
Nika Mansouri Ghiasi

n.mansorighiasi@gmail.com

Storage-Centric Computing
for Genomics and Metagenomics

mailto:n.mansorighiasi@gmail.com

2

Brief Self Introduction
• A PhD student at the SAFARI Research Group @ ETH Zurich,

advised by Professor Onur Mutlu

• Research interests:
- Computer architecture
- Large-scale bioinformatics applications
- Storage systems
- Near data processing
- Emerging technologies such as ultra-dense 3D integrated systems

• Contact information
- Email: n.mansorighiasi@gmail.com
- Personal website: https://bit.ly/nikamgh

mailto:n.mansorighiasi@gmail.com
https://bit.ly/nikamgh

3

Outline

•Brief Intro to (Meta)Genomics

•Storage-Centric Designs for (Meta)Genomics

-GenStore

-MegIS

•Conclusion

4

Outline

•Brief Intro to (Meta)Genomics

•Storage-Centric Designs for (Meta)Genomics

-GenStore

-MegIS

•Conclusion

5

Genomics and Metagenomics are Critical for Many Applications

Developing personalized medicine Predicting the presence and relative
abundance of microbes in a sample

Rapid surveillance of disease outbreaks Understanding genetic variations,
species, evolution, …

6

DNA Under Electron Microscope

human chromosome #12
from HeLa’s cell

7

CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACA
GGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTG
AGGTGTCAAGGACCTAAACTAAAAAAAAAAAAAGAAAA
AGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAA
AAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATG
TGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAA
GAAATCAAGAATAAATGAAGGACTTGATACATTGGAAGA
GGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAA
AAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGA
AAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAAT
GTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGA
AAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTA
ATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCC
GGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTG

8

Genome Sequencers

… and more! All produce data with
different properties.

Roche/454

Illumina HiSeq2000

Ion Torrent PGM
Ion Torrent Proton

AB SOLiD

Oxford Nanopore GridION

Oxford Nanopore MinION

Complete
Genomics

Illumina MiSeq

Pacific Biosciences RS
Illumina
NovaSeq
6000

9

High-Throughput Sequencers

… and more! All produce data with different properties.

Illumina MiSeq

Oxford Nanopore MinION

Pacific Biosciences RS IIIllumina NovaSeq 6000

Oxford
Nanopore
SmidgION

Pacific
Biosciences
Sequel II

Oxford
Nanopore
PromethION

10

Problems with (Meta)Genome Analysis Today

Special-Purpose Machine
for Data Generation

FAST SLOW

General-Purpose Machine
for Data Analysis

11

Genome Sequence Analysis

Computation overhead

Data movement overhead

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Data Movement

Storage
System

12

Heuristics AcceleratorsFilters

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory
Storage
System

Accelerating Genome Analysis

13

Illumina DRAGEN Bio-IT Platform (2018)
• Processes whole genome at 30x coverage in ~25

minutes with hardware support for data compression

FPGA board(s)

emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
emea.illumina.com/company/news-center/press-releases/2018/2349147.html

https://emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
https://emea.illumina.com/company/news-center/press-releases/2018/2349147.html

14

NVIDIA Clara Parabricks (2020)

https://developer.nvidia.com/clara-parabricks

GPU board(s) A University of Michigan startup in
2018 joined NVIDIA in 2020

https://developer.nvidia.com/clara-parabricks

15

NVIDIA Hopper DPX Instructions (2022)

https://blogs.nvidia.com/blog/2022/03/22/nvidia-hopper-accelerates-dynamic-programming-using-dpx-instructions/

https://blogs.nvidia.com/blog/2022/03/22/nvidia-hopper-accelerates-dynamic-programming-using-dpx-instructions/

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.

Bionano & NVIDIA:
Accelerating Analysis for Fast Time to Results

• We are accelerating the transformation
in how we analyze the human genome!

New high-performance algorithms
from Bionano

Technological solution to support
higher throughput

Powered by NVIDIA RTX™ 6000
Ada Generation GPUs

Workflow tailored for a small lab and
IT footprint

17

Heuristics Accelerators Filters

 Computation overhead

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory
Storage
System

Data movement overhead

✓

Accelerating Genome Sequence Analysis

18

What is Metagenomics?
• Metagenomics: Study of genome sequences of diverse organisms

within a shared environment (e.g., blood, ocean, soil)

• Overcomes the limitations of traditional genomics
- Bypasses the need for analyzing individual species in isolation

19

What is Metagenomics?
• Metagenomics: Study of genome sequences of diverse organisms

within a shared environment (e.g., blood, ocean, soil)

V. cholerae

E. coli

SARS-CoV-2

A large database
containing information

on many species

Presence/Absence
Identification

(e.g., > 100 TBs in emerging databases)

20

Outline

•Brief Intro to (Meta)Genomics

•Storage-Centric Designs for (Meta)Genomics

-GenStore

-MegIS

•Conclusion

21

GenStore [ASPLOS’22]

GenStore
A High-Performance In-Storage Processing System

for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun,
Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr,
Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu

23

Genome Sequence Analysis
• Genome sequence analysis is critical for many applications
- Personalized medicine
- Outbreak tracing
- Evolutionary studies

