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- Large-scale bioinformatics applications
- Storage systems
- Near data processing
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Genomics and Metagenomics are Critical for Many Applications

Developing personalized medicine Predicting the presence and relative 
abundance of microbes in a sample

Rapid surveillance of disease outbreaks Understanding genetic variations, 
species, evolution, …
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DNA Under Electron Microscope

human chromosome #12
from HeLa’s cell
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CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACA
GGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTG
AGGTGTCAAGGACCTAAACTAAAAAAAAAAAAAGAAAA
AGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAA
AAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATG
TGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAA
GAAATCAAGAATAAATGAAGGACTTGATACATTGGAAGA
GGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAA
AAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGA
AAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAAT
GTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGA
AAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTA
ATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCC
GGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTG
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Genome Sequencers

… and more! All produce data with 
different properties.

Roche/454

Illumina HiSeq2000

Ion Torrent PGM
Ion Torrent Proton

AB SOLiD

Oxford Nanopore GridION

Oxford Nanopore MinION

Complete
Genomics

Illumina MiSeq

Pacific Biosciences RS
Illumina 
NovaSeq
6000
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High-Throughput Sequencers

… and more! All produce data with different properties.

Illumina MiSeq

Oxford Nanopore MinION

Pacific Biosciences RS IIIllumina NovaSeq 6000

Oxford
Nanopore 
SmidgION

Pacific 
Biosciences 
Sequel II

Oxford 
Nanopore 
PromethION
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Problems with (Meta)Genome Analysis Today

Special-Purpose Machine
for Data Generation

FAST SLOW

General-Purpose Machine
for Data Analysis
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Genome Sequence Analysis

Computation overhead
 

Data movement overhead 

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Data Movement

Storage
System
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Heuristics AcceleratorsFilters

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory
Storage
System

Accelerating Genome Analysis
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Illumina DRAGEN Bio-IT Platform (2018)
• Processes whole genome at 30x coverage in ~25 

minutes with hardware support for data compression

FPGA board(s)

emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
emea.illumina.com/company/news-center/press-releases/2018/2349147.html

https://emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
https://emea.illumina.com/company/news-center/press-releases/2018/2349147.html
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NVIDIA Clara Parabricks (2020)

https://developer.nvidia.com/clara-parabricks

GPU board(s) A University of Michigan startup in 
2018 joined NVIDIA in 2020

https://developer.nvidia.com/clara-parabricks
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NVIDIA Hopper DPX Instructions (2022)

https://blogs.nvidia.com/blog/2022/03/22/nvidia-hopper-accelerates-dynamic-programming-using-dpx-instructions/

https://blogs.nvidia.com/blog/2022/03/22/nvidia-hopper-accelerates-dynamic-programming-using-dpx-instructions/


FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.

Bionano & NVIDIA: 
Accelerating Analysis for Fast Time to Results

• We are accelerating the transformation 
in how we analyze the human genome!

New high-performance algorithms 
from Bionano

Technological solution to support 
higher throughput

Powered by NVIDIA RTX™ 6000 
Ada Generation GPUs

Workflow tailored for a small lab and 
IT footprint
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Heuristics Accelerators Filters

 Computation overhead
 

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory
Storage
System

Data movement overhead 

✓

Accelerating Genome Sequence Analysis
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What is Metagenomics?
• Metagenomics: Study of genome sequences of diverse organisms

within a shared environment (e.g., blood, ocean, soil)

• Overcomes the limitations of traditional genomics
- Bypasses the need for analyzing individual species in isolation
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What is Metagenomics?
• Metagenomics: Study of genome sequences of diverse organisms

within a shared environment (e.g., blood, ocean, soil)

V. cholerae

E. coli

SARS-CoV-2

A large database 
containing information

on many species 

Presence/Absence 
Identification

(e.g., > 100 TBs in emerging databases)
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GenStore [ASPLOS’22]



