
Systems Software and Libraries
for Sparse Computational Kernels

in PIM Architectures

Christina Giannoula

Tutorial on Memory-Centric Computing Systems
MICRO 2024

2

Sparse Data is Everywhere

Road Networks

Austin

San Marcos

Round Rock

Bastrop

Georgetown

3

Sparse Data is Everywhere
Sparse Tables:

Recommendation Data

4

Sparse Data Processing Applications

Neural Networks Bioinformatics

Databases Medical Imaging

Economic Modeling

Graph Analytics

How can we accelerate the sparse kernels?

5

Sparse Computational Kernels
§ E.g., Sparse Matrix Vector/Matrix Multiplication
§ Characteristics:

§ Random memory accesses
§ Not sequential/strided
§ Input-driven

§ Low arithmetic intensity
§ Highly memory-bound kernels in CPUs/GPUs

Arithmetic Intensity

Pe
rf

or
m

an
ce Peak Compute Performance

Pe
ak

 M
em

or
y B

an
dw

idt
h

SpMV

Roofline Model

6

Processing-In-Memory Systems
Processing-In-Memory (PIM) Systems:
• High levels of parallelism
• Low memory access latency
• Large aggregate memory bandwidth

PIM Unit 0

Main
Memory

PIM Core 0

PIM Core 1

PIM Core 2

PIM Unit 1

Main
Memory

PIM Core 0

PIM Core 1

PIM Core 2

PIM constitutes a promising paradigm
for accelerating sparse kernels

7

The Challenge
Real Processing-In-Memory (PIM) Systems:
• Different architectures
• Software stacks are still in early stage
• Specialized low-level programming interfaces
Programmers Need to:
• Carefully distribute data across thousands of memory arrays
• Have high expertise of the PIM hardware

Kwon+, [ISSCC 2021]
Lee+, [ISSCC 2022]

https://www.upmem.com

Instruction-level API Instruction-level API

C-like API

Programming a real PIM architecture
for a high-level application is a hard task

8

Our Goal

Bridge the programming gap
between software engineers/researchers

and real-world PIM architectures

High-Level
User-Friendly

API

UPMEM PIM

HBM PIM
Sparse Application

Outline

9

SparseP (Sigmetrics’22)

A Library of Efficient Sparse
Matrix Vector Multiplication
Kernels for Real PIM Systems

Sparse
Linear
Algebra

1

PyGim (Sigmetrics’25)

An Efficient Graph Neural
Network Framework for Real
PIM Systems

Graph
Neural
Networks

2

10

Sparse Matrix Vector Multiplication
Sparse Matrix Vector Multiplication (SpMV):
§ Widely-used kernel in graph processing,

machine learning, scientific computing …

§ A highly memory-bound kernel

Operational Intensity

Pe
rf

or
m

an
ce

Peak Compute Performance

Pe
ak

 M
em

or
y B

an
dw

idt
h

SpMV

Roofline Model

11

Real Near-Bank PIM Systems
Real Near-Bank Processing-In-Memory (PIM) Systems:
• High levels of parallelism
• Low memory access latency
• Large aggregate memory bandwidth

Host
CPU

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

Bus

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled MemoryMain Memory
DRAM
Bank

DRAM
Bank

DRAM
Bank

DRAM
BankBus

12

SparseP: SpMV Library for Real PIMs
Our Contributions:
1. Design efficient SpMV kernels for current and future PIM

systems
§ 25 SpMV kernels

§ 4 compressed matrix formats (CSR, COO, BCSR, BCOO)
§ 6 data types
§ 4 data partitioning techniques
§ Various load balancing schemes among PIM cores/threads
§ 3 synchronization approaches