• Genome sequencing machines extract smaller fragments of the original
DNA sequence, known as reads

AAGCTTCCATGG
AAATGGGCTTTC

GCCCAAATGGTT
GCTTCCAGAATG

24

Genome Sequence Analysis
• Read mapping: first key step in genome sequence analysis

…GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG…

- Aligns reads to potential matching locations in the reference genome

Reference Genome

Differences Differences

- For each matching location, the alignment step finds the degree of
similarity (alignment score)

AAGCTTCCATGG
GCCCAAATGGTT

GCTTCCAGAATG

AAATGGGCTTTC
• Calculating the alignment score requires computationally-expensive

approximate string matching (ASM) to account for differences between
reads and the reference genome due to:

- Sequencing errors
- Genetic variation

25

Storage
System

Key Idea

Non-matching reads
Do not have potential matching locations and can skip alignment

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

Exactly-matching reads
Do not need expensive approximate string matching during alignment

26

Challenges

Read mapping workloads can exhibit different behavior

There are limited hardware resources
in the storage system

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory
Storage
System

27

GenStore

Computation overhead

Data movement overhead

GenStore provides significant speedup (1.4x - 33.6x) and
energy reduction (3.9x – 29.2x) at low cost

Filter reads that do not require alignment
inside the storage system

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

GenStore-Enabled
Storage
System

✓
✓

28

Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Outline

29

GCC 7
CCC 8
CAA 1
AAA 31 101
CCA 25 230 400

… … … …

Read Mapping Process
…CAATTTGCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTTG…Reference

> 3 billion characters

Index

K-mer Locations
GCCCAAATGGTTRead
GCC

CCC
…

K-mers

Determine potential matching locations (seeds) in the
reference genome

Prune some seeds in the reference genome

Determine the exact differences between the read
and the reference genome

Seeding

Seed Filtering
(e.g., Chaining)

Alignment

Seeds

…

30

GCC 7
CCC 8
CAA 1
AAA 31 101
CCA 25 230 400

… … … …

Read Mapping Process
…CAATTTGCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTTG…Reference

> 3 billion characters

Reference Index

K-mer Locations
GCCCAAATGGTTRead
GCC

CCC
…

K-mers

Determine potential matching locations (seeds) in the
reference genome

Prune some seeds in the reference genome

Determine the exact differences between the read
and the reference genome

Seeding

Seed Filtering
(e.g., Chaining)

Alignment

…

31

Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Outline

32

Motivation
• Case study on a real-world genomic read dataset
- Various read mapping systems
- Various state-of-the-art SSD configurations

The ideal in-storage filter significantly improves performance by

1) reducing the computation overhead

2) reducing the data movement overhead

33

Motivation
• Case study on a real-world genomic read dataset
- Various read mapping systems
- Various state-of-the-art SSD configurations

Filtering outside SSD provides lower performance benefit since it

1) does not reduce the data movement overhead

2) must compete with read mapping for system resources

A HW accelerator reduces the computation bottleneck,

which makes I/O a larger bottleneck in the system

34

Our Goal

Design Objectives:

Design an in-storage filter for genome sequence analysis
in a cost-effective manner

Provide high in-storage filtering performance to overlap the
filtering with the read mapping of unfiltered data

Performance

Support reads with 1) different properties and 2) different
degrees of genetic variation in the compared genomes

Applicability

Do not require significant hardware overhead
Low-cost

35

Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Outline

36

GenStore

SSD	Controller

CoreCoreCore

In-SSD	DRAM
L2P

Mappings

Flash
Ctrl.#1

Flash
Ctrl.#N

⋯

NAND
Die#4

NAND
Die#1 ⋯

NAND
Die#4

NAND
Die#1 ⋯

Host	System

FTL

ACC

ACC

ACC GenStore
Metadata		

GenStore
FTL

Reads	that	need	
substantial	processing

• Key idea: Filter reads that do not require alignment inside the
storage system

• Challenges
- Different behavior across read mapping workloads
- Limited hardware resources in the SSD

37

Filtering Opportunities

• Sequencing machines produce one of two kinds of reads
- Short reads: highly accurate and short

- Long reads: less accurate and long

• High sequencing error rates (long reads) or
• High genetic variation (short or long reads)

Non-matching reads
Do not have potential matching locations, so they skip alignment

• Low sequencing error rates (short reads) combined with
• Low genetic variation

Exactly-matching reads
Do not need expensive approximate string matching during alignment

Reads that do not require the expensive alignment step:

38

GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

39

GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

40

GenStore-EM
• Efficient in-storage filter for reads with at least one exact

match in the reference genome

•Uses simple operations, without requiring alignment

• Challenge: large number of random accesses per read to
the reference genome and its index