GenStore
A High-Performance In-Storage Processing System

for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, 
Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, 
Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu
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Genome Sequence Analysis
• Genome sequence analysis is critical for many applications
- Personalized medicine
- Outbreak tracing
- Evolutionary studies

• Genome sequencing machines extract smaller fragments of the original 
DNA sequence, known as reads

AAGCTTCCATGG
AAATGGGCTTTC

GCCCAAATGGTT
GCTTCCAGAATG
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Genome Sequence Analysis
• Read mapping: first key step in genome sequence analysis

…GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG…

- Aligns reads to potential matching locations in the reference genome

Reference Genome

Differences Differences

- For each matching location, the alignment step finds the degree of 
similarity (alignment score)

AAGCTTCCATGG
GCCCAAATGGTT

GCTTCCAGAATG

AAATGGGCTTTC
• Calculating the alignment score requires computationally-expensive

approximate string matching (ASM) to account for differences between 
reads and the reference genome due to:

- Sequencing errors
- Genetic variation
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Storage
System

Key Idea

Non-matching reads
Do not have potential matching locations and can skip alignment

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

Exactly-matching reads
Do not need expensive approximate string matching during alignment
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Challenges

Read mapping workloads can exhibit different behavior

There are limited hardware resources 
in the storage system

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory
Storage
System
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GenStore

Computation overhead
 

Data movement overhead 

GenStore provides significant speedup (1.4x - 33.6x) and  
energy reduction (3.9x – 29.2x) at low cost

Filter reads that do not require alignment
inside the storage system

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

GenStore-Enabled
Storage
System

✓
✓
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Conclusions
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Motivation and Goal

GenStore

Evaluation
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GCC 7
CCC 8
CAA 1
AAA 31 101
CCA 25 230 400

… … … …

Read Mapping Process
…CAATTTGCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTTG…Reference

> 3 billion characters

Index

K-mer Locations
GCCCAAATGGTTRead
GCC

CCC
…

K-mers

Determine potential matching locations (seeds) in the 
reference genome 

Prune some seeds in the reference genome

Determine the exact differences between the read 
and the reference genome

Seeding

Seed Filtering
(e.g., Chaining)

Alignment

Seeds

…
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GCC 7
CCC 8
CAA 1
AAA 31 101
CCA 25 230 400

… … … …

Read Mapping Process
…CAATTTGCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTTG…Reference

> 3 billion characters

Reference Index

K-mer Locations
GCCCAAATGGTTRead
GCC

CCC
…

K-mers

Determine potential matching locations (seeds) in the 
reference genome 

Prune some seeds in the reference genome

Determine the exact differences between the read 
and the reference genome

Seeding

Seed Filtering
(e.g., Chaining)

Alignment

…
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Motivation
• Case study on a real-world genomic read dataset 
- Various read mapping systems
- Various state-of-the-art SSD configurations

The ideal in-storage filter significantly improves performance by

1) reducing the computation overhead

2) reducing the data movement overhead
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Motivation
• Case study on a real-world genomic read dataset 
- Various read mapping systems
- Various state-of-the-art SSD configurations

Filtering outside SSD provides lower performance benefit since it 

1) does not reduce the data movement overhead

2) must compete with read mapping for system resources

A HW accelerator reduces the computation bottleneck,

which makes I/O a larger bottleneck in the system
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Our Goal

Design Objectives:

Design an in-storage filter for genome sequence analysis 
in a cost-effective manner

Provide high in-storage filtering performance to overlap the 
filtering with the read mapping of unfiltered data

Performance

Support reads with 1) different properties and 2) different 
degrees of genetic variation in the compared genomes

Applicability

Do not require significant hardware overhead
Low-cost
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GenStore

