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Sparse Data is Everywhere
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Sparse Data Processing Applications

Graph Analytics Databases Medical Imaging

How can we accelerate the sparse kernels?

Neural Networks Bioinformatics = Economic Modeling



Sparse Computational Kernels
= E.g., Sparse Matrix Vector/Matrix Multiplication

= Characteristics:

= Random memory accesses
= Not sequential/strided
= |nput-driven

= Low arithmetic intensity

* Highly memory-bound kernels in CPUs/GPUs
Roofline Model

Peak Compute Performance

Performance

Arithmetic Intensity



Processing-In-Memory Systems

Processing-In-Memory (PIM) Systems:
* High levels of parallelism

* Low memory access latency

* Large aggregate memory bandwidth

PIM constitutes a promising paradigm

for accelerating sparse kernels
~ PIMCore O
<> | PIM Core 1 |
: PIM Core 2

| PIM Core O )
i PIM Core 1
i PIM Core 2




The Challenge

Real Processing-In-Memory (PIM) Systems:
* Different architectures

* Software stacks are still in early stage
* Specialized low-level programming interfaces

Programming a real PIM architecture
for a high-level application is a hard task

Instruction-level API Instruction-level API
ﬁ’

GDDR6-AIM

https://www.upmem.com
Kwon+, [ISSCC 2021]

Lee+, [ISSCC 2022]



Our Goal

Bridge the programming gap
between software engineers/researchers
and real-world PIM architectures

API

Sparse Application

8



Outline

Sparse
Linear
Algebra A |iprary of Efficient Sparse

@ Matrix Vector Multiplication
Kernels for Real PIM Systems
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Sparse Matrix Vector Multiplication

Sparse Matrix Vector Multiplication (SpMV):

= Widely-used kernel in graph processing,
machine learning, scientific computing ...

= A highly memory-bound kernel
Roofline Model

Peak Compute Performance

Performance

Operational Intensity 10



Real Near-Bank PIM Systems

Real Near-Bank Processing-In-Memory (PIM) Systems:
* High levels of parallelism

* Low memory access latency
* Large aggregate memory bandwidth
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SparseP: SpMV Library for Real PIMs

Our Contributions:

1. Design efficient SpMV kernels for current and future PIM
systems

= 25 SpMV kernels

= 4 compressed matrix formats (CSR, COO, BCSR, BCOO)

6 data types

4 data partitioning techniques

Various load balancing schemes among PIM cores/threads
3 synchronization approaches

2. Provide a comprehensive analysis of SpMV on the first
commercially-available real PIM system up
= 16 sparse matrices i
= Comparisons to state-of-the-art CPU and GPU systems

= Recommendations for software, system and hardware
designers

12



SpMV Execution on a PIM System
O 2 © 4

Load the Execute the Retrieve the Merge the
input vector kernel partial results partial results

4 N
(1 A Host CPU
‘Main Memory @ PIM-Enabled Memory @
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Data Partitioning Techniques

SparseP supports two types of data partitioning techniques:

1D Partitioning 2D Partitioning

Core 1 Core 2

Core 3 Core 4

4x input vector

1x output vector
2x input vector
*

2x output vector

L

perform the complete trade-off
SpMV computation computation vs
only on PIM cores data transfer costs



1D Partitioning Technique

Load-Balancing Approaches:

* #Rows or #NNZs
* CSR (row-granularity), COO

CSR COO

row- nnz-

granularity Core 1 granularity Core 1
[_'aaifi_r—] o ( ) Core 2
u Core 3 u Core 3

row-order nnz-order

| rowptr NEIEERAVARIEE] | | rowind [IENEIPAEIEIEWA |
colind AR colind AR
values PARBEN I - IO 2 1 8 B69 3 4 7
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2D Partitioning Technique

Equally-Sized Tiles ' Equally-Wide Tiles 1 Variable-Sized Tiles

input vector input vector

| I(>\l<

input vector

J LT

% Ax

TILD|x

4x 4

Core1 Core3

I 4 I
Core 2 Core 4
output! output! output
1 vector! 1 vector, 1 vector
High NNZ imbalance | High NNZ balance High NNZ balance
across PIM cores across PIM cores of the across all PIM cores

same vertical partition 18



Parallelization across Threads

Multithreaded PIM Cores:

