Storage-Centric Computing for Geno[mics and Metag](mailto:n.mansorighiasi@gmail.com)enomics

Nika Mansouri Ghiasi

n.mansorighiasi@gmail.com

Brief Self Introduction

• A PhD student at the SAFARI Research Group @ ETH Zurich, advised by Professor Onur Mutlu

• **Resear[ch interests:](mailto:n.mansorighiasi@gmail.com)**

- Computer architec[ture](https://bit.ly/nikamgh)
- Large-scale bioinformatics applications
- Storage systems
- Near data processing
- Emerging technologies such as ultra-dense 3D integrated syste

• **Contact information**

- **Email:** n.mansorighiasi@gmail.com
- **Personal website:** https://bit.ly/nikamgh

Outline

•**Brief Intro to (Meta)Genomics**

- •**Storage-Centric Designs for (Meta)Genomics**
	- -**GenStore**
	- -**MegIS**

•**Conclusion**

Outline

•*Brief Intro to (Meta)Genomics*

- •**Storage-Centric Designs for (Meta)Genomics**
	- -**GenStore**
	- -**MegIS**

•**Conclusion**

Genomics and Metagenomics are Critical for Many Applications

Rapid surveillance of **disease outbreaks** Understanding **genetic variations, SAFARI**

Developing **personalized medicine** Predicting the presence and relative abundance of **microbes** in a sample

species, evolution, …

DNA Under Electron Microscope

7 GGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTGCCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACA GGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTG AGGTGTCAAGGACCTAAACTAAAAAAAAAAAAAGAAAA AGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAA AAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATG TGCTAAACAGCACTTTT**TTGACCATTAT**TTTGGATCTGAAA GAAATCAAGAATAAATGAAGGACTTGATACATTGGAAGA GGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAA AAGAAAAGAAAAAGA**A**TTTAAAATTTAAGTAATTCTTTGA AAAAAACTAATTTCTAAGCTTCTT**C**ATGTCAAGGACCTAAT GTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGA AAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTA ATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCC

Ion Torrent Proton

Complete Genomics

Illumina NovaSeq 6000

Oxford Nanopore GridION

Example 13 and more! All produce data with different properties.

High-Throughput Sequencers

Problems with (Meta)Genome Analysis Today

Special-Purpose Machine for **Data Generation**

General-Purpose Machine for **Data Analysis**

FAST SLOW

Genome Sequence Analysis

Accelerating GenomeAnalysis

Illumina DRAGEN Bio-IT Platform (2018)

• Processes whole genome at 30x coverage in ~25 minutes with hardware support for data compress

emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-pl emea.illumina.com/company/news-center/press-releases/2018/2349147.html

NVIDIA Clara Parabricks (2020)

SAFARI https://developer.nvidia.com/clara-parabricks

NVIDIA Hopper DPX Instructions (2022)

NVIDIA Hopper GPU Architecture Accelerates Dynamic Programr Up to 40x Using New DPX Instructions

Dynamic programming algorithms are used in healthcare, robotics, quantum computing, data science ar March 22, 2022 by DION HARRIS

 $SAPARI$ https://blogs.nvidia.com/blog/2022/03/22/nvidia-hopper-accelerates-dynamic-programming-usi

• We are accelerating the transformation in how we analyze the human genome!

Bionano & NVIDIA: *Accelerating Analysis for Fast Time to Results*

Technological solution to **support higher throughput**

New high-performance algorithms from Bionano

Powered by NVIDIA RTX™ 6000 Ada Generation GPUs

Workflow tailored for a **small lab and IT footprint**

Accelerating Genome Sequence Analysis

Computation overhead

Data movement overhead

What is Metagenomics?

• *Metagenomics:* Study of genome sequences of **diverse organisms** within a **shared environment** (e.g., blood, ocean, soil)

- **Overcomes the limitations of traditional genomics**
	- Bypasses the need for analyzing individual species in isolation

What is Metagenomics?