SSD	Controller

CoreCoreCore

In-SSD	DRAM
L2P

Mappings

Flash
Ctrl.#1

Flash
Ctrl.#N

⋯

NAND
Die#4

NAND
Die#1 ⋯

NAND
Die#4

NAND
Die#1 ⋯

Host	System

FTL

ACC

ACC

ACC GenStore
Metadata		

GenStore
FTL

Reads	that	need	
substantial	processing

• Key idea: Filter reads that do not require alignment inside the 
storage system

• Challenges
- Different behavior across read mapping workloads
- Limited hardware resources in the SSD
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Filtering Opportunities

• Sequencing machines produce one of two kinds of reads 
- Short reads: highly accurate and short

- Long reads: less accurate and long

• High sequencing error rates (long reads) or
• High genetic variation (short or long reads)

Non-matching reads
Do not have potential matching locations, so they skip alignment

• Low sequencing error rates (short reads) combined with
• Low genetic variation

Exactly-matching reads
Do not need expensive approximate string matching during alignment

Reads that do not require the expensive alignment step:
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GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads
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GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads
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GenStore-EM 
• Efficient in-storage filter for reads with at least one exact 

match in the reference genome

•Uses simple operations, without requiring alignment

• Challenge: large number of random accesses per read to 
the reference genome and its index

Expensive random accesses to flash chips

Limited DRAM capacity inside the SSD
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GenStore-EM: Data Structures

GCCCAAATGGTTRead
GCC

CCC
…

K-mers

K-mer

•Read-sized k-mers: to reduce the number of accesses per 
each read

Only one index lookup per read

• Sorted read-sized k-mers: to avoid random accesses to 
the index

Sequential scan of the read set and the index✓

✓
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GenStore-EM: Data Structures

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted K-mer Index

Sorted
Read-sized

 K-mers

Read
AAAAAAAAAA
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GenStore-EM: Finding a Match

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted K-mer Index

Comparator

Read = K-mer

Next

Exact match à Filter the read

Next
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GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted K-mer Index

NextComparator

Read > K-mer
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Next

GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted K-mer Index

Comparator

Read < K-mer

Not an exact match à Send to read mapper
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Next

GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted K-mer Index

Comparator

Read < K-mer

Not an exact match à Send to read mapper

Avoids random accesses

Simple low-cost logic✓
✓
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GenStore-EM: Optimization
•Read-sized k-mer index takes up a large amount of space 

(126 GB for human index) due to the larger number of 
unique k-mers

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted K-mer Index

Strong Hash Value

1
4
7
16

Using strong hash values instead of read-sized k-mers
reduces the size of the index by 3.9x 
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GenStore-EM: Design

GenStore-Enabled SSD

Host System

Die#1
Plane#1 Plane#2

Die#4
P#1 P#2

⋯

Die#1
P#1 P#2

Die#4
P#1 P#2

⋯

Die#1
P#1 P#2

Die#4
P#1 P#2

⋯⋯

Channel#1 Channel#2 Channel#N

❷ Exact-match filtering

SSD ControllerNAND Flash Array

SRTable

SKIndex
❶ Sequential Reads

DRAM

Batch#i-1
Batch#i

Batch#j-1
Batch#j

Comparator SRTable Buffer

SKIndex Buffer

Data is evenly distributed between channels, dies, and planes 
to leverage the full internal bandwidth of the SSD

Steps 1 and 2 are pipelined. 
During filtering, GenStore-EM sends the unfiltered reads 

to the host system.
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GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

Details on GenStore-NM’s design are in the paper
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Evaluation Methodology
Read Mappers
• Base: state-of-the-art software or hardware read mappers
- Minimap2 [Bioinformatics’18]: software mapper for short and long reads

- GenCache [MICRO’19]: hardware mapper for short reads

- Darwin [ASPLOS’18]: hardware mapper for long reads

• GS: Base integrated with GenStore

SSD Configurations
• SSD-L: with SATA3 interface (0.5 GB/s sequential read bandwidth)