1D Partitioning 2D Partitioning

Core 1
[Multithreaded} Core 1 Core 2
Core 2 PIM Core
—Core 3 DRAM Core 3 Core 4
Core 4 ’
\

/]

I \
,Balance NNZs
K \

Balance NNZs
hread 2 Thread 2

 Various load-balance schemes across threads
 Various synchronization approaches among threads
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SparseP Software Package

25 SpMV kernels for PIM Systems -
https://github.com/CMU-SAFARI/SparseP

Partitioning Matrix Format | Load-Balancing
CSR rows, nnzs *
?; CO0 - rows, nnzs *, nnzs
Kernels BCSR blocks *, nnzs
BCOO & blocks, nnzs
CSR
4x CO0
2D BCSR
Equally-Sized Tiles
BCOO a
CSR nnzs *
bx CO0 - nnzs
o BCSR blocks * A
Equally-Wide Tiles OCKs “, nnzs
BCOO & blocks, nnzs
CSR nnzs *
bx CO0 - nnzs
P BCSR blocks * A
Variable-Sized Tiles OCKs , nNnzs
BCOO blocks, nnz

Load-balance

across PIM cores/threads:

* row-granularity (CSR)

* block-row-granularity (BCSR)

Synchronization
among threads of a PIM core:
a |b-cg, lb-fg, If (COO, BCOO)

~

(Data Types:

8-bit integer
* 16-bit integer
» 32-bit integer
* 64-bit integer
» 32-bit float

e 64-bit float
\ J
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https://github.com/CMU-SAFARI/SparseP

UPMEM-based PIM System

e 20 UPMEM PIM DIMMs with 2560 PIM cores in total
* Each multithreaded PIM core supports 24 threads

[

~

Host CPU
(2-socket,
Intel Xeon)

24x
threads

Bus DRAM DRAM DRAM DRAM
Bank Bank Bank Bank
J
J
J

128 GB Main Memory

-

PIM Core

PIM Core

160 GB PIM-Enabled Memor

PIM Core

PIM Core
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Sparse Matrix Data Set

26 sparse matrices®:

* Diverse sparsity patterns
* Variability on irregular patterns
* Variability on block patterns

Regular Matrix

.

._H
"

H

Scale-Free Matrix

* Suite Sparse Matrix Collection: https://sparse.tamu.edu/
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Kernel Execution on PIM Cores

(- @ )

3 4

Load the Execute the| Retrieve the Merge the

input vector . kernel ) partial results partial results

‘Main Memory\

" PIM-Enabled Memory\

@ " Host CPU

23



Comparison of Compressed Formats
2048 PIM Cores, 32-bit integer

8 1D
v 6.86x Scale-free: COO, BCOO >
, OCSR mCcoo 4 13.e0x 10.26x CSR, BCSR
55 @BCSR mBCOO CSR COO
0 4 (row-granularity)
&3 Core 1
) Core 1
F-E_:I
1 Core 2 Core 2
= . mm ore 1
regular matrices scale-free
matrices

In scale-free matrices, COO + BCOO provide higher non-zero

element balance across PIM cores than CSR + BCSR, respectively.




Comparison of Compressed Formats
2048 PIM Cores, 32-bit integer

Key Takeaway 1

The compressed matrix format used to store the input matrix
determines the data partitioning across DRAM banks of PIM-enabled
memory. As a result, it affects the load-balance across PIM cores (and
Kthreads of a PIM core) with corresponding performance implications.

Design compressed data structures that can be effectively
partitioned across DRAM banks, with the goal of providing high
computation balance across PIM cores (and threads of a PIM core).

