.g.,	[Kim+,	HPCA’19]-[Olgun+,	ISCA’21])

(e.g.,	[Kim+,	HPCA’18])

[Gao+,	MICRO’19]-[Gao+,	MICRO’22]
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Row-Copy:	Key	Idea	(RowClone)
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RowClone in	Real	DRAM	Chips
Key	Idea:	Use	carefully	created	DRAM	command	sequences

• ACT	à PRE	à ACT	command	sequence
with	greatly	reduced	DRAM	timing	parameters

• ComputeDRAM [Gao+,	MICRO’19] demonstrates	
in-DRAM	copy	operations	in	real	DDR3	chips
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In-DRAM	TRNG:	Key	Idea	(D-RaNGe)
High	%	chance	to	fail	
with	reduced	
access	latency

Low	%	chance	to	fail	
with	reduced	
access	latency

SASASASASASASA

[Kim+	HPCA’19]

Commodity	DRAM	chips	can	already	perform D-RaNGe

50%	chance	
to	fail
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System	Support	for	PiM

bulk	data	initialization

DRAM	Chip

support	for	custom	timing	parameters

control	logic	for	PiM operations

software	interface	to	execute	PiM ops.

supervisor	for	basic	system	support

Micro-architecture
SW/HW	Interface

Program/Language
Application

Logic
Devices

System	Software

Electrons
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PiDRAM
bulk	data	initialization

DRAM	Chip

support	for	custom	timing	parameters

control	logic	for	PiM operations

software	interface	to	execute	PiM ops.

supervisor	for	basic	system	supportBridge	the	“system	gap”
with	customizable	
HW/SW	components

rapidly	implement	PiM techniques,
solve	system	integration	challenges,
analyze	end-to-end	implementations

in	doing	so,
allow	users	to
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PiDRAM:	Key	Components
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PiDRAM:	System	Design

Key	components	attached	to	a	real	computing	system
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PiM	Operations	Controller	(POC)

Decode	&	execute	PiDRAM	instructions	(e.g.,	in-DRAM	copy)

Receive	instructions	over	memory-mapped	interface

Simple	interface	to	the	PiDRAM	memory	controller
(i)	send	request,	(ii)	wait	until	completion,	(iii)	read	results
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PiDRAM	Memory	Controller
Perform	PiM operations	by	violating	DRAM	timing	parameters

Support	conventional	memory	operations	(e.g.,	LOAD/STORE)
One	state	machine	per	operation	(e.g.,	LOAD/STORE,	in-DRAM	copy)

Easily	replicate	a	state	machine	to	implement	a	new	operation

Controls	the	physical	DDR3	interface
Receives	commands	from	command	scheduler	&	operates	DDR3	pins
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PiM	Operations	Library	(pimolib)
Contains	customizable	functions	that	interface	with	the	POC

Software	interface	for	performing	PiM operations

Executes	LOAD	&	STORE	requests	to	communicate	with	the	POC
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Custom	Supervisor	Software

Exposes	PiM operations	to	the	user	application	via	system	calls

Contains	the	necessary	OS	primitives	to	develop	end-to-end	PiM techniques
(e.g.,	memory	management	and	allocation	for	RowClone)
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PiM Operation	Execution	Flow
Copy() function	called	by	the	user	to	perform	a	RowClone-Copy operation	in	DRAM

1 Application	makes	a	system	call: Copy(A, B, N bytes)

2 Custom	Supervisor	Software	calls	the	Copy() pimolib function

Copy (S, D) S: source	DRAM	row
D: destination	DRAM	row
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PiM Operation	Execution	Flow
3 Copy(S, D) executes	two	store	instructions	in	the	CPU

4 The	first	store	updates	the	instruction register	with	Copy(S, D)

5 The	second	store	sets	the	“Start”	flag	in	the	flag register

1
Start	(S)

Start	the	execution	of	PiM operation
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PiM Operation	Execution	Flow
6 POC	instructs	the	memory	controller	to	perform	RowClone