2. Provide a comprehensive analysis of SpMV on the first
commercially-available real PIM system
§ 26 sparse matrices
§ Comparisons to state-of-the-art CPU and GPU systems
§ Recommendations for software, system and hardware

designers

13

SpMV Execution on a PIM System

bus bus

PIM-Enabled Memory

DRAM
Bank

PIM
Core

DRAM
Bank

PIM
Core

DRAM
Bank

PIM
Core

Host CPU

+

Load the
input vector

Execute the
kernel

Retrieve the
partial results

Merge the
partial results

1 2 3 4

Main Memory

DRAM
Bank

DRAM
Bank

14

Data Partitioning Techniques

1D Partitioning

=

1x
ou

tp
ut

 v
ec

to
r

*

4x
in

pu
t

ve
ct

or Core 1
Core 2
Core 3
Core 4

perform the complete
SpMV computation
only on PIM cores

2D Partitioning

2x
ou

tp
ut

 v
ec

to
r

=

2x
in

pu
t

ve
ct

or

*
Core 1 Core 2

Core 3 Core 4

trade-off
computation vs

data transfer costs

SparseP supports two types of data partitioning techniques:

16

1D Partitioning Technique
Load-Balancing Approaches:
• #Rows or #NNZs
• CSR (row-granularity), COO

CSR

0 1 3 5 7 7 8 8 9
0 2 5 3 5 3 6 4 4
2 1 8 3 6 9 3 4 7

rowptr
colind
values

0 1 1 2 2 3 3 5 7
0 2 5 3 5 3 6 4 4
2 1 8 3 6 9 3 4 7

rowind
colind
values

COO

row-order nnz-order

Core 1

Core 2

Core 3

Core 1
Core 2

Core 3

row-
granularity

nnz-
granularity

18

2D Partitioning Technique
Equally-Sized Tiles

output
vector

+
Core 1 Core 3

Core 2 Core 4

4x 4x
2x

input vector

4x 4x

output
vector

Core 1

Core 3

Core 2
Core 4

2x

input vector

+

output
vector

+

Core 1
Core 3

Core 2
Core 4

3x 5x

2x

input vector

Equally-Wide Tiles Variable-Sized Tiles

High NNZ imbalance
across PIM cores

High NNZ balance
across PIM cores of the
same vertical partition

High NNZ balance
across all PIM cores

19

Parallelization across Threads
Multithreaded PIM Cores:

DRAM
Bank

Multithreaded
PIM Core

Core 1

Core 2

Core 4
Core 3

Core 1 Core 2

Core 4Core 3

1D Partitioning 2D Partitioning

Thread 2
Thread 1

Thread 2

Thread 1

• Various load-balance schemes across threads
• Various synchronization approaches among threads

Balance NNZs
Balance NNZs

20

SparseP Software Package
25 SpMV kernels for PIM Systems à

https://github.com/CMU-SAFARI/SparseP

Load-balance
across PIM cores/threads:
* row-granularity (CSR)
^ block-row-granularity (BCSR)

Synchronization
among threads of a PIM core:
▵ lb-cg, lb-fg, lf (COO, BCOO)

Data Types:
• 8-bit integer
• 16-bit integer
• 32-bit integer
• 64-bit integer
• 32-bit float
• 64-bit float

Partitioning Matrix Format Load-Balancing

9x
1D

Kernels

CSR rows, nnzs *

COO▵ rows, nnzs *, nnzs

BCSR blocks ^, nnzs ^

BCOO▵ blocks, nnzs

4x
2D

Equally-Sized Tiles

CSR --

COO▵ --

BCSR --

BCOO▵ --

6x
2D

Equally-Wide Tiles

CSR nnzs *

COO▵ nnzs

BCSR blocks ^, nnzs ^

BCOO▵ blocks, nnzs

6x
2D

Variable-Sized Tiles

CSR nnzs *

COO▵ nnzs

BCSR blocks ^, nnzs ^

BCOO▵ blocks, nnz

https://github.com/CMU-SAFARI/SparseP

21

UPMEM-based PIM System
• 20 UPMEM PIM DIMMs with 2560 PIM cores in total
• Each multithreaded PIM core supports 24 threads

Host CPU
(2-socket,
Intel Xeon) PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory160 GB PIM-Enabled Memory

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

Bus

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory128 GB Main Memory
DRAM
Bank

DRAM
Bank

DRAM
Bank

DRAM
BankBus

DISPATCH
FETCH
ALU

MERGE14
-s

ta
ge

Pi

pe
lin

e 24 KB
Instr. Mem.