• SSD-M: with PCIe Gen3 interface (3.5 GB/s sequential read bandwidth)

• SSD-H: with PCIe Gen4 interface (7 GB/s sequential read bandwidth)
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For a read set with 80% exactly-matching reads

Performance – GenStore-EM

0
50

100
150
200

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

Ex
ec

. t
im

e 
[s

ec
]

0
2
4
6
8

10

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

With the Software Mapper With the Hardware Mapper

2.1× - 2.5× speedup compared to the software Base

1.5× – 3.3× speedup compared to the hardware Base

On average 3.92× energy reduction

292.
5x

2.
1x

2.
1x

3.
3x

1.
5x

2.
5x
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For a read set with 99.7% non-matching reads

Performance – GenStore-NM

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

Ex
ec

. t
im

e 
[s

ec
]

Lo
g 

sc
al

e

With the Software Mapper With the Hardware Mapper

22.4× – 27.9× speedup compared to the software Base

6.8× – 19.2× speedup compared to the hardware Base

On average 27.2× energy reduction

0.1

1

10

100

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

22
.4

29
x

27
.9
x

19
.2
x

6.
8x

6.
8x
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More in the Paper
• Effect of read set features on performance

- Data size (up to 440 GB)

- Filter ratio

• Performance benefit of an implementation of GenStore 
outside the SSD

- In some cases, it provides performance benefits due more 
efficient streaming accesses 

- Provides significantly lower benefit compared to GenStore

•More detailed characterization of non-matching reads 
across different read mapping use cases and species



GenStore
A High-Performance In-Storage Processing System

for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, 
Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, 
Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu
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MegIS [ISCA’24]



MegIS
High-Performance, Energy-Efficient, and Low-Cost 

Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi

Mohammed Alser Jisung Park    Onur Mutlu

Mohammad Sadrosadati Harun Mustafa    Arvid Gollwitzer    Can Firtina

Julien Eudine Haiyu Mao    Joël Lindegger Meryem Banu Cavlak
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Metagenomic Analysis

A large database 
containing information

on many species 

Metagenomic sample
with species that 

are not known in advance

Preparation 
of Input Queries Q

ue
ry

 
K-

m
er

s

…

GCTCA

CTCAT

TCATG

Presence/Absence 
Identification

Abundance
Estimation

V. cholerae

E. coli

SARS-CoV-2

(e.g., > 100 TBs in emerging databases)
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Motivation
• Case study of the performance of metagenomic analysis tools

• With various state-of-the-art SSD configurations

N
or

m
al
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ed

 T
hr

ou
gh

pu
t

Database Size (Terabyte)

I/O data movement causes significant performance overhead

0

0.2

0.4

0.6

0.8

1

0.7 1.4

No I/O Performance-Optimized Cost-Optimized

3.
2x

4.
1x

27
.6
x

39
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x
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Motivation
• Case study on the throughput of metagenomic analysis tools

• With Various state-of-the-art SSD configurations

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Database Size (Terabyte)

0

0.2

0.4

0.6

0.8

1

0.7 1.4

I/O data movement causes significant performance overhead

Cost-Optimized Performance-Optimized No I/O

I/O becomes an even larger overhead (by 2.7x)

in systems where other bottlenecks are alleviated
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I/O Overhead is Hard to Avoid
I/O overhead due to accessing large, low-reuse data is hard to avoid

Sampling techniques to shrink database sizes

Keeping all data required by metagenomic analysis 
completely and always resident in main memory

Reduce accuracy to levels unacceptable for many use cases

Energy inefficient, costly, unscalable, and unsustainable

• Database sizes increase rapidly (doubling every few months)

• Different analyses need different databases

[Wood+, Genome Biology’19], [Ounit+, BMC Genomics’15], [Kim+, Genome Research’16], …



69

Our Goal

Improve metagenomic analysis performance
by reducing large data movement overhead

from the storage system 
in a cost-effective manner and with high accuracy
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Challenges of In-Storage Processing
No metagenomic analysis tools can run in-storage due to SSD limits