Expensive random accesses to flash chips

Limited DRAM capacity inside the SSD

41

GenStore-EM: Data Structures

GCCCAAATGGTTRead
GCC

CCC
…

K-mers

K-mer

•Read-sized k-mers: to reduce the number of accesses per
each read

Only one index lookup per read

• Sorted read-sized k-mers: to avoid random accesses to
the index

Sequential scan of the read set and the index✓

✓

42

GenStore-EM: Data Structures

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted K-mer Index

Sorted
Read-sized

 K-mers

Read
AAAAAAAAAA

43

GenStore-EM: Finding a Match

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted K-mer Index

Comparator

Read = K-mer

Next

Exact match à Filter the read

Next

44

GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted K-mer Index

NextComparator

Read > K-mer

45

Next

GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted K-mer Index

Comparator

Read < K-mer

Not an exact match à Send to read mapper

46

Next

GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted K-mer Index

Comparator

Read < K-mer

Not an exact match à Send to read mapper

Avoids random accesses

Simple low-cost logic✓
✓

47

GenStore-EM: Optimization
•Read-sized k-mer index takes up a large amount of space

(126 GB for human index) due to the larger number of
unique k-mers

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted K-mer Index

Strong Hash Value

1
4
7
16

Using strong hash values instead of read-sized k-mers
reduces the size of the index by 3.9x

48

GenStore-EM: Design

GenStore-Enabled SSD

Host System

Die#1
Plane#1 Plane#2

Die#4
P#1 P#2

⋯

Die#1
P#1 P#2

Die#4
P#1 P#2

⋯

Die#1
P#1 P#2

Die#4
P#1 P#2

⋯⋯

Channel#1 Channel#2 Channel#N

❷ Exact-match filtering

SSD ControllerNAND Flash Array

SRTable

SKIndex
❶ Sequential Reads

DRAM

Batch#i-1
Batch#i

Batch#j-1
Batch#j

Comparator SRTable Buffer

SKIndex Buffer

Data is evenly distributed between channels, dies, and planes
to leverage the full internal bandwidth of the SSD

Steps 1 and 2 are pipelined.
During filtering, GenStore-EM sends the unfiltered reads

to the host system.

49

GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

Details on GenStore-NM’s design are in the paper

53

Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Outline

54

Evaluation Methodology
Read Mappers
• Base: state-of-the-art software or hardware read mappers
- Minimap2 [Bioinformatics’18]: software mapper for short and long reads

- GenCache [MICRO’19]: hardware mapper for short reads

- Darwin [ASPLOS’18]: hardware mapper for long reads

• GS: Base integrated with GenStore

SSD Configurations
• SSD-L: with SATA3 interface (0.5 GB/s sequential read bandwidth)

• SSD-M: with PCIe Gen3 interface (3.5 GB/s sequential read bandwidth)

• SSD-H: with PCIe Gen4 interface (7 GB/s sequential read bandwidth)

55

For a read set with 80% exactly-matching reads

Performance – GenStore-EM

0
50

100
150
200

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

Ex
ec

. t
im

e
[s

ec
]

0
2
4
6
8

10

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

With the Software Mapper With the Hardware Mapper

2.1× - 2.5× speedup compared to the software Base

1.5× – 3.3× speedup compared to the hardware Base

On average 3.92× energy reduction

292.
5x

2.
1x

2.
1x

3.
3x

1.
5x

2.
5x

56

For a read set with 99.7% non-matching reads

Performance – GenStore-NM

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

Ex
ec

. t
im

e
[s

ec
]

Lo
g

sc
al

e

With the Software Mapper With the Hardware Mapper

22.4× – 27.9× speedup compared to the software Base

6.8× – 19.2× speedup compared to the hardware Base

On average 27.2× energy reduction

0.1

1

10

100

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

22
.4

29
x

27
.9
x

19
.2
x

6.
8x

6.
8x

58

More in the Paper
• Effect of read set features on performance

- Data size (up to 440 GB)

- Filter ratio

• Performance benefit of an implementation of GenStore
outside the SSD

- In some cases, it provides performance benefits due more
efficient streaming accesses

- Provides significantly lower benefit compared to GenStore

•More detailed characterization of non-matching reads
across different read mapping use cases and species

GenStore
A High-Performance In-Storage Processing System

for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun,
Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr,
Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu

60

Outline

•Brief Intro to (Meta)Genomics

•Storage-Centric Designs for (Meta)Genomics

-GenStore

-MegIS

•Conclusion

61

MegIS [ISCA’24]

MegIS
High-Performance, Energy-Efficient, and Low-Cost

Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi

Mohammed Alser Jisung Park Onur Mutlu

Mohammad Sadrosadati Harun Mustafa Arvid Gollwitzer Can Firtina

Julien Eudine Haiyu Mao Joël Lindegger Meryem Banu Cavlak

63

Outline

Conclusion

Background

Motivation and Goal

MegIS

Evaluation

64

Metagenomic Analysis

A large database
containing information

on many species

Metagenomic sample
with species that

are not known in advance

Preparation
of Input Queries Q

ue
ry

K-

m
er

s

…

GCTCA

CTCAT

TCATG

Presence/Absence
Identification

Abundance
Estimation

V. cholerae

E. coli

SARS-CoV-2

(e.g., > 100 TBs in emerging databases)

65

Outline

Conclusion

Background

Motivation and Goal

MegIS

Evaluation

66

Motivation
• Case study of the performance of metagenomic analysis tools

• With various state-of-the-art SSD configurations

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Database Size (Terabyte)