64 KB
Data Mem.

D
M

A
En

gi
ne 64 MB

DRAM
Bank

64
bits24x

threads

22

Sparse Matrix Data Set
26 sparse matrices*:
• Diverse sparsity patterns
• Variability on irregular patterns
• Variability on block patterns

Regular Matrix Scale-Free Matrix

* Suite Sparse Matrix Collection: https://sparse.tamu.edu/

https://sparse.tamu.edu/

23

Kernel Execution on PIM Cores

bus bus

PIM-Enabled Memory

DRAM
Bank

PIM
Core

DRAM
Bank

PIM
Core

DRAM
Bank

PIM
Core

Host CPU

+

Load the
input vector

Execute the
kernel

Retrieve the
partial results

Merge the
partial results

1 2 3 4

Main Memory

DRAM
Bank

DRAM
Bank

2048 PIM Cores, 32-bit integer

24

Comparison of Compressed Formats

0
1
2
3
4
5
6
7
8

regular matrices scale-free
matrices

Sp
ee

du
p

CSR COO

BCSR BCOO

6.86x
13.66x

Core 1

In scale-free matrices, COO + BCOO provide higher non-zero
element balance across PIM cores than CSR + BCSR, respectively.

Core 2

Core 1

Core 2

COOCSR
(row-granularity)

1D
Scale-free: COO, BCOO à

10.26x CSR, BCSR

2048 PIM Cores, 32-bit integer

27

Comparison of Compressed Formats

0
2
4
6
8

regular matrices scale-free
matrices

Sp
ee

du
p

1D
CSR COO

BCSR BCOO

0

0.5

1

1.5

regular matrices scale-free
matrices

Sp
ee

du
p

2D Equally-Sized
CSR COO
BCSR BCOO

0
10
20
30
40
50

regular matrices scale-free
matrices

Sp
ee

du
p

2D Equally-Wide
CSR COO
BCSR BCOO

0
10
20
30
40
50

regular matrices scale-free
matrices

Sp
ee

du
p

2D Variable-Sized
CSR COO

The compressed matrix format used to store the input matrix
determines the data partitioning across DRAM banks of PIM-enabled
memory. As a result, it affects the load-balance across PIM cores (and
threads of a PIM core) with corresponding performance implications.

Key Takeaway 1

Design compressed data structures that can be effectively
partitioned across DRAM banks, with the goal of providing high
computation balance across PIM cores (and threads of a PIM core).

Recommendation 1

28

End-to-End Performance

bus bus

PIM-Enabled Memory

DRAM
Bank

PIM
Core

DRAM
Bank

PIM
Core

DRAM
Bank

PIM
Core

Host CPU

+

Load the
input vector

Execute the
kernel

Retrieve the
partial results

Merge the
partial results

1 2 3 4

Main Memory

DRAM
Bank

DRAM
Bank

COO format, 32-bit integer

0

0.5

1

1.5

2

2.5

25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48

Sl
ow

do
w

n

load kernel retrieve merge

1D 2D
Equally-Sized

2D
Equally-Wide

2D
Variable-Sized

#PIM Cores #PIM Cores #PIM Cores #PIM Cores

29

Scalability

1D: #bytes to load the input vector grows linearly to #PIM cores

The scalability is limited
by the load time

COO format, 32-bit integer

0

0.5

1

1.5

2

2.5

25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48

Sl
ow

do
w

n

load kernel retrieve merge

1D 2D
Equally-Sized

2D
Equally-Wide

2D
Variable-Sized

#PIM Cores #PIM Cores #PIM Cores #PIM Cores

30

Scalability

The 1D-partitioned kernels are severely bottlenecked by the high
data transfer costs to broadcast the whole input vector into DRAM
banks of all PIM cores, through the narrow off-chip memory bus.