7 POC	resets	the	“Start”	flag,	and	sets	the	“Ack”	flag

8 PiDRAMmemory	controller	issues	commands	
with	violated	timing	parameters	to	the	DDR3	module
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PiM Operation	Execution	Flow
9 The	memory	controller	sets	the	“Fin.”	flag

10 Copy(S, D) periodically	checks	either	“Ack”	or	“Fin.”	flags
using	LOAD	instructions

Copy(S, D)returns	when	the	periodically	checked	flag	is	set
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PiM Operation	Execution	Flow

Data	Register	is	not	used	in	RowClone operations
because	the	result	is	stored	in	memory

It	is	used	to	read	true	random	numbers	generated	by	D-RaNGe
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PiDRAM Components	Summary

Four	key	components	orchestrate	PiM operation	execution
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PiDRAM’s FPGA	Prototype
Full	system	prototype	on	Xilinx	ZC706	FPGA	board
• RISC-V	System:	In-order,	pipelined	RISC-V	Rocket	CPU	core,	L1D/I$,	TLB
• PiM-Enabled	DIMM	(Commodity):Micron	MT8JTF12864,	1	GiB,	8	banks
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RowClone Implementation

Extend	the	PiDRAMmemory	controller
to	support	the	DRAM	command	sequence
Expose	the	operation	to	pimolib
by	implementing	the	copy() PiDRAM instruction

1

2

Only	198	lines	of	Verilog	code
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RowClone System	Integration

Identify	two	challenges in	end-to-end	RowClone

1 Memory	allocation	(intra-subarray	operation)

2 Memory	coherency	(computation	in	DRAM)

Implement	CLFLUSH	instruction	in	the	RISC-V	CPU
Evict a	cache	block	from	the	CPU	caches	to	the	DRAM	module
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RowClone Memory	Allocation	(I)
Memory	allocation	requirements

Granularity:	Operands	must	occupy	DRAM	rows	fully1
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RowClone Memory	Allocation	(I)
Memory	allocation	requirements

Alignment:	Operands	must	be	placed	at	the	same	offset2
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RowClone Memory	Allocation	(I)
Memory	allocation	requirements

Mapping:	Operands	must	be	placed	in	the	same	subarray3
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RowClone Memory	Allocation	(I)
Memory	allocation	requirements

Satisfies	all	three	requirements4
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RowClone Memory	Allocation	(II)
Implement	a	new	memory	allocation	function
to	overcome the	memory	allocation	challenges

Goal: Allocate	virtual	memory	pages	that	are	
mapped	to	the	same	DRAM	subarray	and aligned	with	each	other

virtual_address = alloc_align(int size, int id)
size: #	of	bytes	allocated

id: allocations	with	the	same	id	go	to	the	same	subarray

alloc_align(
4 KiB, 
“Subarray 0”)

Subarray
Mapping
Table

Page
Table

1 2

Get	physical	address	pointing	to	a	DRAM	row	in	subarray	0

Update the	page	table	to	map virtual	address	to	subarray	0

1

2
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RowClone Memory	Allocation	(II)
Implement	a	new	memory	allocation	function
to	overcome the	memory	allocation	challenges

Goal: Allocate	virtual	memory	pages	that	are	
mapped	to	the	same	DRAM	subarray	and aligned	with	each	other

virtual_address = alloc_align(int size, int id)
size: #	of	bytes	allocated

id: allocations	with	the	same	id	go	to	the	same	subarray

alloc_align(
4 KiB, 
“Subarray 0”)

Subarray
Mapping
Table

Page
Table

1 2

Get	physical	address	pointing	to	a	DRAM	row	in	subarray	0

Update the	page	table	to	map virtual	address	to	subarray	0

1

2

https://arxiv.org/abs/2111.00082

https://arxiv.org/abs/2111.00082
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Evaluation:	Methodology