I/O data movement causes significant performance overhead

0

0.2

0.4

0.6

0.8

1

0.7 1.4

No I/O Performance-Optimized Cost-Optimized

3.
2x

4.
1x

27
.6
x

39
.2
x

67

Motivation
• Case study on the throughput of metagenomic analysis tools

• With Various state-of-the-art SSD configurations

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Database Size (Terabyte)

0

0.2

0.4

0.6

0.8

1

0.7 1.4

I/O data movement causes significant performance overhead

Cost-Optimized Performance-Optimized No I/O

I/O becomes an even larger overhead (by 2.7x)

in systems where other bottlenecks are alleviated

68

I/O Overhead is Hard to Avoid
I/O overhead due to accessing large, low-reuse data is hard to avoid

Sampling techniques to shrink database sizes

Keeping all data required by metagenomic analysis
completely and always resident in main memory

Reduce accuracy to levels unacceptable for many use cases

Energy inefficient, costly, unscalable, and unsustainable

• Database sizes increase rapidly (doubling every few months)

• Different analyses need different databases

[Wood+, Genome Biology’19], [Ounit+, BMC Genomics’15], [Kim+, Genome Research’16], …

69

Our Goal

Improve metagenomic analysis performance
by reducing large data movement overhead

from the storage system
in a cost-effective manner and with high accuracy

70

Challenges of In-Storage Processing
No metagenomic analysis tools can run in-storage due to SSD limits

- Long latency of NAND flash chips

- Limited DRAM capacity inside the SSD

- Limited DRAM bandwidth inside the SSD

SSD DRAM

⋯

SSD
ControllerCoresFTL

⋯

SS
D

CntrlCntrl

Channel#NChannel#1

71

Outline

Conclusion

Background

Motivation and Goal

MegIS

Evaluation

72

MegIS: Metagenomics In-Storage
• First in-storage system for end-to-end metagenomic analysis

• Idea: Cooperative in-storage processing for metagenomic analysis

- Hardware/software co-design between the storage system and host system

H
os

t S
ys

te
m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
eg

IS
-E

na
bl

ed
 S

SD

CntrlCntrl

Channel#NChannel#1

73

MegIS’s Steps

A large database
containing information

on many species

Metagenomic sample
with species that

are not known in advance

Preparation
of Input Queries Q

ue
ry

K-

m
er

s

…

GCTCA

CTCAT

TCATG

Presence/Absence
Identification

V. cholerae

E. coli

SARS-CoV-2

Abundance
Estimation

Step 1

Step 2

Step 3

74

MegIS Hardware-Software Co-Design
H

os
t S

ys
te

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
eg

IS
-E

na
bl

ed
 S

SD

CntrlCntrl

Channel#NChannel#1

75

MegIS Hardware-Software Co-Design
H

os
t S

ys
te

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
eg

IS
-E

na
bl

ed
 S

SD

CntrlCntrl

Channel#NChannel#1

Step 1

Task partitioning and mapping
• Each step executes

in its most suitable system

Step 2 Step 3

76

MegIS Hardware-Software Co-Design
H

os
t S

ys
te

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
eg

IS
-E

na
bl

ed
 S

SD

CntrlCntrl

Channel#NChannel#1

Data/computation flow coordination
• Reduce communication overhead
• Reduce #writes to flash chips

Step 1 Step 2 Step 3

Task partitioning and mapping
• Each step executes

in its most suitable system

77

MegIS Hardware-Software Co-Design
H

os
t S

ys
te

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
eg

IS
-E

na
bl

ed
 S

SD

CntrlCntrl

Channel#NChannel#1

Storage-aware algorithms
• Enable efficient

access patterns to the SSD

Step 1 Step 2 Step 3

Data/computation flow coordination
• Reduce communication overhead
• Reduce #writes to flash chips

Task partitioning and mapping
• Each step executes

in its most suitable system

78

MegIS Hardware-Software Co-Design
H

os
t S

ys
te

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
eg

IS
-E

na
bl

ed
 S

SD

ACCACC
CntrlCntrl

Channel#NChannel#1

Lightweight in-storage accelerators
• Minimize SRAM/DRAM buffer spaces

needed inside the SSD

Step 1 Step 2 Step 3

Storage-aware algorithms
• Enable efficient

access patterns to the SSD

Data/computation flow coordination
• Reduce communication overhead
• Reduce #writes to flash chips

Task partitioning and mapping
• Each step executes

in its most suitable system

79

MegIS Hardware-Software Co-Design
H

os
t S

ys
te

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
eg

IS
-E

na
bl

ed
 S

SD

MegIS
FTL

MegIS
Metadata

CntrlCntrl

Channel#NChannel#1

Data mapping scheme and Flash Translation Layer (FTL)
• Specialize to the characteristics of metagenomic analysis

• Leverage the SSD’s full internal bandwidth

Step 1 Step 2 Step 3

Storage-aware algorithms
• Enable efficient

access patterns to the SSD

Lightweight in-storage accelerators
• Minimize SRAM/DRAM buffer spaces

needed inside the SSD

Data/computation flow coordination
• Reduce communication overhead
• Reduce #writes to flash chips