\
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End-to-End Performance
" @ (2] © o

Load the Execute the Retrieve the Merge the

Q’nput vector kernel partial results partial resultj

4 N
(1 2 Host CPU
‘Main Memory @ PIM-Enabled Memory @
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Scala b'l l]ty [The scalability is limited]

o by the load time
COO format, 32-bit integer

1D 2D 2D 2D
Equally-Sized Equally-Wide Variable-Sized

2.5 Olodd jmkernel Oretrieve W@merge !
5 _ ! ! ;
c ! : :
3 1.5 ! l |
3 ’ ' '
3 | : : i
Y1 0.5 : : :
0

o X D
> %06\',@"‘ AP %06”@“ ‘AP %06”(@"‘ AP %06”,@"‘
#PIM Cores #PIM Cores #PIM Cores #PIM Cores

1D: #bytes to load the input vector grows linearly to #PIM cores




Scalability

COO format, 32-bit integer

Key Takeaway 2

The 1D-partitioned kernels are severely bottlenecked by the high
data transfer costs to broadcast the whole input vector into DRAM
| banks of all PIM cores, through the narrow off-chip memory bus.

J

Recommendation 2

Optimize the broadcast collective operation in data transfers to
PIM-enabled memory to efficiently copy the input data into DRAM
banks in the PIM system.

\ S
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Scala b'l l]ty [The scalability is limited]

o by the kernel time
COO format, 32-bit integer

1D 2D 2D 2D

| Equally-Sized | Equally-Wide Variable-Sized
2.5 l:lload |lkerne ||:|retr1eve @ merge |
2 M | |
S | | |
3 1.5 =] | | |
O 1 1 I

3 1 ' —
© | | |
£0.5 ﬂ | | |
0 i i i

o X D
> %06\',@"‘ AP %06”%0"‘ ‘AP %06”(@"‘ AP %06”,@"‘
#PIM Cores #PIM Cores #PIM Cores #PIM Cores

2D Equally-Sized: kernel time is limited by only
a few PIM cores assigned to the 2D tiles with the largest #NNZs




Scala b'l l]ty [The scalability is limited)

o by the retrieve time
COO format, 32-bit integer

J

1D 2D 2D 2D
Equally-Sized | Equally-Wide |Variable-Sized
2.5 Olodd mkernel [Oretrieve| @mmerge
_ 2 = : B
% s = i i > 88% of data! is zeros
O 1 1 I
3 1 ' —
9 : : :
2 0.5 ﬂ | H | |
0 i i i

o X D
> %06\',@"‘ AP %06”@“ ‘AP %06”(@"‘ AP %06”,@"‘
#PIM Cores #PIM Cores #PIM Cores #PIM Cores

2D Equally-Wide + 2D Variable-Sized:
high amount of zero padding to gather the output vector >

parallel transfers supported at rank granularity = 64 PIM cores




Scalability

COO format, 32-bit integer

Key Takeaway 3

The 2D equally-wide and variable-sized kernels need fine-grained
parallel data transfers at DRAM bank granularity (zero padding) to

X be supported by the PIM system to achieve high performance.
J

Recommendation 3

Optimize the gather collective operation at DRAM bank granularity
in data transfers from PIM-enabled memory to efficiently retrieve
the output results to the host CPU.

\
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1D vs 2D

Up to 2528 PIM Cores, 32-bit float

1.8 O1D ®m2D (equally-sized) A
Y >1100 Idle Cores | 2200 Idle Cores |1.31x
g1.2 1.45x
D 1
8_0'8
&0.6
0.4
0.2
O X N on x
Y N cC 2 c 3 e “ o vulwvw © v A - — ~
PREETREIFEEFRAEETLEE RS S
O

regular scale-free

Best-performing SpMV execution:
trades off computation with lower data transfer costs




1D vs 2D

Expensive data transfers to/from PIM-enabled memory performed
via the narrow memory bus impose significant performance
overhead to end-to-end SpMV execution. Thus, it is hard to fully
9 exploit all available PIM cores of the system.