• *Metagenomics:* Study of genome sequences of **diverse organisms** within a **shared environment** (e.g., blood, ocean, soil)

(e.g., > 100 TBs in emerging databases)

Outline

•**Brief Intro to (Meta)Genomics**

- •*Storage-Centric Designs for (Meta)Genomics*
	- -*GenStore*
	- -**MegIS**

•**Conclusion**

GenStore *[ASPLOS'22]*

GenStore: A High-Performance and Energy-Efficient In-Storage Computing System for Genome Sequence Analysis

Nika Mansouri Ghiasi¹ Jisung Park¹ Harun Mustafa¹ Jeremie Kim¹ Ataberk Olgun¹ Arvid Gollwitzer¹ Damla Senol Cali² Can Firtina¹ Haiyu Mao¹ Nour Almadhoun Alserr¹ Rachata Ausavarungnirun³ Nandita Vijaykumar⁴ Mohammed Alser¹ Onur Mutlu¹

¹ETH Zürich ²Bionano Genomics ³KMUTNB ⁴University of Toronto

GenStore

A High-Performance In-Storage Processing System for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, RachataAusavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu

Genome Sequence Analysis

- Genome sequence analysis is critical for many applications
	- Personalized medicine
	- Outbreak tracing
	- Evolutionary studies
- Genome sequencing machines extract smaller fragments of the original DNA sequence, known as reads

Genome Sequence Analysis

- **Read mapping:** first key step in genome sequence analysis
	- Aligns reads to potential matching locations in the reference genome
	- For each matching location, the alignment step finds the degree of similarity (alignment score)

- **AAGCTTCCATGG GCCCAAATGGTT** approximate string matching (ASM) to account for differences between • Calculating the alignment score requires computationally-expensive reads and the reference genome due to:
	- Sequencing errors
	- Genetic variation

Filter **reads that do** *not* **require alignment** *inside the storage system*

Exactly-matching reads

Do not need expensive approximate string matching during alignment

Non-matching reads

Do not have potential matching locations and can skip alignment

Challenges

Filter **reads that do** *not* **require alignment** *inside the storage system*

Read mapping workloads can exhibit different behavior

There are limited hardware resources in the storage system

Filter **reads that do** *not* **require alignment** *inside the storage system*

Outline

Background

Motivation and Goal

GenStore

Evaluation

Conclusions

Outline

Background

Motivation and Goal

GenStore

Evaluation

Conclusions

Motivation

- Case study on a real-world genomic read dataset
	- Various read mapping systems
	- Various state-of-the-art SSD configurations

The ideal in-storage filter significantly improves performance by

- **1) reducing the computation overhead**
- **2) reducing the data movement overhead**

Motivation

- Case study on a real-world genomic read dataset
	- Various read mapping systems
	- Various state-of-the-art SSD configurations

Filtering outside SSD provides lower performance benefit since it

1) does not reduce the data movement overhead

2) must compete with read mapping for system resources

A HW accelerator reduces the computation bottleneck, which makes I/O a larger bottleneck in the system

Our Goal

Design an in-storage filter for genome sequence analysis in a cost-effective manner

Design Objectives:

Performance

Provide high in-storage filtering performance to overlap the filtering with the read mapping of unfiltered data

Applicability

Support reads with 1) different properties and 2) different degrees of genetic variation in the compared genomes

Low-cost

Do not require significant hardware overhead

Outline

Background

Motivation and Goal

GenStore

Evaluation

Conclusions

GenStore

• **Key idea:** Filter reads that do not require alignment inside the storage system

• **Challenges**

- Different behavior across read mapping workloads
- Limited hardware resources in the SSD

Filtering Opportunities

- Sequencing machines produce one of two kinds of reads
	- **Short reads:** highly accurate and short
	- **Long reads:** less accurate and long

Reads that do not require the expensive alignment step:

Exactly-matching reads

Do not need expensive approximate string matching during alignment

- Low sequencing error rates (short reads) combined with
- Low genetic variation

Non-matching reads

Do not have potential matching locations, so they skip alignment

- High sequencing error rates (long reads) or
- High genetic variation (short or long reads)

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

GenStore-EM

- Efficient in-storage filter for reads with at least one exact match in the reference genome
- Uses simple operations, without requiring alignment
- **Challenge:** large number of random accesses per read to the reference genome and its index

Expensive random accesses to flash chips

Limited DRAM capacity inside the SSD

GenStore-EM: Data Structures

• **Read-sized k-mers:** to reduce the number of accesses per each read

• **Sorted read-sized k-mers:** to avoid random accesses to the index

✓ **Sequential scan of the read set and the index**

GenStore-EM: Data Structures

Sorted Read Table

Sorted K-mer Index

K-mers

GenStore-EM: Finding a Match

Sorted Read Table Sorted K-mer Index

GenStore-EM: Not Finding a Match

Sorted Read Table Sorted K-mer Index

GenStore-EM: Not Finding a Match

Sorted Read Table

Sorted K-mer Index

Not an exact match → Send to read mapper

GenStore-EM: Not Finding a Match

GenStore-EM: Optimization

• Read-sized k-mer index takes up a large amount of space (126 GB for human index) due to the larger number of unique k-mers

Sorted K-mer Index

Using strong hash values instead of read-sized k-mers reduces the size of the index by 3.9x

GenStore-EM: Design

Steps 1 and 2 are pipelined.