Task partitioning and mapping
• Each step executes

in its most suitable system

ACCACC

92

Outline

Conclusion

Background

Motivation and Goal

MegIS

Evaluation

100

System Cost-Efficiency
G

M
ea

n
Sp

ee
du

p

0

5

10

15

20

Perf-Opt ($) Acc-Opt ($) Perf-Opt($$$) Acc-Opt ($$$) MegIS ($)

• Cost-optimized system ($): With SSD-C and 64-GB DRAM

• Performance-optimized system ($$$): With SSD-P and 1-TB DRAM

MegIS outperforms the baselines

even when running on a much less costly system

($) ($) ($$$) ($$$) ($)

7.
2x

2.
4x

16
.2
x

19
.9
x

MegIS
High-Performance, Energy-Efficient, and Low-Cost

Metagenomic Analysis with In-Storage Processing

https://arxiv.org/abs/2406.19113

https://arxiv.org/abs/2406.19113

103

Outline

•Brief Intro to (Meta)Genomics

•Storage-Centric Designs for (Meta)Genomics

-GenStore

-MegIS

•Conclusion

104

Specializing the Storage System

for Genomics & Metagenomics

Can Provide Large Benefits

105

Specializing the Storage System

for Genomics & Metagenomics

Can Provide Large Benefits
Storage-centric designs

improve system cost-efficiency

and makes accurate (meta)genomics

more accessible for wider adoption

106

(Co-)Optimizing

Algorithm-Architecture-Device

is Critical

107

Computer Architecture (Expanded View)

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

108

More About My Research

Near-Data Processing
(Other Works)

ALP
IEEE TETC’22

SIMDRAM
ASPLOS’21

CODIC
ISCA’21

Venice
ISCA’23

CAL
MICRO’18

CROW
ISCA’19

Optimizing Memory
and Storage Systems

FIGARO
MICRO’20

FLIN
ISCA’18

Algorithms
MLA

ISMB’24
RawHash
ISMB’23

BLEND
Bioinformatics’23

TargetCall
APBC’23

Algorithm-Architecture
Co-Design

Scrooge
Bioinformatics’23

SeGraM
ISCA’22

SMASH
MICRO’19

Device-Architecture
Co-Design

Understanding and Modeling
Ultra-Dense 3D Memory Systems

PACT SRC’24

https://bit.ly/nikamgh
My Website:

Works Described
in This Talk

GenStore
ASPLOS’22

MegIS
ISCA’24

https://bit.ly/nikamgh

Nika Mansouri Ghiasi

n.mansorighiasi@gmail.com

Storage-Centric Computing
for Genomics and Metagenomics

mailto:n.mansorighiasi@gmail.com

110

Backup Slides

111

End-to-End Workflow of Genome Sequence Analysis

• There are three key initial steps in a standard genome sequencing and analysis workflow

- Collection, preparation, and sequencing of a DNA sample in the laboratory

- Basecalling

- Read mapping

• Genomic read sets can be obtained by

- Sequencing a DNA sample and storing the generated read set into the SSD of a sequencing machine

- Downloading read sets from publicly available repositories and storing them into an SSD

• We focus on optimizing the performance of read mapping because sequencing and basecalling are
performed only once per read set, whereas read mapping can be performed many times

- Analyzing the differences between a reads from an individual and many reference genomes of other individuals

- Repeating the read mapping step many times to improve the outcome of read mapping

• Improving read mapping performance is critical in almost all genomic analyses that use sequencing

- 45% of the execution time when discovering sequence variants in cancer genomics studies

- 60% of the execution time when profiling the species composition of a multi-species (i.e., metagenomic) read

112

Motivation

SSD-L SSD-M SSD-H DRAM

0

25

50

75

100

Base SW-filtered Ideal-ISF Accelerator Ideal-ISF+ACC

0

2

4

N
/A

24
.8

N
/A

3.
54 2.
01

1.
64

1.
44

0.
7210

.1

Ex
ec
ut
io
n	
ti
m
e	
[s
ec
]

ACCSW-filter

113

State-of-the-art software
read mapper, Minimap2

Motivation

0

20

40

60

80

100

Base SW-filter Ideal-ISF

SSD-L SSD-H DRAM

Ex
ec

ut
io

n
ti

m
e

[s
ec

]

Base integrated with a software filter
that prunes 80% of exactly-matching reads

Base integrated with an
ideal in-storage filter

N
/A

114

Motivation

0

20

40

60

80

100

Base SW-filter Ideal-ISF

SSD-L SSD-H DRAM

Ex
ec

ut
io

n
ti

m
e

[s
ec

]
Low-end SSD with SATA3

interface (0.5 GB/s)

High-end SSD with PCIe Gen4
interface (7 GB/s)

Data preloaded in DRAM,
with no I/O overhead

N
/A

115

Benefits of Ideal In-Storage Filter

0

20

40

60

80

100

Base SW-filter Ideal-ISF

SSD-L SSD-H DRAM

Ex
ec

ut
io

n
ti

m
e

[s
ec

]

The ideal in-storage filter significantly improves performance by

1) Reducing computation overhead

2) Reducing data movement overhead

N
/A

116

Overheads of Software Mappers

0

20

40

60

80

100

Base SW-filter Ideal-ISF

SSD-L SSD-H DRAM

Ex
ec

ut
io

n
ti

m
e

[s
ec

]