Recommendation 4

Design high-speed communication channels and optimized libraries
in data transfers to/from PIM-enabled memory, provide hardware
support to effectively overlap computation with data transfers in
the PIM system, and/or integrate PIM-enabled memory as the main
memory of the system. )

.
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SpMV Execution on Various Systems

GPU System
CPU System @) Execute the kernel

O Execu(te Fhe kernel\ @ Load the [[GPUCores | @ Retrieve
Main Memory input vector bus tIZIIZI the final vector

(s " GPU Global
papenen] | Chemoy’ [ | oo
BP"k B“‘“lk DRﬁM DRAM g CPU
o | % BIVell 5% | 9% B

Host |/
CPU buls

Real PIM Load the Execute Retrieve the Merge the
System input vector the kernel p\artial results partial results

‘Main Memory\

DRAM | DRAM
B BN Ryedk

(N J

il [Host CPU

bus a+a
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CPU/GPU Comparisons

Peak Performance | Bandwidth -

Intel Xeon
CPU 660 GFlops 23.1 GB/s 2x85 W
Silver 4110 P Processor-
NVIDIA > Centric
GPU 14.13 TFlops 897 GB/s 300 W
Tesla V100 Y,
PIM UPMEM 4.66 GFlops ‘ 1.77 TB/s | 379 w Memory-
1st Gen. Centric
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CPU/GPU Comparisons

" Kernel-Only (COO, 32-bit float):
 CPU = 0.51% of Peak Perf.
* GPU = 0.21% of Peak Perf.
* PIM (1D) =50.7% of Peak Perf.

Peak Performance | Bandwidth -

CPU Intel Xeon 660 GFlops ~ 23.1 GB/s
Silver 4110
GPU NVIDIA 14.13 TFlops 897 GB/s
Tesla V100
PIM UPMEM 4.66 GFlops ~ 1.77 TB/s
1st Gen.

2x85 W Processor-

> Centric
300 W

J

379 w Memory-
Centric
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CPU/GPU Comparisons

* Kernel-Only (COQ, 32-bit float):

* CPU = 0.51% of Peak Perf.
* GPU = 0.21% of Peak Perf.
* PIM (1D) =50.7% of Peak Perf.

* CPU = 4.08 GFlop/s
* GPU = 1.92 GFlop/s
* PIM (1D) = 0.11 GFlop/s

'» End-to-End (COO, 32-bit float):|

J

Peak Performance | Bandwidth -

CPU Intel Xeon 660 GFlops
Silver 4110
GPU NVIDIA 14.13 TFlops
Tesla V100
PIM UPMEM 4.66 GFlops
1st Gen.

23.1 GB/s

897 GB/s

1.77 TB/s

2x85 W Processor-

> Centric
300 W

J

379 w Memory-
Centric
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CPU/GPU Comparisons

* Kernel-Only (COO, 32-bit float):
 CPU = 0.51% of Peak Perf.
* GPU = 0.21% of Peak Perf.
* PIM (1D) =50.7% of Peak Perf.

* End-to-End (COO, 32-bit float):

* CPU = 4.08 GFlop/s
* GPU = 1.92 GFlop/s
* PIM (1D) = 0.11 GFlop/s

Many more results in the full paper:

https://arxiv.org/pdf/2201.05072.pdf

40
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Applications of Graph Neural Networks (GNNs)




A GNN Layer

Aggregation

- 53 -

Small
Neural
Network

Input Graph

Input Feature Matrix Output Feature Matrix

A GNN Layer 43



GNN Execution is Bandwidth-Bound

Aggregation

a )
In an RTX 3090 GPU with ~900 GB/s
bandwidth, GNN aggregation:

* takes ~91% of the inference time

* achieves ~3% core utilization

\ J

Input Graph

GNN execution is significantly limited by

memory bandwidth in processor-centric systems

A GNN Layer 44



The PyGim Framework: Overview

PyGim:
« An efficient GNN framework for real
5T PIM systems
0] C « Bridges the gap between ML engineers
O-OE PyGim 50_0 and real PIM hardware for GNNs
313 e * Incorporates
£ L l 1. Cooperative Acceleration (CoA)

2. Parallelism Fusion (PaF)
3. Lightweight Tuner
4. Python-like Programming Interface

45



PyGim Cooperative Acceleration (CoA)

« Combination runs on Host cores

« Aggregation runs on PIM cores

NN
ination

g Host CPU )