- Long latency of NAND flash chips

- Limited DRAM capacity inside the SSD

- Limited DRAM bandwidth inside the SSD

SSD DRAM

⋯

SSD 
ControllerCoresFTL

⋯

SS
D

 

CntrlCntrl

Channel#NChannel#1
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MegIS: Metagenomics In-Storage
• First in-storage system for end-to-end metagenomic analysis

• Idea: Cooperative in-storage processing for metagenomic analysis

- Hardware/software co-design between the storage system and host system

H
os

t S
ys

te
m

SSD DRAM

Standard
Metadata

⋯

SSD 
ControllerCoresFTL

⋯

M
eg

IS
-E

na
bl

ed
 S

SD
 

CntrlCntrl

Channel#NChannel#1
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MegIS’s Steps

A large database 
containing information

on many species 

Metagenomic sample
with species that 

are not known in advance

Preparation 
of Input Queries Q

ue
ry

 
K-

m
er

s

…

GCTCA

CTCAT

TCATG

Presence/Absence 
Identification

V. cholerae

E. coli

SARS-CoV-2

Abundance
Estimation

Step 1

Step 2

Step 3
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MegIS Hardware-Software Co-Design
H

os
t S

ys
te

m

SSD DRAM

Standard
Metadata

⋯

SSD 
ControllerCoresFTL

⋯
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bl
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 S
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CntrlCntrl

Channel#NChannel#1
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MegIS Hardware-Software Co-Design
H

os
t S

ys
te

m

SSD DRAM

Standard
Metadata

⋯

SSD 
ControllerCoresFTL

⋯

M
eg

IS
-E

na
bl

ed
 S

SD
 

CntrlCntrl

Channel#NChannel#1

Step 1

Task partitioning and mapping
•  Each step executes 

in its most suitable system 

Step 2 Step 3
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MegIS Hardware-Software Co-Design
H

os
t S

ys
te

m

SSD DRAM

Standard
Metadata

⋯

SSD 
ControllerCoresFTL

⋯

M
eg
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-E
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ed
 S

SD
 

CntrlCntrl

Channel#NChannel#1

Data/computation flow coordination
• Reduce communication overhead
• Reduce #writes to flash chips

Step 1 Step 2 Step 3

Task partitioning and mapping
•  Each step executes 

in its most suitable system 
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MegIS Hardware-Software Co-Design
H

os
t S

ys
te

m

SSD DRAM

Standard
Metadata

⋯

SSD 
ControllerCoresFTL

⋯

M
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-E
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SD
 

CntrlCntrl

Channel#NChannel#1

Storage-aware algorithms
• Enable efficient 

access patterns to the SSD 

Step 1 Step 2 Step 3

Data/computation flow coordination
• Reduce communication overhead
• Reduce #writes to flash chips

Task partitioning and mapping
•  Each step executes 

in its most suitable system 
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MegIS Hardware-Software Co-Design
H
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t S
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m

SSD DRAM

Standard
Metadata

⋯

SSD 
ControllerCoresFTL

⋯

M
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ACCACC
CntrlCntrl

Channel#NChannel#1

Lightweight in-storage accelerators 
• Minimize SRAM/DRAM buffer spaces 

needed inside the SSD

Step 1 Step 2 Step 3

Storage-aware algorithms
• Enable efficient 

access patterns to the SSD 

Data/computation flow coordination
• Reduce communication overhead
• Reduce #writes to flash chips

Task partitioning and mapping
•  Each step executes 

in its most suitable system 
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MegIS Hardware-Software Co-Design
H
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SSD DRAM

Standard
Metadata

⋯

SSD 
ControllerCoresFTL

⋯
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MegIS
FTL

MegIS
Metadata

CntrlCntrl

Channel#NChannel#1

Data mapping scheme and Flash Translation Layer (FTL) 
• Specialize to the characteristics of metagenomic analysis