I/O has a significant impact on application performance

which can be alleviated at the cost of
expensive storage devices and interfaces

N
/A

117

Overheads of Software Mappers

0

20

40

60

80

100

Base SW-filter Ideal-ISF

SSD-L SSD-H DRAM

Ex
ec

ut
io

n
ti

m
e

[s
ec

]

SW-filter provides limited benefits compared to Base

N
/A

The filtering process outside the SSD must compete
with the read mapping process for the resources in the system

118

Overheads of Hardware Mappers

0

1

2

Accelerator Ideal-ISF

SSD-L SSD-H DRAM
Ex

ec
ut

io
n

ti
m

e
[s

ec
]

24
.8

10
.123%

The ideal in-storage filter significantly improves performance

Even the high-end SSD does not fully alleviate the storage bottleneck

N
/A

119

Ideal-OSF

• Execution time of an ideal in-storage filter:

• Execution time of an ideal outside-storage filter:
• 60% slower than Ideal-ISF in our analysis

120

Comparison to PIM
• Even though read mapping applications could also benefit from other near-data,

in-storage processing can fundamentally address the data movement problem
by filtering large, low-reuse data where the data initially resides.

• Even if an ideal accelerator achieved a zero execution time, there would still exist
the need to bring the data from storage to the accelerator.
- 2.15x slower than the execution time that Ideal-ISF+ACC provides in our

motivational analysis

In-storage filter can be integrated with any read mapping accelerator,

including PIM accelerators, to alleviate their data movement overhead.

121

Long Read Use Cases

122

FTL

GenStore-Enabled	SSD

GenStore	SSD	Controller

CoreCoreCore

SSD-LV
ACC

DRAM

L2P
Mappings

Flash
Ctrl.#1

Flash
Ctrl.#N

⋯ ⋯

CH-LV
ACC#1

CH-LV
ACC#N

GenStore
Metadata		

①	Start	analysis ⑤	Unfiltered	data

NAND
Die#4

NAND
Die#1 ⋯

NAND
Die#4

NAND
Die#1 ⋯

③ Full-bandwidth	read

②
	Preparation

Flush
Load

GenStore
FTL

④	Filtering

Host	System

❷ ❸

❶

123

FTL: Metadata
•GenStore metadata includes the mapping information of

the data structures necessary for read mapping
acceleration

• In accelerator mode, GenStore also keeps in internal
DRAM other metadata structures of the regular FTL
- Examples include the page status table and block read counts

which need to be updated during the filtering process

•We carefully design GenStore to only sequentially access
the underlying NAND flash chips while operating as an
accelerator
- Requires only a small amount of metadata to access the stored

data

124

FTL: Data Placement
•GenStore needs to properly place its data structures to

enable the full utilization of the internal SSD bandwidth

•When each data structure is initially written to the SSD,
GenStore sequentially and evenly distributes it across
NAND flash chips

•GenStore can specify the physical location of a 30-GB
data structure by maintaining only the list of 1,250 (30
GB/24 MB) physical block addresses

• It significantly reduces the size of the necessary mapping
information from 300 MB (with conventional 4-KiB page
mapping) to only 5 KB (1,250 4 bytes)

125

FTL: SSD Management Tasks
• In accelerator mode, GenStore only reads data structures to

perform filtering, and does not write any new data
- GenStore does not require any write-related SSD-management

tasks such as garbage collection and wear-leveling

• The other tasks necessary for ensuring data reliability can be done
before or after the filtering process
- GenStore significantly limits the amount of data whose retention

age would exceed the manufacturer-specified threshold since
GenStore’s filtering process takes a short time.
- GenStore-FTL can easily avoid read disturbance errors for data

with high read counts since GenStore sequentially reads NAND
flash blocks only once during filtering

126

Data Sizes
• Conventional k-mer index in Minimap2 + reference genome: 7 GB

(k = 15)

• Read-sized k-mer index before optimization: 126 GB (k= 150)

• Read-sized k-mer index after optimization: 32 GB (k = 150)

127

SSD Specs
• SSD-L: SATA3 interface (0.5 GB/s sequential read)
- 1.2 GB/s per channel bandwidth
- 8 channels

• SSD-L: PCIe Gen3 M.2 interface (3.5 GB/s sequential
read)
- 1.2 GB/s per channel bandwidth
- 16 channels

• SSD-L: PCIe Gen4 interface (7 GB/s sequential read)
- 1.2 GB/s per channel bandwidth
- 16 channels

128

Evaluation Methodology
•Performance modeling
- Ramulator for DRAM timing
- MQSim for SSD timing
- We model the end-to-end throughput of GenStore based on the

throughput of each GenStore pipeline stage
• Accessing NAND flash chips
• Accessing internal DRAM
• Accelerator computation
• Transferring unfiltered data to the host

•Real system results
- AMD EPYC 7742CPU
- 1TB DDR4 DRAM
- AMD μProf

129

GenStore-NM

GenStore-Enabled	SSD

Host	System

Flash	Array

Input	
Read	Set

SSD	ControllerDRAM

KmerIndex

Seed	Finder

Location	Buffer

①	Reads
Chaining-Based	Filter

(Filters	low-score	reads)
❸

M	≤	#	of	Seeds	<	N

Seed	Count-Based	Filter
(Filters	if	#	of	Seeds	<	M)