Microbenchmarks
CPU-Copy (using	LOAD/STORE	instructions)
RowClone-Copy (using	in-DRAM	copy	operations)	with	and	without	CLFLUSH
Copy/Initialization	Heavy	Workloads
forkbench (copy)
compile	(initialization)
SPEC2006 libquantum: replace	“calloc()”	with	in-DRAM	initialization

in-DRAM	copy/initialization	
granularity
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Microbenchmark	Copy/Initialization	
Throughput	Improvement

In-DRAM	Copy	and	Initialization	
improve	throughput	by	119x	and	89x,	respectively
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CLFLUSH	Overhead

CLFLUSH	dramatically	reduces	
the	potential throughput improvement
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Other	Workloads
forkbench (copy-heavy	workload)

compile	(initialization-heavy	workload)
• 9%	execution	time	reduction	by	in-DRAM	initialization

- 17%	of	compile’s	execution	time	is	spent	on	initialization

SPEC2006 libquantum
• 1.3%	end-to-end	execution	time	reduction

- 2.3%	of	libquantum’s time	is	spent	on	initialization

Performance
improvement
increases
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Recall:	D-RaNGe Key	Idea
High	%	chance	to	fail	
with	reduced	
access	latency

Low	%	chance	to	fail	
with	reduced	
access	latency

SASASASASASASA

[Kim+	HPCA’19]

Commodity	DRAM	chips	can	already	perform D-RaNGe

50%	chance	
to	fail
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D-RaNGe Implementation

Identify	four	DRAM	cells	that	fail	
randomly	in	a	cache	block

1  0010110100110011101000110101

1

RNG	Cell

SA

[Kim+	HPCA’19]
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D-RaNGe Implementation

Periodically	generate	true	random	numbers
by	accessing	the	identified	cache	block
• Reduce access	latency
• 1	KiB	random	number	buffer	in	POC
• Programmers	read	random	numbers	from	the	
data	register	using the	rand_dram() function	call

190	lines	of	Verilog	code
74	lines	of	C++	code
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Evaluation
Methodology:	Microbenchmark	
that	reads	true	random	numbers

PiDRAM’s D-RaNGe generates true random 
numbers at 8.30 Mb/s throughput
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Executive	Summary
Motivation:	Commodity	DRAM	based	PiM techniques	improve	the	performance	
and	energy	efficiency	of	computing	systems	at	no	additional	DRAM	hardware	cost
Problem:	Challenges	of	integrating these	PiM techniques	into	real	systems	are	not	solved
General-purpose	computing	systems,	special-purpose	testing	platforms,	and	
system	simulators	cannot be	used	to	efficiently	study	system	integration	challenges
Goal: Design	and	implement	a	flexible	framework	that	can	be	used	to:
• solve	system	integration	challenges	
• analyze	trade-offs	of	end-to-end	implementations	
of	commodity	DRAM-based-PiM techniques

Key	idea:	PiDRAM, an FPGA-based framework	that	enables:
• system	integration	studies
• end-to-end	evaluations	of	PIM	techniques	using	real	unmodified	DRAM	chips
Evaluation: End-to-end	integration	of	two	PiM techniques on	PiDRAM’s FPGA	prototype
Case	Study	#1	– RowClone: In-DRAM	bulk	data	copy	operations
• 119x	speedup	for	copy	operations	compared	to	CPU-copy	with	system	support
• 198	lines	of	Verilog	and	565	lines	of	C++	code	over	PiDRAM’s flexible codebase
Case	Study	#2	– D-RaNGe: DRAM-based	random	number	generation	technique
• 8.30	Mb/s true	random	number	generator	(TRNG)	throughput,	220	ns TRNG	latency
• 190	lines	of	Verilog	and	74	lines	of	C++ code	over	PiDRAM’s flexible codebase