During filtering, GenStore-EM sends the unfiltered reads ⋯ **to the host system.**

 \equiv 11

Data is evenly distributed between channels, dies, and planes to leverage the full internal bandwidth of the SSD

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

Details on GenStore-NM's design are in the paper

Outline

Background

Motivation and Goal

GenStore

Evaluation

Conclusions

Evaluation Methodology

Read Mappers

- **Base:** state-of-the-art software or hardware read mappers
	- Minimap2 [Bioinformatics'18]: software mapper for short and long reads
	- GenCache [MICRO'19]: hardware mapper for short reads
	- Darwin [ASPLOS'18]: hardware mapper for long reads
- **GS:** Base integrated with GenStore

SSD Configurations

- **SSD-L:** with SATA3 interface (0.5 GB/s sequential read bandwidth)
- **SSD-M:** with PCIe Gen3 interface (3.5 GB/s sequential read bandwidth)
- **SSD-H:** with PCIe Gen4 interface (7 GB/s sequential read bandwidth)

Performance –GenStore-EM

2.1× - 2.5× speedup compared to the software Base

1.5× – 3.3× speedup compared to the hardware Base

Performance –GenStore-NM

For a read set with 99.7% non-matching reads

22.4× – 27.9× speedup compared to the software Base

6.8× – 19.2× speedup compared to the hardware Base

On average 27.2× energy reduction

More in the Paper

- Effect of read set features on performance
	- Data size (up to 440 GB)
	- Filter ratio
- Performance benefit of an implementation of GenStore outside the SSD
	- In some cases, it provides performance benefits due more efficient streaming accesses
	- Provides significantly lower benefit compared to GenStore
- More detailed characterization of non-matching reads across different read mapping use cases and species

GenStore

A High-Performance In-Storage Processing System for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, RachataAusavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu

Outline

•**Brief Intro to (Meta)Genomics**

- •*Storage-Centric Designs for (Meta)Genomics*
	- -**GenStore**
	- -*MegIS*

•**Conclusion**

MegIS: High-Performance, Energy-Efficient, and Low-Cost **Metagenomic Analysis with In-Storage Processing**

Nika Mansouri Ghiasi¹ Mohammad Sadrosadati¹ Harun Mustafa¹ Arvid Gollwitzer¹ Can Firtina¹ Julien Eudine¹ Haiyu Mao¹ Joël Lindegger¹ Meryem Banu Cavlak¹ Mohammed Alser¹ Jisung Park² Onur Mutlu¹ ¹ETH Zürich ²POSTECH

MegIS

High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi

Mohammad Sadrosadati Harun Mustafa ArvidGollwitzer Can Firtina

Julien Eudine Haiyu Mao Joël Lindegger Meryem Banu Cavlak

Mohammed Alser Jisung Park Onur Mutlu

Background

Motivation and Goal

MegIS

Evaluation

Conclusion

Metagenomic Analysis

*(e.g., > 100 TBs in emerging databases)*SAFARI

Background

Motivation and Goal

MegIS

Evaluation

Conclusion

Motivation

- Case study of the performance of metagenomic analysis tools
- With various state-of-the-art SSD configurations

I/O data movement causes significant performance overhead

Motivation

- Case study on the throughput of metagenomic analysis tools
- With Various state-of-the-art SSD configurations

Normalized Throughput 0.4 in systems where other bottlenecks are alleviated0.6 I/O becomes an even larger overhead (by 2.7x)

I/O Overhead is Hard to Avoid

I/O overhead due to accessing **large**, **low-reuse** data is hard to avoid

Sampling techniques to shrink database sizes

[Wood+, Genome Biology'19], [Ounit+, BMC Genomics'15], [Kim+, Genome Research'16], …

Reduce accuracy to levels unacceptable for many use cases

Keeping all data required by metagenomic analysis completely and always resident in main memory

Energy inefficient, costly, unscalable, and unsustainable

- Database sizes **increase rapidly** (doubling every few months)
- Different analyses need **different databases**

Our Goal

Improve metagenomic analysis performance by reducing large data movement overhead from the storage system in a cost-effective manner and with high accuracy