• Leverage the SSD’s full internal bandwidth

Step 1 Step 2 Step 3

Storage-aware algorithms
• Enable efficient 

access patterns to the SSD 

Lightweight in-storage accelerators 
• Minimize SRAM/DRAM buffer spaces 

needed inside the SSD

Data/computation flow coordination
• Reduce communication overhead
• Reduce #writes to flash chips

Task partitioning and mapping
•  Each step executes 

in its most suitable system 

ACCACC
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System Cost-Efficiency
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MegIS
High-Performance, Energy-Efficient, and Low-Cost 

Metagenomic Analysis with In-Storage Processing

https://arxiv.org/abs/2406.19113

https://arxiv.org/abs/2406.19113
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Outline

•Brief Intro to (Meta)Genomics

•Storage-Centric Designs for (Meta)Genomics

-GenStore

-MegIS

•Conclusion
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Specializing the Storage System 

for Genomics & Metagenomics 

Can Provide Large Benefits
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Specializing the Storage System 

for Genomics & Metagenomics 

Can Provide Large Benefits
Storage-centric designs 

improve system cost-efficiency

and makes accurate (meta)genomics 

more accessible for wider adoption
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(Co-)Optimizing 

Algorithm-Architecture-Device 

is Critical
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Computer Architecture (Expanded View)

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons
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Backup Slides
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End-to-End Workflow of Genome Sequence Analysis

• There are three key initial steps in a standard genome sequencing and analysis workflow

- Collection, preparation, and sequencing of a DNA sample in the laboratory

- Basecalling

- Read mapping

• Genomic read sets can be obtained by

- Sequencing a DNA sample and storing the generated read set into the SSD of a sequencing machine

- Downloading read sets from publicly available repositories and storing them into an SSD

• We focus on optimizing the performance of read mapping because sequencing and basecalling are 
performed only once per read set, whereas read mapping can be performed many times 

- Analyzing the differences between a reads from an individual and many reference genomes of other individuals

- Repeating the read mapping step many times to improve the outcome of read mapping

• Improving read mapping performance is critical in almost all genomic analyses that use sequencing

- 45% of the execution time when discovering sequence variants in cancer genomics studies

- 60% of the execution time when profiling the species composition of a multi-species (i.e., metagenomic) read
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Motivation
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State-of-the-art software 
read mapper, Minimap2

Motivation
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Motivation
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Benefits of Ideal In-Storage Filter
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Overheads of Software Mappers
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Overheads of Software Mappers
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The filtering process outside the SSD must compete 
with the read mapping process for the resources in the system
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Overheads of Hardware Mappers
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Ideal-OSF

• Execution time of an ideal in-storage filter:

• Execution time of an ideal outside-storage filter:
• 60% slower than Ideal-ISF in our analysis
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Comparison to PIM
• Even though read mapping applications could also benefit from other near-data, 

in-storage processing can fundamentally address the data movement problem 
by filtering large, low-reuse data where the data initially resides. 

• Even if an ideal accelerator achieved a zero execution time, there would still exist 
the need to bring the data from storage to the accelerator. 
- 2.15x slower than the execution time that Ideal-ISF+ACC provides  in our 

motivational analysis

In-storage filter can be integrated with any read mapping accelerator, 

including PIM accelerators, to alleviate their data movement overhead.
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Long Read Use Cases
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FTL
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FTL: Metadata
•GenStore metadata includes the mapping information of 

the data structures necessary for read mapping 
acceleration

• In accelerator mode, GenStore also keeps in internal 
DRAM other metadata structures of the regular FTL
- Examples include the page status table and block read counts 

which need to be updated during the filtering process

•We carefully design GenStore to only sequentially access 
the underlying NAND flash chips while operating as an 
accelerator
- Requires only a small amount of metadata to access the stored 

data



124

FTL: Data Placement
•GenStore needs to properly place its data structures to 

enable the full utilization of the internal SSD bandwidth

•When each data structure is initially written to the SSD, 
GenStore sequentially and evenly distributes it across 
NAND flash chips