PiDRAM:	https://github.com/CMU-SAFARI/PiDRAM
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PiDRAM is	Open	Source
https://github.com/CMU-SAFARI/PiDRAM

https://github.com/CMU-SAFARI/PiDRAM
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Extended	Version	on	ArXiv
https://arxiv.org/abs/2111.00082

https://arxiv.org/abs/2111.00082
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Long	Talk	+	Tutorial	on	Youtube
https://youtu.be/s_z_S6FYpC8

https://youtu.be/s_z_S6FYpC8
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Factors	Affecting	DRAM	Reliability	and	Latency

We	need	to	perform	experimental	studies	
of real DRAM	chips

DRAM	timing	
violation

Inter-cell	
interference VoltageTemperatureManufacturing	

process

Factors	affecting	DRAM	reliability	and	latency	
cannot be	properly	modeled in	simulation	or	analytically
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DRAM	Testing	Infrastructure
Allow	experimental	studies	of	real	DRAM	chips

Open-source	FPGA-based	testing	infrastructure
• Publicly-available:	Start	using	today
• Relatively	low	cost:	An	FPGA	board	+	DRAM	modules

SoftMC Litex	Tester
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Limitations	of	Existing	Infrastructure

Impose	restrictions	on	the	DDR4	interface.
Restrictions	limit	various	characterization	experiments.

Difficult	to	set	up	(based	on discontinued	HW/SW)	
and	use	(require	developing	HW)

Monolithic	hardware	design	
makes	extensions	(new	standards,	prototypes)	relatively	difficult
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DRAM	Bender:	Design	Goals
• Flexibility

- Ability	to	test	any DRAM	operation
- Ability	to	test	any	combination	of	DRAM	operations	
and	custom	timing	parameters

• Ease	of	use
- Simple programming	interface	(C++)
- Minimal programming	effort	and	time
- Accessible to	a	wide	range	of	users
• who	may	lack	experience	in	hardware	design

• Extensibility
- Modular	design
- Well-defined interfaces between	hardware	modules
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DRAM	Bender:	Overview
Publicly-available	FPGA-based	

DDR4/3	(and	HBM2)	characterization	infrastructure

Easily	programmable	using	the	DRAM	Bender	C++	API

[Yaglikci+,	DSN
’22]
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DRAM	Bender:	Prototypes

Five	out	of	the	box	FPGA-based	prototypes
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DRAM	Bender	is	Flexible
1. RowHammer:	Interleaving	Pattern	of	Activations

- Interleaving	pattern	significantly	affects
the	number of	RowHammer bitflips

2. RowHammer:	Random	Data	Patterns
- Use	512-bit	random	data	patterns
- Uncover	more	bitflips	than	8-bit	SoftMC	random	patterns

3. In-DRAM	Bitwise	Operations
- Demonstrate	in-DRAM	bitwise	AND/OR	capability
in	real	DDR4	chips

DRAM	Bender	is	flexible:
supports	many	different	types	of	experiments
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3. In-DRAM	Bitwise	Operations

DRAM	Bender	is	Easy	to	Use

Easy	to	devise	new	experiments	to	uncover	new	insights

Easily	programmable	using	the	DRAM	Bender	C++	API
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More	in	the	paper	(II)

• DRAM	Bender	design	details
- DRAM	Bender	instruction	set	architecture
- Hardware	&	software	modules	
- Prototype	design
- Temperature	controller	setup

• DRAM	Bender	application	programming	interface

• Detailed	results	for	three	case	studies

• Future	work	&	improvements
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More	in	the	paper	(II)

https://arxiv.org/abs/2211.05838

https://arxiv.org/abs/2211.05838
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Research	DRAM	Bender	Enabled
1) [ISCA’23]	Luo+,	“RowPress:	Amplifying	Read	Disturbance	in	Modern	DRAM	Chips”

2) [DSN’23	Disrupt]	Olgun+,	”An	Experimental	Analysis	of	RowHammer on	HBM2	DRAM	Chips”