Challenges of In-Storage Processing

No metagenomic analysis tools can run in-storage due to SSD limits

- Long **latency of NAND flash** chips
- Limited **DRAM capacity** inside the SSD
- Limited **DRAM bandwidth** inside the SSD

SAFA

Background

Motivation and Goal

MegIS

Evaluation

Conclusion

MegIS: Metagenomics In-Storage

- First in-storage system for *end-to-end* metagenomic analysis
- **Idea:** Cooperative in-storage processing for metagenomic analysis
	- Hardware/software co-design between the **storage system** and **host system**

MegIS's Steps

MegIS Hardware-Software Co-Design

MegIS Hardware-Software Co-Design

Task partitioning and mapping

• *Each step executes in its most suitable system*

MegIS Hardware-Software Co-Design

Task partitioning and mapping

• *Each step executes in its most suitable system*

Data/computation flow coordination

- *Reduce communication overhead*
	- *Reduce #writes to flash chips*

MegIS Hardware-Software Co-Design

Task partitioning and mapping

• *Each step executes in its most suitable system*

Data/computation flow coordination

- *Reduce communication overhead*
	- *Reduce #writes to flash chips*

Storage-aware algorithms • *Enable efficient*

access patterns to the SSD

MegIS Hardware-Software Co-Design

Task partitioning and mapping

• *Each step executes in its most suitable system*

Data/computation flow coordination

- *Reduce communication overhead*
	- *Reduce #writes to flash chips*

Storage-aware algorithms • *Enable efficient access patterns to the SSD*

Lightweight in-storage accelerators • *Minimize SRAM/DRAM buffer spaces needed inside the SSD*

MegIS Hardware-Software Co-Design

Task partitioning and mapping

• *Each step executes in its most suitable system*

Data/computation flow coordination

- *Reduce communication overhead*
	- *Reduce #writes to flash chips*

Storage-aware algorithms • *Enable efficient access patterns to the SSD*

Lightweight in-storage accelerators • *Minimize SRAM/DRAM buffer spaces needed inside the SSD*

Data mapping scheme and Flash Translation Layer (FTL)

- *Specialize to the characteristics of metagenomic analysis*
	- *Leverage the SSD's full internal bandwidth*

Background

Motivation and Goal

MegIS

Evaluation

Conclusion

System Cost-Efficiency

- **Cost-optimized system (\$):** With SSD-C and 64-GB DRAM
- **Performance-optimized system (\$\$\$):** With SSD-P and 1-TB DRAM

MegIS outperforms the baselines *even* **when running on a much less costly system**

MegIS

High-Performance, Energy-Efficient, and Low Metagenom[ic Analysis with In-Storage](https://arxiv.org/abs/2406.19113) Proce

https://arxiv.org/abs/2406.19113

Outline

•**Brief Intro to (Meta)Genomics**

- •**Storage-Centric Designs for (Meta)Genomics**
	- -**GenStore**
	- -**MegIS**

•*Conclusion*

Specializing the Storage System for Genomics & Metagenomics Can Provide Large Benefits

Specializing the Storage System for Genomics & Metagenomics Storage-centric designs improve system cost-efficiency and makes accurate (meta)genomics more accessible for wider adoption

(Co-)Optimizing Algorithm-Architecture-Device is Critical

Computer Architecture (Expanded View)

More About My Research

My Website:

https://bit.ly/nikamgh

Storage-Centric Computing for Geno[mics and Metag](mailto:n.mansorighiasi@gmail.com)enomics

Nika Mansouri Ghiasi

n.mansorighiasi@gmail.com

Backup Slides

End-to-End Workflow of Genome Sequence Analysis

- There are three key initial steps in a standard genome sequencing and analysis workflow
	- Collection, preparation, and sequencing of a DNA sample in the laboratory
	- Basecalling
	- Read mapping
- Genomic read sets can be obtained by
	- Sequencing a DNA sample and storing the generated read set into the SSD of a sequencing machine
	- Downloading read sets from publicly available repositories and storing them into an SSD
- We focus on optimizing the performance of read mapping because sequencing and basecalling are performed only once per read set, whereas read mapping can be performed many times
	- Analyzing the differences between a reads from an individual and many reference genomes of other individuals
	- Repeating the read mapping step many times to improve the outcome of read mapping
- Improving read mapping performance is critical in almost all genomic analyses that use sequencing
	- 45% of the execution time when discovering sequence variants in cancer genomics studies
	- 60% of the execution time when profiling the species composition of a multi-species (i.e., metagenomic) read