Key Takeaway 2

Optimize the broadcast collective operation in data transfers to
PIM-enabled memory to efficiently copy the input data into DRAM
banks in the PIM system.

Recommendation 2

COO format, 32-bit integer

0

0.5

1

1.5

2

2.5

25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48

Sl
ow

do
w

n

load kernel retrieve merge

1D 2D
Equally-Sized

2D
Equally-Wide

2D
Variable-Sized

#PIM Cores #PIM Cores #PIM Cores #PIM Cores

31

Scalability

2D Equally-Sized: kernel time is limited by only
a few PIM cores assigned to the 2D tiles with the largest #NNZs

The scalability is limited
by the kernel time

COO format, 32-bit integer

0

0.5

1

1.5

2

2.5

25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48

Sl
ow

do
w

n

load kernel retrieve merge

1D 2D
Equally-Sized

2D
Equally-Wide

2D
Variable-Sized

#PIM Cores #PIM Cores #PIM Cores #PIM Cores

32

Scalability

2D Equally-Wide + 2D Variable-Sized:
high amount of zero padding to gather the output vector à

parallel transfers supported at rank granularity = 64 PIM cores

> 88% of data is zeros

The scalability is limited
by the retrieve time

COO format, 32-bit integer

0

0.5

1

1.5

2

2.5

25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48

Sl
ow

do
w

n

load kernel retrieve merge

1D 2D
Equally-Sized

2D
Equally-Wide

2D
Variable-Sized

#PIM Cores #PIM Cores #PIM Cores #PIM Cores

33

Scalability

88.6% 88.0%

Optimize the gather collective operation at DRAM bank granularity
in data transfers from PIM-enabled memory to efficiently retrieve
the output results to the host CPU.

Recommendation 3

The 2D equally-wide and variable-sized kernels need fine-grained
parallel data transfers at DRAM bank granularity (zero padding) to
be supported by the PIM system to achieve high performance.

Key Takeaway 3

Up to 2528 PIM Cores, 32-bit float

34

1D vs 2D

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

hg
c

m
c2

pf
m rt
n

rj
t

as
h

de
l

td
k

m
em am

z

ft
h

w
bg ld

r

ps
b

bn
s

w
bs in

pk
s

cm
b

sx
w sk
t

as
k

G
M

 (
1)

G
M

 (
2)

Sp
ee

du
p

1D 2D (equally-sized)

1.45x

1.31x

regular scale-free

>1100 Idle Cores >2200 Idle Cores

Best-performing SpMV execution:
trades off computation with lower data transfer costs

2528 PIM Cores, 32-bit float

35

1D vs 2D

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

hg
c

m
c2

pf
m rt
n

rj
t

as
h

de
l

td
k

m
em am

z

ft
h

w
bg ld

r

ps
b

bn
s

w
bs in

pk
s

cm
b

sx
w sk
t

as
k

G
M

 (
1)

G
M

 (
2)

Sp
ee

du
p

1D 2D (equally-sized)

1.45x

1.31x

regular scale-free

1329 Cores 253 Cores

Expensive data transfers to/from PIM-enabled memory performed
via the narrow memory bus impose significant performance
overhead to end-to-end SpMV execution. Thus, it is hard to fully
exploit all available PIM cores of the system.

Key Takeaway 4

Design high-speed communication channels and optimized libraries
in data transfers to/from PIM-enabled memory, provide hardware
support to effectively overlap computation with data transfers in
the PIM system, and/or integrate PIM-enabled memory as the main
memory of the system.