3) [arXiv Preprint,	2023] Orosa+,	”SpyHammer:	Using	RowHammer to	Remotely	Spy	on	Temperature”

4) [MICRO’22] Yaglikci+,	“HIRA:	Hidden	Row	Activation	for	Reducing	Refresh	Latency	of	Off-the-Shelf	DRAM	Chips”

5) [DSN’22]	Yaglikci+,	“Understanding	RowHammer	Under	Reduced	Wordline	Voltage:	An	Experimental	Study	Using	Real	DRAM	Devices”

6) [MICRO’21]	Orosa+,	“A	Deeper	Look	into	RowHammer’s	Sensitivities:	Experimental	Analysis	of	
Real	DRAM	Chips	and	Implications	on	Future	Attacks	and	Defenses”

7) [MICRO’21]	Hassan+,	“Uncovering	In-DRAM	RowHammer	Protection	Mechanisms:	
A	New	Methodology,	Custom	RowHammer	Patterns,	and	Implications”

8) [ISCA’21]	Olgun+,	“QUAC-TRNG:	High-Throughput	True	Random	Number	Generation	
Using	Quadruple	Row	Activation	in	Commodity	DRAM	Chips”

9) [ISCA’21] Orosa+,	“CODIC:	A	Low-Cost	Substrate	for	Enabling	Custom	In-DRAM	Functionalities	and	Optimizations”

10) [ISCA’20]	Kim+,	“Revisiting	RowHammer:	An	Experimental	Analysis	of	Modern	Devices	and	Mitigation	Techniques”

11) [S&P’20]	Frigo+,	“TRRespass:	Exploiting	the	Many	Sides	of	Target	Row	Refresh”

12) [HPCA’19]	Kim+,	“D-RaNGe:	Using	Commodity	DRAM	Devices	to	Generate	True	Random	Numbers	with	Low	Latency	and	High	Throughput”

13) [MICRO’19]	Koppula+,	“EDEN:	Enabling	Energy-Efficient,	High-Performance	Deep	Neural	Network	Inference	Using	Approximate	DRAM”

14) [SIGMETRICS’18]	Ghose+,	“What	Your	DRAM	Power	Models	Are	Not	Telling	You:	Lessons	from	a	Detailed	Experimental	Study”

15) [SIGMETRICS’17]	Chang+,	“Understanding	Reduced-Voltage	Operation	in	Modern	DRAM	Devices:	
Experimental	Characterization,	Analysis,	and	Mechanisms”

16) [MICRO’17]	Khan+,	“Detecting	and	Mitigating	Data-Dependent	DRAM	Failures	by	Exploiting	Current	Memory	Content”

17) [SIGMETRICS’16]	Chang+,	“Understanding	Latency	Variation	in	Modern	DRAM	Chips:	
Experimental	Characterization,	Analysis,	and	Optimization”

https://arxiv.org/pdf/2306.17061.pdf
https://arxiv.org/pdf/2305.17918
https://arxiv.org/pdf/2210.04084.pdf
https://arxiv.org/pdf/2209.10198.pdf
https://people.inf.ethz.ch/omutlu/pub/RowHammerUnderReducedWordlineVoltage_dsn22.pdf
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21.pdf
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21.pdf
https://people.inf.ethz.ch/omutlu/pub/CODIC-DRAM-internal-timing-control-substrate_isca21.pdf
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20.pdf
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19.pdf
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18_pomacs18-twocolumn.pdf
https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
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A	Highlight:	RowPress
Keeping	a	DRAM	row	open	for	a	long	time

causes	bitflips	in	adjacent	rows

These	bitflips	do	NOT require	many	row	activations

Only	one	activation	is	enough	in	some	cases!