Motivation

Motivation

Benefits of Ideal In-Storage Filter

The ideal in-storage filter significantly improves performance by

- **1) Reducing computation overhead**
-

Overheads of Software Mappers

I/O has a significant impact on application performance which can be alleviated at the cost of expensive storage devices and interfaces
 expensive storage devices and interfaces

Overheads of Software Mappers

The filtering process outside the SSD must compete with the read mapping process for the resources in the system

Overheads of Hardware Mappers

The ideal in-storage filter significantly improves performance

Ideal-OSF

• Execution time of an ideal in-storage filter:

 $T_{\text{Ideal-ISF}} = T_{\text{I/O-Ref}} + \max \{T_{\text{I/O-Unfiltered}}, T_{\text{RM-Unfiltered}}\}$

- Execution time of an ideal outside-storage filter:
	- 60% slower than Ideal-ISF in our analysis

 $T_{\text{Ideal-OSF}} = T_{\text{I/O-Ref}} + \max \left\{ T_{\text{I/O-All-Reads}}, T_{\text{RM-Unfiltered}} \right\}$

Comparison to PIM

- Even though read mapping applications could also benefit from other near-data, in-storage processing can fundamentally address the data movement problem by filtering large, low-reuse data where the data initially resides.
- Even if an ideal accelerator achieved a zero execution time, there would still exist the need to bring the data from storage to the accelerator.
	- 2.15x slower than the execution time that Ideal-ISF+ACC provides in our motivational analysis

In-storage filter can be integrated with any read mapping accelerator, including PIM accelerators, to alleviate their data movement overhead.

Long Read Use Cases

FTL: Metadata

- GenStore metadata includes the mapping information of the data structures necessary for read mapping acceleration
- In accelerator mode, GenStore also keeps in internal DRAM other metadata structures of the regular FTL
	- Examples include the page status table and block read counts which need to be updated during the filtering process
- We carefully design GenStore to only sequentially access the underlying NAND flash chips while operating as an accelerator
	- Requires only a small amount of metadata to access the stored data

FTL: Data Placement

- GenStore needs to properly place its data structures to enable the full utilization of the internal SSD bandwidth
- When each data structure is initially written to the SSD, GenStore sequentially and evenly distributes it across NAND flash chips
- GenStore can specify the physical location of a 30-GB data structure by maintaining only the list of 1,250 (30 GB/24 MB) physical block addresses
- It significantly reduces the size of the necessary mapping information from 300 MB (with conventional 4 -KiB page mapping) to only 5 KB (1,250 4 bytes)

FTL: SSD Management Tasks

- In accelerator mode, GenStore only reads data structures to perform filtering, and does not write any new data
	- GenStore does not require any write-related SSD-management tasks such as garbage collection and wear-leveling
- The other tasks necessary for ensuring data reliability can be done before or after the filtering process
	- GenStore significantly limits the amount of data whose retention age would exceed the manufacturer-specified threshold since GenStore's filtering process takes a short time.
	- GenStore-FTL can easily avoid read disturbance errors for data with high read counts since GenStore sequentially reads NAND flash blocks only once during filtering

Data Sizes

- Conventional k-mer index in Minimap2 + reference genome: 7 GB $(k = 15)$
- Read-sized k-mer index before optimization: 126 GB (k= 150)
- Read-sized k-mer index after optimization: 32 GB (k = 150)

SSD Specs

- **SSD-L:** SATA3 interface (0.5 GB/s sequential read)
	- 1.2 GB/s per channel bandwidth
	- 8 channels
- **SSD-L:** PCIe Gen3 M.2 interface (3.5 GB/s sequential read)
	- 1.2 GB/s per channel bandwidth
	- 16 channels
- **SSD-L:** PCIe Gen4 interface (7 GB/s sequential read)
	- 1.2 GB/s per channel bandwidth
	- 16 channels

Evaluation Methodology

• **Performance modeling**

- Ramulator for DRAM timing
- MQSim for SSD timing
- We model the end-to-end throughput of GenStore based on the throughput of each GenStore pipeline stage
	- Accessing NAND flash chips
	- Accessing internal DRAM
	- Accelerator computation
	- Transferring unfiltered data to the host

• **Real system results**

- AMD EPYC 7742 CPU
- 1TB DDR4 DRAM
- AMD μProf

GenStore-NM

Chaining Processing Element

GenStore-EM

GS-Ext provides significant performance improvements over both Base and SIMD in SSD-M and SSD-H.