Recommendation 4

36

SpMV Execution on Various Systems

Real PIM
System

bus bus

PIM-Enabled Memory

DRAM
Bank

PIM
Core

DRAM
Bank

PIM
Core

DRAM
Bank

PIM
Core Host CPU

+

Load the
input vector

Execute
the kernel

Retrieve the
partial results

Merge the
partial results

1 2 3 4

Main Memory
DRAM
Bank

DRAM
Bank

bus

Main Memory
DRAM
Bank

DRAM
Bank

Host
CPU

Execute the kernel1
CPU System

GPU System

SMX2 SMX2

Load the
input vector

Execute the kernel

Retrieve
the final vector

1
2

3

GPU Global
Memory

DRAM
Bank

DRAM
Bank

Host
CPU

GPU Cores
bus

Main Memory
DRAM
Bank

DRAM
Bank

37

CPU/GPU Comparisons

System Peak Performance Bandwidth TDP

CPU Intel Xeon
Silver 4110

660 GFlops 23.1 GB/s 2x85 W

GPU NVIDIA
Tesla V100

14.13 TFlops 897 GB/s 300 W

PIM UPMEM
1st Gen.

4.66 GFlops 1.77 TB/s 379 W

Processor-
Centric

Memory-
Centric

38

CPU/GPU Comparisons

System Peak Performance Bandwidth TDP

CPU Intel Xeon
Silver 4110

660 GFlops 23.1 GB/s 2x85 W

GPU NVIDIA
Tesla V100

14.13 TFlops 897 GB/s 300 W

PIM UPMEM
1st Gen.

4.66 GFlops 1.77 TB/s 379 W

Processor-
Centric

Memory-
Centric

• Kernel-Only (COO, 32-bit float):
• CPU = 0.51% of Peak Perf.
• GPU = 0.21% of Peak Perf.
• PIM (1D) = 50.7% of Peak Perf.

39

CPU/GPU Comparisons

System Peak Performance Bandwidth TDP

CPU Intel Xeon
Silver 4110

660 GFlops 23.1 GB/s 2x85 W

GPU NVIDIA
Tesla V100

14.13 TFlops 897 GB/s 300 W

PIM UPMEM
1st Gen.

4.66 GFlops 1.77 TB/s 379 W

Processor-
Centric

Memory-
Centric

• Kernel-Only (COO, 32-bit float):
• CPU = 0.51% of Peak Perf.
• GPU = 0.21% of Peak Perf.
• PIM (1D) = 50.7% of Peak Perf.

• End-to-End (COO, 32-bit float):
• CPU = 4.08 GFlop/s
• GPU = 1.92 GFlop/s
• PIM (1D) = 0.11 GFlop/s

40

CPU/GPU Comparisons
• Kernel-Only (COO, 32-bit float):
• CPU = 0.51% of Peak Perf.
• GPU = 0.21% of Peak Perf.
• PIM (1D) = 50.7% of Peak Perf.

• End-to-End (COO, 32-bit float):
• CPU = 4.08 GFlop/s
• GPU = 1.92 GFlop/s
• PIM (1D) = 0.11 GFlop/s

Many more results in the full paper:
https://arxiv.org/pdf/2201.05072.pdf

https://arxiv.org/pdf/2201.05072.pdf

Outline

41

SparseP (Sigmetrics’22)

A Library of Efficient Sparse
Matrix Vector Multiplication
Kernels for Real PIM Systems

Sparse
Linear
Algebra

1

PyGim (Sigmetrics’25)

An Efficient Graph Neural
Network Framework for Real
PIM Systems

Graph
Neural
Networks

2

Applications of Graph Neural Networks (GNNs)

42

Drug Discovery

Recommendation Systems

Fraud Detection

A GNN Layer

43

Input Graph

Aggregation

Input Feature Matrix

Small
Neural
Network

Combination

Output Feature Matrix

A GNN Layer

GNN Execution is Bandwidth-Bound

44

Input Graph

Aggregation

Input Feature Matrix

Small
Neural
Network

Combination

Output Feature Matrix

A GNN Layer

In an RTX 3090 GPU with ~900 GB/s
bandwidth, GNN aggregation:
• takes ~91% of the inference time
• achieves ~3% core utilization

GNN execution is significantly limited by
memory bandwidth in processor-centric systems