•GenStore can specify the physical location of a 30-GB 
data structure by maintaining only the list of 1,250 (30 
GB/24 MB) physical block addresses

• It significantly reduces the size of the necessary mapping 
information from 300 MB (with conventional 4-KiB page 
mapping) to only 5 KB (1,250 4 bytes)
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FTL: SSD Management Tasks
• In accelerator mode, GenStore only reads data structures to 

perform filtering, and does not write any new data
- GenStore does not require any write-related SSD-management 

tasks such as garbage collection and wear-leveling

• The other tasks necessary for ensuring data reliability can be done 
before or after the filtering process
- GenStore significantly limits the amount of data whose retention 

age would exceed the manufacturer-specified threshold since 
GenStore’s filtering process takes a short time.
- GenStore-FTL can easily avoid read disturbance errors for data 

with high read counts since GenStore sequentially reads NAND 
flash blocks only once during filtering
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Data Sizes
• Conventional k-mer index in Minimap2 + reference genome: 7 GB 

(k = 15)

• Read-sized k-mer index before optimization: 126 GB (k= 150)

• Read-sized k-mer index after optimization: 32 GB (k = 150)
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SSD Specs
• SSD-L: SATA3 interface (0.5 GB/s sequential read)
- 1.2 GB/s per channel bandwidth
- 8 channels

• SSD-L: PCIe Gen3 M.2 interface (3.5 GB/s sequential 
read)
- 1.2 GB/s per channel bandwidth
- 16 channels

• SSD-L: PCIe Gen4 interface (7 GB/s sequential read)
- 1.2 GB/s per channel bandwidth
- 16 channels
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Evaluation Methodology
•Performance modeling
- Ramulator for DRAM timing
- MQSim for SSD timing
- We model the end-to-end throughput of GenStore based on the 

throughput of each GenStore pipeline stage
• Accessing NAND flash chips
• Accessing internal DRAM
• Accelerator computation
• Transferring unfiltered data to the host

•Real system results
- AMD EPYC 7742CPU
- 1TB DDR4 DRAM
- AMD μProf
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GenStore-NM
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Chaining Processing Element
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GenStore-EM
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GenStore-NM
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Effect of Inputs on GenStore-EM 
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Effect of Inputs on GenStore-NM 
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MegIS Backup Slides
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Motivational Analysis
Database access patterns

(a)Random Query

(b)Streaming Query
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Overview of MegIS’s Steps
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More Details on Step 1
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K-mer Sketch Data Structures
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K-mer Sketch Streaming Hardware Design
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Index Generation in Step 3
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MegIS FTL
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Multi-Sample Analysis



144

SSD Configurations
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Impact of Different Optimizations
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Impact of Different Optimizations
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Speedup with Different Database Sizes
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Speedup with Different #SSDs
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Speedup with Different Main Memory Capacities
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Speedup with Varying SSD Internal Bandwidth
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Speedup of Abundance Estimation
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Multi-Sample Use Case
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Area and Power
•Based on synthesis of MegIS accelerators using the 

Synopsys Design Compiler @ 65nm technology node

Only 1.7% of the area of three 28-nm ARM Cortex R4 cores 

in a SATA SSD controller

Logic Unit # of instances Area [mm2] Power [mW]

Intersect (120-bit) 1 per channel 0.001361 0.284

k-mer Registers (2 x 120-bit) 1 per channel 0.002821 0.645

Index Generator (64-bit) 1 per channel 0.000272 0.025

Control Unit 1 per SSD 0.000188 0.026

Total for an 8-channel SSD - 0.04 7.658
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Step 1 Overview