GS-Ext provides limited benefits over SIMD in SSD-L due to low external I/O bandwidth.

GenStore-NM

GS-Ext performs significantly slower than Base (2.28x - 1.91x) on all systems.

Effect of Inputs on GenStore-EM

$$
DM_Saving = \frac{Size_{Ref} + Size_{ReadSet}}{Size_{Ref} + Size_{ReadSet} \times (1 - Ratio_{filter})}
$$

Effect of Inputs on GenStore-NM

$$
DM_Saving = \frac{Size_{Ref} + Size_{ReadSet}}{Size_{Ref} + Size_{ReadSet} \times (1 - Ratio_{filter})}
$$

MegIS Backup Slides

Motivational Analysis

Database access patterns

(a)Random Query

(b)Streaming Query

Overview of MegIS's Steps

More Details on Step 1

K-mer Sketch Data Structures

Baseline K-mer Sketch Tables

K-mer Sketch Streaming Tables \bullet

ID

8

5

COL

K-mer Sketch Streaming Hardware Design

Index Generation in Step 3

Reference Index Organism A

Reference Index Organism B

Merge Unified Reference Index

MegIS FTL

Multi-Sample Analysis

SSD Configurations

Impact of Different Optimizations

Impact of Different Optimizations

Speedup with Different Database Sizes

Speedup with Different #SSDs

Speedup with Different Main Memory Capacities

Speedup with Varying SSD Internal Bandwidth

Speedup of Abundance Estimation

Multi-Sample Use Case

Area and Power

• Based on **synthesis** of **MegIS** accelerators using the Synopsys Design Compiler @ 65nm technology node

Only 1.7% of the area of three 28-nm ARM Cortex R4 cores

in a SATA SSD controller

Step 1 Overview

Step 1 Overview

MegIS employs sorted data structures to avoid expensive random accesses to the SSD

- **Extract k-mers** from the sample
- **Sort** the k-mers (database is sorted offline)
- *MegIS executes Step 1 in the host system*
- Benefits from **larger DRAM** and **more powerful computation**
- Incurs **fewer writes** to NAND flash chips (than processing this step in the SSD)
- Enables **overlapping** Step 1 with Step 2

To execute Step 1 efficiently in the host system, MegIS needs to:

- Avoid significant overhead due to **data transfer time** between the steps
- Minimize **performance** and **lifetime** overheads *even* when host DRAM cannot hold all query k-mers

Step 1 Design

Divide k-mers into **independent partitions** by their alphabetical range

Can overlap operations on different partitions

Step 2 Overview

Step 2 Overview

- **Identify the common k-mers** between the query k-mers and the database k-mers
- **Retrieve the species IDs** of the common k-mers

- Accesses **large data** with **low reuse**
- Involves **lightweight computation**

To execute Step 2 efficiently in the SSD, MegIS needs to:

- Leverage **internal bandwidth** efficiently
- Not require **expensive hardware inside the SSD**

(e.g., large DRAM bandwidth/capacity and costly logic units)

Step 2 Design: Identifying the Common K-mers

• **Challenge:** Limited internal DRAM bandwidth

Step 2 Design: Identifying the Common K-mers

- **Challenge:** Limited internal DRAM bandwidth
	- *Compute directly on the flash data streams [Zou+, MICRO'22]*

Reduce buffer size based on application features

Step 2 Design: Retrieving the Species ID

• MegIS retrieves the species IDs of the **common k-mers** by looking up a **sketch database**

Space-Efficient

Slow inside the SSD due to long NAND flash latency

Step 2 Design: Retrieving the Species ID

• MegIS retrieves the species IDs of the **common k-mers** by looking up a **sketch database**

K-mer Sketch Streaming is much more suitable for in-storage processing due to its streaming accesses

Step 2 Design: Retrieving the Species ID

• MegIS retrieves the species IDs of the **common k-mers** by looking

Design details are in the paper

K-mer Sketch Streaming is much more suitable for in-storage processing due to its streaming accesses

Step 3

Step 3

MegIS performs additional analysis on species identified in the sample to estimate their abundance

MegIS can flexibly integrate with different approaches

- **1. Lightweight statistical approaches**: Directly uses the output of Step 2
- **2. More accurate and costly read mapping:** MegIS facilitates integration by preparing mapping indexes in the SSD

Step 3 and MegIS FTL are in the paper