❷

#	of	Seeds	≥	N High	chaining	score

❶

④	Seeds

③	Query

K-merWindow

Hash	Acc.
K-mers②

130

Chaining Processing Element

131

GenStore-EM

0
50
100
150
200

Ba
se

SI
M
D

GS
-E
xt GS

Ba
se

SI
M
D

GS
-E
xt GS

Ba
se

SI
M
D

GS
-E
xt GS

SSD-L SSD-M SSD-H

Other Alignment

0

5

10

Ba
se

GS
-E
xt GS

Ba
se

GS
-E
xt GS

Ba
se

GS
-E
xt GS

SSD-L SSD-M SSD-H

Ex
ec
.	t
im
e	
[s
ec
] 44 108 15

GS-Ext provides significant performance improvements

over both Base and SIMD in SSD-M and SSD-H.

GS-Ext provides limited benefits over SIMD in SSD-L

due to low external I/O bandwidth.

132

GenStore-NM

0.1

1

10

100
Ba
se GS

Ba
se GS

Ba
se GS

SSD-L SSD-M SSD-H

Ba
se

GS
-E
xt GS

Ba
se

GS
-E
xt GS

Ba
se

GS
-E
xt GS

SSD-L SSD-M SSD-H

GS-Ext performs significantly slower than Base (2.28x - 1.91x)

on all systems.

133

Effect of Inputs on GenStore-EM
N
or
m
al
iz
ed
	

ex
ec
.	t
im
e

Read	set	size:

Exact	match:
0

0.2
0.4
0.6
0.8
1

75% 85% 75% 85% 75% 85%

1x 10x 20x

75% 85% 75% 85% 75% 85%

1x 10x 20x

Base GS

134

Effect of Inputs on GenStore-NM

0.001

0.01

0.1

1

0.3% 37% 0.3% 37% 0.3% 37%

1x 10x 20x

0.3% 37% 0.3% 37% 0.3% 37%

1x 10x 20x

Base GS

N
or
m
al
iz
ed
	

ex
ec
.	t
im
e

Read	set	size:

Align.	rate:

0.
69

0.
67

0.
66

MegIS Backup Slides

136

Motivational Analysis
Database access patterns

(a)Random Query

(b)Streaming Query

137

Overview of MegIS’s Steps

138

More Details on Step 1

139

K-mer Sketch Data Structures

140

K-mer Sketch Streaming Hardware Design

SSD	Controller
Intersection

Curr.	Register

MegIS-
Enabled	
SSDCh

an
ne
l#
1

Ch
an
ne
l#
2

Internal
DRAM

5-mer 5-mer	ID
AAAAA 1
AAAAC 6
AATCC 2
… …

4-mer	ID
-
3
…

AGTTT
⋯

Idx.	
Gen

AAAAC

Next	Register
AATCC

Move	to	
Next	4-mer

❶	Intersect	5-mers ❷	Intersect	4-mers

6

2

Curr.	Register
AAAA

Next	Register
AATC

-

3
AATC

Intersect Intersect

❸	Send	Tax	IDs

141

Index Generation in Step 3

142

MegIS FTL

143

Multi-Sample Analysis

144

SSD Configurations

145

Impact of Different Optimizations

146

Impact of Different Optimizations

147

Speedup with Different Database Sizes

148

Speedup with Different #SSDs

149

Speedup with Different Main Memory Capacities

150

Speedup with Varying SSD Internal Bandwidth

151

Speedup of Abundance Estimation

152

Multi-Sample Use Case

153

Area and Power
•Based on synthesis of MegIS accelerators using the

Synopsys Design Compiler @ 65nm technology node

Only 1.7% of the area of three 28-nm ARM Cortex R4 cores

in a SATA SSD controller

Logic Unit # of instances Area [mm2] Power [mW]

Intersect (120-bit) 1 per channel 0.001361 0.284

k-mer Registers (2 x 120-bit) 1 per channel 0.002821 0.645

Index Generator (64-bit) 1 per channel 0.000272 0.025

Control Unit 1 per SSD 0.000188 0.026

Total for an 8-channel SSD - 0.04 7.658

154

Step 1 Overview

A large database
containing information

on many species

Metagenomic sample
with species that

are not known in advance Presence/Absence
Identification

V. cholerae

E. coli

SARS-CoV-2

Abundance
Estimation

Preparation
of Input Queries Q

ue
ry

K-

m
er

s

…

GCTCA

CTCAT

TCATG

Step 1

Step 2

Step 3

155

Step 1 Overview
MegIS employs sorted data structures
to avoid expensive random accesses to the SSD

- Extract k-mers from the sample
- Sort the k-mers (database is sorted offline)

Preparation
of Input Queries Q

ue
ry

K-

m
er

s

…

GCTCA

CTCAT

TCATG

MegIS executes Step 1 in the host system

- Benefits from larger DRAM and more powerful computation

- Incurs fewer writes to NAND flash chips (than processing this step in the SSD)

- Enables overlapping Step 1 with Step 2

To execute Step 1 efficiently in the host system, MegIS needs to:

- Avoid significant overhead due to data transfer time between the steps

- Minimize performance and lifetime overheads even when host DRAM cannot
hold all query k-mers

156

Step 1 Design
Divide k-mers into independent partitions by their alphabetical range

Can overlap operations on different partitions

Host DRAMHost CPU

Read
Input Queries

ACGTTACGATT…

ACGTT

⋯

Q
ue

ry
K-

m
er

s

CGTTA
GTTAC

MegIS-Enabled SSD

Partition

A

ACGTC
ACTTT
ATGAT
⋯

⋯

C

CATTA
CTATG
CCGCA
⋯

G

GTTAC
GGTCC
GACAG
⋯

⋯

A

ACGTC
ACTTT
ATGAT
⋯

CATTA
CTATG
CCGCA
⋯

Overlap Step 1’s sorting

with Data transfer

and Step 2’s In-storage operations

157

Step 2 Overview

A large database
containing information

on many species

Metagenomic sample
with species that

are not known in advance

Abundance
Estimation

Preparation
of Input Queries Q

ue
ry

K-

m
er

s

…

GCTCA

CTCAT

TCATG

Step 1

Presence/Absence
Identification

V. cholerae

E. coli

SARS-CoV-2

Step 2

Step 3

158

Step 2 Overview
- Identify the common k-mers

between the query k-mers
and the database k-mers

- Retrieve the species IDs
of the common k-mers

MegIS executes Step 2 in the SSD

- Accesses large data with low reuse

- Involves lightweight computation

To execute Step 2 efficiently in the SSD, MegIS needs to:

- Leverage internal bandwidth efficiently

- Not require expensive hardware inside the SSD
(e.g., large DRAM bandwidth/capacity and costly logic units)

Presence/Absence
Identification

V. cholerae

E. coli

SARS-CoV-2

159

Step 2 Design: Identifying the Common K-mers
• Challenge: Limited internal DRAM bandwidth

SSD DRAMSSD Controller

MegIS-Enabled
SSDCh

an
ne

l#
1

Ch
an

ne
l#
NAAAAA

TAACC

CAAAA
AGTTT

TTGGT

CCGTG⋯

⋯

⋯ ⋯

Database	K-mers

Query K-mers
from the Host

CGTCA⋯

Common
K-mers

⋯AGTTTDatabase K-mers
from Flash Chips

160

Step 2 Design: Identifying the Common K-mers
• Challenge: Limited internal DRAM bandwidth

SSD DRAMSSD Controller

MegIS-Enabled
SSDCh

an
ne

l#
1

Ch
an

ne
l#
NAAAAA

TAACC

CAAAA
AGTTT

TTGGT

CCGTG⋯

⋯

⋯ ⋯

Database	K-mers

Query K-mers
from the Host

CGTCA⋯

IntersectIntersect

Buffer Buffer

Compute directly on the flash data streams

Reduce buffer size based on application features

K-mer Register
K-mer Register

K-mer Register
K-mer Register

Write to DRAM

Common
K-mers

[Zou+, MICRO’22]

161

Space-Inefficient

Step 2 Design: Retrieving the Species ID
• MegIS retrieves the species IDs of the common k-mers by looking

up a sketch database

K-mer ID
AAAAA 1,5
AAAAC 6
AATCC 2,	9
… …

Space-Efficient

A A A/8 A A/1

C/6

T/5 C/3 C/2

Slow inside the SSD
due to long

NAND flash latency

162

Space-Inefficient

Step 2 Design: Retrieving the Species ID
• MegIS retrieves the species IDs of the common k-mers by looking

up a sketch database

K-mer ID
AAAAA 1,5
AAAAC 6
AATCC 2,	9
… …

Space-Efficient

A A A/8 A A/1

C/6

T/5 C/3 C/2

7.5x Smaller 2.1× Larger
K-mer Sketch Streaming

K-mer Sketch Streaming is much more suitable for in-storage processing
due to its streaming accesses

163

Space-Inefficient

Step 2 Design: Retrieving the Species ID
• MegIS retrieves the species IDs of the common k-mers by looking

up a sketch database

K-mer ID
AAAAA 1,5
AAAAC 6
AATCC 2,	9
… …

Space-Efficient

A A A/8 A A/1

C/6

T/5 C/3 C/2

7.5x Smaller 2.1× Larger
K-mer Sketch Streaming

K-mer Sketch Streaming is much more suitable for in-storage processing
due to its streaming accesses

Design details are in the paper

164

Step 3

A large database
containing information

on many species

Metagenomic sample
with species that

are not known in advance

Preparation
of Input Queries Q

ue
ry

K-

m
er

s

…

GCTCA

CTCAT

TCATG

Step 1

Presence/Absence
Identification

V. cholerae

E. coli

SARS-CoV-2

Step 2

Abundance
Estimation

Step 3

165

Step 3

MegIS performs additional analysis on
species identified in the sample to

estimate their abundance

MegIS can flexibly integrate with different approaches
1. Lightweight statistical approaches: Directly uses the output of Step 2

2. More accurate and costly read mapping: MegIS facilitates integration by
preparing mapping indexes in the SSD

Abundance
Estimation

Step 3 and MegIS FTL are in the paper