RowHammer
Aggressor Row

Open

Close

RowPress
Aggressor Row

Open

Close

36ns,	47K	activations	to	induce	bitflips

7.8µs,	only	5K	activations	to	induce	bitflips
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RowPress Results	&	Source	Code

Fully	open	source	and	artifact	evaluated
Ø https://github.com/CMU-SAFARI/RowPress

https://github.com/CMU-SAFARI/RowPress
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RowPress [ISCA	2023]
• Haocong Luo,	Ataberk Olgun,	Giray Yaglikci,	Yahya	Can	Tugrul,	Steve	Rhyner,	M.	
Banu	Cavlak,	Joel	Lindegger,	Mohammad	Sadrosadati,	and Onur	Mutlu,
"RowPress:	Amplifying	Read	Disturbance	in	Modern	DRAM	Chips"
Proceedings	of	the 50th	International	Symposium	on	Computer	Architecture (ISCA),	
Orlando,	FL,	USA,	June	2023.
[Slides	(pptx) (pdf)]
[Lightning	Talk	Slides	(pptx) (pdf)]
[Lightning	Talk	Video (3	minutes)]
[RowPress	Source	Code	and	Datasets	(Officially	Artifact	Evaluated	with	All	Badges)]
Officially	artifact	evaluated	as	available,	reusable	and	reproducible.
Best	artifact	award	at	ISCA	2023.
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https://people.inf.ethz.ch/omutlu/pub/RowPress_isca23.pdf
http://iscaconf.org/isca2023/
https://people.inf.ethz.ch/omutlu/pub/RowPress_isca23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/RowPress_isca23-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/RowPress_isca23-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/RowPress_isca23-lightning-talk.pdf
https://www.youtube.com/watch?v=R3VKbbbWMnY
https://github.com/CMU-SAFARI/RowPress
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More	Research	DRAM	Bender	Enabled
18) [DRAMSec’23]	Lang+,	“BLASTER:	Characterizing	the	Blast	Radius	of	Rowhammer”

19) [Applied	Sciences’22] Bepary+,	“DRAM	Retention	Behavior	with	Accelerated	Aging	in	Commercial	Chips”

20) [ETS’21] Farmani+,	“RHAT:	Efficient	RowHammer-Aware	Test	for	Modern	DRAM	Modules”

21) [HOST’20] Talukder+,	“Towards	the	Avoidance	of	Counterfeit	Memory:	Identifying	the	DRAM	Origin”

22) [MICRO’19]	Gao+,	“ComputeDRAM:	In-Memory	Compute	Using	Off-the-Shelf	DRAMs”

23) [IEEE	Access’19] Talukder+,	“PreLatPUF:	Exploiting	DRAM	Latency	Variations	for	Generating	Robust	Device	Signatures”

24) [ICCE’18] Talukder+,	“Exploiting	DRAM	Latency	Variations	for	Generating	True	Random	Numbers”

https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/617284/dramsec2023-final29.pdf?sequence=2&isAllowed=y
https://www.mdpi.com/2076-3417/12/9/4332
https://ieeexplore.ieee.org/document/9465436
https://ieeexplore.ieee.org/document/9300125
https://dl.acm.org/doi/10.1145/3352460.3358260
https://ieeexplore.ieee.org/abstract/document/8736949
https://ieeexplore.ieee.org/document/8662060


Functionally-Complete Real PUM Prototype

n Ismail Emir Yuksel, Yahya Can Tuğrul, Ataberk Olgun, 
Nisa Bostanci, A. Giray Yaglikci, Geraldo F. Oliveira, Haocong Luo, 
Juan Gómez-Luna, Mohammad Sadrosadati, and Onur Mutlu, 
"Functionally-Complete Boolean Logic in DRAM: An 
Experimental Characterization and Analysis of 
Real DRAM Chips,"
Proceedings of the 30th International Symposium on 
High-Performance Computer Architecture (HPCA), 
Edinburgh, Scotland, March 2024.

http://pactconf.org/
http://pactconf.org/
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Summary
DRAM	Bender

The	first	publicly-available DDR4	characterization	infrastructure

github.com/CMU-
SAFARI/DRAMBender

[Yaglikci+,	DSN’22]