-

\_

Shared
Cache

~

/

G
Comb

S

Standard Memory Modules l

N

Bus

PIM Core § PIM Core PIM Core
DRAM DRAM DRAM
L Bank Bank Bank )

GNN }

| Aggregation

J

J
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PyGim Parallelism Fusion (PaF)

3 parallelization levels with different strategy at each level
1. Across PIM Clusters: Feature- + Edge-level Parallelism

2. Within a PIM Cluster: Vertex-/Edge-level Parallelism

3. Within a PIM Core: Vertex-/Edge-level Parallelism

Threads

o B

47



PyGim Parallelism Fusion (PaF)

* Provides various parallelization and load balancing
strategies across, within PIM clusters and within a PIM core

* Strives a balance between computation and data transfer
costs for various real-world graphs

-., HE EEEEN

._H
"

i mm

Real-world graphs have different characteristics
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PyGim Tuner

Tuner selects the best-performing parallelization strategy
based on:
Real-world graph characteristics
* PIM hardware characteristics

4 )

PIM Core

PIM-Enabled Memor
PIM CorefPIM Core

PIM Core

Real PIM System

Real world Graph a PyGim PaF Strategy

PyGim Tuner
49




PyGim Interface
A handy Python interface (currently integrated with PyTorch)

O 00 N s W N =

[T ST T N T S R N et e e e e
B W N = O 0 0N R W N = O

import torch,| pygim as gyn
class GCNConv(torch.nn.Module):

def __init__(self, hidden_size):
self.linear = torch.nn.Linear(hidden_size, hidden_size)

def forward(self, graph_pim, in_dense):
# Execute Aggregation in PIM

dense parts = col split(in_dense)
out_dense = gyn.pim_run_aggr(graph_pim, dense_parts)

# texecute Combination 1n HoSt
out = self.linear(out_dense)
return out

gyn.pim_init_devices(num_pim_devices, groups_per_device) # Allocate PIM Devices

# L raph in PIM devices

graph_parts, config = gyn.tune(data.graph, hidden_size, device_info)

graph_pim = gyn.load_graph_pim(graph_parts)
# Create GNN model
model = torch.nn.Sequential([Linear(in_channels, hidden_size),
GCNConv (hidden_size),
GCNConv (hidden_size),
GCNConv(hidden_size),
Linear(hidden_size, out_channels) 1)
model . forward(graph_pim, data.features)




Performance Evaluation

INT32
OPyTorch (CPU) & SparseP1 mSparseP2 m GraNDe B PyGim_CSR mPyGim_COO

W

Speedup

4
5
3

2.5
2

.5
1

PyGim outperforms PyTorch CPU and prior PIM-based
schemes by 3.1x and 4.4x, respectively

51



Energy Efficiency Evaluation

INT32
OPyTorch (CPU) O SparseP1 @ SparseP2
= B GraNDe B PyGim_CSR  ®mPyGim_COO
— 14000 | |
S 12000 : :
S 10000 ! !
S 8000 | |
S 6000 | I I I |
C 4000 [ [l [ oofB oW A0

PyGim is 2.7x and 3.3x more energy efficient than
PyTorch CPU and prior PIM-based schemes
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Conclusion

Sparse computational kernels form the backbone of many important
applications (HPC, machine learning, graph analytics... )

Sparse kernels are typically a highly memory-bound kernel in processor-
centric systems (e.g., CPU and GPU systems)

Real near-bank PIM systems can tackle the data movement bottleneck
(high parallelism, large aggregate memory bandwidth)

Real PIM systems typically provide specialized low-level programming
interfaces and need high expertise of PIM hardware
Our Contributions:

* SparseP . first open-source SpMV library for real PIM systems

* PyGim : first open-source GNN framework for real PIM systems
* Recommendations for future PIM hardware and software

.

SparseP Code: https://github.com/CMU-SAFARI/SparseP

SparseP Paper: https://arxiv.org/pdf/2201.05072.pdf

PyGim Code: https://github.com/CMU-SAFARI/PyGim
PyGim Paper: https://arxiv.org/pdf/2402.16731.pdf

J
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