A large database 
containing information

on many species 

Metagenomic sample
with species that 

are not known in advance Presence/Absence 
Identification
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Step 1 Overview
MegIS employs sorted data structures
to avoid expensive random accesses to the SSD

- Extract k-mers from the sample
- Sort the k-mers (database is sorted offline) 

Preparation 
of Input Queries Q

ue
ry

 
K-

m
er

s

…

GCTCA

CTCAT

TCATG

MegIS executes Step 1 in the host system

- Benefits from larger DRAM and more powerful computation

- Incurs fewer writes to NAND flash chips (than processing this step in the SSD) 

- Enables overlapping Step 1 with Step 2

To execute Step 1 efficiently in the host system, MegIS needs to:

- Avoid significant overhead due to data transfer time between the steps

- Minimize performance and lifetime overheads even when host DRAM cannot 
hold all query k-mers
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Step 1 Design
Divide k-mers into independent partitions by their alphabetical range

Can overlap operations on different partitions
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Step 2 Overview

A large database 
containing information

on many species 

Metagenomic sample
with species that 

are not known in advance
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Step 2 Overview
- Identify the common k-mers 

between the query k-mers
and the database k-mers

- Retrieve the species IDs 
of the common k-mers

MegIS executes Step 2 in the SSD

- Accesses large data with low reuse

- Involves lightweight computation

To execute Step 2 efficiently in the SSD, MegIS needs to:

- Leverage internal bandwidth efficiently

- Not require expensive hardware inside the SSD
(e.g., large DRAM bandwidth/capacity and costly logic units)

Presence/Absence 
Identification

V. cholerae

E. coli

SARS-CoV-2
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Step 2 Design: Identifying the Common K-mers
• Challenge: Limited internal DRAM bandwidth
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Step 2 Design: Identifying the Common K-mers
• Challenge: Limited internal DRAM bandwidth
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Compute directly on the flash data streams

Reduce buffer size based on application features
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[Zou+, MICRO’22]
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Space-Inefficient

Step 2 Design: Retrieving the Species ID
• MegIS retrieves the species IDs of the common k-mers by looking 

up a sketch database

K-mer ID
AAAAA 1,5
AAAAC 6
AATCC 2,	9
… …

Space-Efficient

A A A/8 A A/1

C/6

T/5 C/3 C/2

Slow inside the SSD 
due to long 

NAND flash latency 
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Space-Inefficient

Step 2 Design: Retrieving the Species ID
• MegIS retrieves the species IDs of the common k-mers by looking 

up a sketch database

K-mer ID
AAAAA 1,5
AAAAC 6
AATCC 2,	9
… …

Space-Efficient

A A A/8 A A/1

C/6

T/5 C/3 C/2

7.5x Smaller 2.1× Larger
K-mer Sketch Streaming

K-mer Sketch Streaming is much more suitable for in-storage processing
due to its streaming accesses
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Space-Inefficient

Step 2 Design: Retrieving the Species ID
• MegIS retrieves the species IDs of the common k-mers by looking 

up a sketch database

K-mer ID
AAAAA 1,5
AAAAC 6
AATCC 2,	9
… …

Space-Efficient

A A A/8 A A/1

C/6

T/5 C/3 C/2

7.5x Smaller 2.1× Larger
K-mer Sketch Streaming

K-mer Sketch Streaming is much more suitable for in-storage processing
due to its streaming accesses

Design details are in the paper
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Step 3

A large database 
containing information

on many species 

Metagenomic sample
with species that 

are not known in advance
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Step 3

MegIS performs additional analysis on 
species identified in the sample to 

estimate their abundance

MegIS can flexibly integrate with different approaches
1. Lightweight statistical approaches: Directly uses the output of Step 2 

2. More accurate and costly read mapping: MegIS facilitates integration by 
preparing mapping indexes in the SSD 

Abundance
Estimation

Step 3 and MegIS FTL are in the paper