• Flexible and	Easy	to	Use
• Source	code	available:

DRAM	Bender	enables	many	studies, ideas,
and methodologies in	the	design	of	future	memory	systems
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DRAM	Bender	

https://github.com/CMU-SAFARI/DRAM-Bender

n Ataberk Olgun, Hasan Hassan, A Giray Yağlıkçı, Yahya Can Tuğrul, Lois Orosa, 
Haocong Luo, Minesh Patel, Oğuz Ergin, and Onur Mutlu,
"DRAM Bender: An Extensible and Versatile FPGA-based Infrastructure 
to Easily Test State-of-the-art DRAM Chips"
IEEE Transactions on Computer-Aided Design of Integrated Circuits and 
Systems (TCAD), 2023.
[Extended arXiv version]
[DRAM Bender Source Code]
[DRAM Bender Tutorial Video (43 minutes)]

https://github.com/CMU-SAFARI/DRAM-Bender
https://arxiv.org/pdf/2211.05838.pdf
https://arxiv.org/pdf/2211.05838.pdf
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/abs/2211.05838
https://github.com/CMU-SAFARI/DRAM-Bender
https://www.youtube.com/watch?v=FklVEsfdZCI


DRAM	Bender
An	Extensible	and	Versatile	
FPGA-based	Infrastructure	to	

Easily	Test	State-of-the-art	DRAM	Chips

Ataberk	Olgun

Yahya	Can	Tugrul

Minesh	Patel

Hasan	Hassan

Lois	Orosa

Oguz	Ergin

A.	Giray	Yaglikci

Haocong	Luo

Onur	Mutlu



BACKUP	SLIDES
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Accessing	a	DRAM	Cell

Sense	
Ampenable

bitline

wordline

capacitor

access	
transistor

[Seshadri+	MICRO’17]
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Accessing	a	DRAM	Cell

½	VDD	+	δ

enable

bitline

wordline

capacitor

access	
transistor

½	VDDVDD

enable	
wordline

enable	
sense	amp

connects	cell	
to	bitline

cell	loses	charge	
to	bitline

cell	charge	
restored

Sense	
Amp

deviation	in	
bitline voltage

[Seshadri+	MICRO’17]

1

2

3

4

5

6
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alloc_align() function
SubArray Mapping	Table	(SAMT)	enables	alloc_align()

SAMT
Subarray 0

Subarray 1

Subarray N

…

SAMT
Entry

Physical	addresses	
of	DRAM	rows

alloc_align(
4 KiB, 
“Subarray 0”)

SAMT Page
Table

1 2

Retrieve	a	physical	address	pointing	to	a	DRAM	row	in	subarray	0

Update	the	page	table	to	map	programmer-allocated	address	to	subarray	0

1

2
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Initializing	SAMT

SAMT
Subarray 0

Subarray 1

Subarray N

…

SAMT
Entry

Physical	addresses	
of	DRAM	rows

?
Perform	in-DRAM	copy	using	every	DRAM	row	address	

as	source	and	destination	rows

If	the	in-DRAM	copy	operation	succeeds
source	and	destination	rows	are	in	the	same	subarray
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DRAM Organization

………

[Olgun+	ISCA’21]
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DRAM	Operation

…

…

…… …
Sense	AmplifiersSense	Amplifiers

Cache line

READ

…

READ READ

W
or
dl
in
e

D
ri
ve
rs

Sense	AmplifiersREAD READ READ

ACT	R0 RD PRE	R0RD RD ACT	R1 RD RD RD

time

DRAM	Command	Sequence

(Activation	Latency)
(Precharge Latency)

[Kim+	HPCA’19]

(Access	Latency)
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Row-copy	in	ComputeDRAM

[Gao+, MICRO’19]
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More	in	ComputeDRAM

Majority	Function Row-copy/Majority
Characterization

32 DDR3	Modules
~256 DRAM	Chips