The PyGim Framework: Overview

45

PyGim

PyGim:
• An efficient GNN framework for real

PIM systems
• Bridges the gap between ML engineers

and real PIM hardware for GNNs
• Incorporates 4 key techniques:

1. Cooperative Acceleration (CoA)
2. Parallelism Fusion (PaF)
3. Lightweight Tuner
4. Python-like Programming Interface

PyGim Cooperative Acceleration (CoA)

46

Host CPU

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

Bus

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory
Standard Memory ModulesBus

GNN
Aggregation

Host
Cores

Shared
Cache

GNN
Combination

• Combination runs on Host cores
• Aggregation runs on PIM cores

PyGim Parallelism Fusion (PaF)

47

PIM-Enabled Memory

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

3 parallelization levels with different strategy at each level
1. Across PIM Clusters: Feature- + Edge-level Parallelism
2. Within a PIM Cluster: Vertex-/Edge-level Parallelism
3. Within a PIM Core: Vertex-/Edge-level Parallelism

PIM-Enabled Memory

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

Cluste
r 1

Cluster 2

Cluster 4Cluste
r 3 PIM Core

Threads

PyGim Parallelism Fusion (PaF)

48

• Provides various parallelization and load balancing
strategies across, within PIM clusters and within a PIM core

• Strives a balance between computation and data transfer
costs for various real-world graphs

Real-world graphs have different characteristics

PyGim Tuner

49

Tuner selects the best-performing parallelization strategy
based on:
• Real-world graph characteristics
• PIM hardware characteristics

PIM-Enabled Memory

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

Real-world Graph

Real PIM System

PyGim Tuner

PyGim PaF Strategy

PyGim Interface

50

A handy Python interface (currently integrated with PyTorch)

Performance Evaluation

51

0
0.5

1
1.5

2
2.5

3
3.5

4

GIN GCN SAGE GIN GCN SAGE GIN GCN SAGE

Sp
ee

du
p

INT32

PyTorch (CPU) SparseP1 SparseP2 GraNDe PyGim_CSR PyGim_COO

ogbn-proteins reddit amazonProducts

PyGim outperforms PyTorch CPU and prior PIM-based
schemes by 3.1x and 4.4x, respectively

Energy Efficiency Evaluation

52

0
2000
4000
6000
8000

10000
12000
14000

GIN GCN SAGE GIN GCN SAGE GIN GCN SAGE

En
er

gy
 C

on
su

m
pt

io
n

(J
)

INT32
PyTorch (CPU) SparseP1 SparseP2
GraNDe PyGim_CSR PyGim_COO

ogbn-proteins reddit amazonProducts

PyGim is 2.7x and 3.3x more energy efficient than
PyTorch CPU and prior PIM-based schemes

53

Conclusion
• Sparse computational kernels form the backbone of many important

applications (HPC, machine learning, graph analytics…)

• Sparse kernels are typically a highly memory-bound kernel in processor-
centric systems (e.g., CPU and GPU systems)

• Real near-bank PIM systems can tackle the data movement bottleneck
(high parallelism, large aggregate memory bandwidth)

• Real PIM systems typically provide specialized low-level programming
interfaces and need high expertise of PIM hardware
• Our Contributions:
• SparseP : first open-source SpMV library for real PIM systems
• PyGim : first open-source GNN framework for real PIM systems
• Recommendations for future PIM hardware and software

SparseP Code: https://github.com/CMU-SAFARI/SparseP
SparseP Paper: https://arxiv.org/pdf/2201.05072.pdf

PyGim Code: https://github.com/CMU-SAFARI/PyGim
PyGim Paper: https://arxiv.org/pdf/2402.16731.pdf

Our Work

https://github.com/CMU-SAFARI/SparseP
https://arxiv.org/pdf/2201.05072.pdf
https://github.com/CMU-SAFARI/
https://arxiv.org/pdf/2402.16731

Systems Software and Libraries
for Sparse Computational Kernels

in PIM Architectures

Christina Giannoula

Tutorial on Memory-Centric Computing Systems
MICRO 2024

