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Sparse Data is Everywhere
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Sparse Data is Everywhere
Sparse Tables:

Recommendation Data
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Sparse Data Processing Applications

Neural Networks Bioinformatics

Databases Medical Imaging

Economic Modeling

Graph Analytics

How can we accelerate the sparse kernels?
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Sparse Computational Kernels
§ E.g., Sparse Matrix Vector/Matrix Multiplication
§ Characteristics:

§ Random memory accesses
§ Not sequential/strided
§ Input-driven

§ Low arithmetic intensity
§ Highly memory-bound kernels in CPUs/GPUs
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Processing-In-Memory Systems
Processing-In-Memory (PIM) Systems:
• High levels of parallelism
• Low memory access latency
• Large aggregate memory bandwidth

PIM Unit 0

Main 
Memory

PIM Core 0

PIM Core 1

PIM Core 2

PIM Unit 1

Main 
Memory

PIM Core 0

PIM Core 1

PIM Core 2

PIM constitutes a promising paradigm 
for accelerating sparse kernels
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The Challenge
Real Processing-In-Memory (PIM) Systems:
• Different architectures
• Software stacks are still in early stage
• Specialized low-level programming interfaces
Programmers Need to: 
• Carefully distribute data across thousands of memory arrays
• Have high expertise of the PIM hardware

Kwon+, [ISSCC 2021]
Lee+, [ISSCC 2022]

https://www.upmem.com

Instruction-level API Instruction-level API

C-like API

Programming a real PIM architecture 
for a high-level application is a hard task
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Our Goal

Bridge the programming gap 
between software engineers/researchers 

and real-world PIM architectures

High-Level 
User-Friendly 

API

UPMEM PIM

HBM PIM
Sparse Application
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SparseP (Sigmetrics’22)

A Library of Efficient Sparse 
Matrix Vector Multiplication 
Kernels for Real PIM Systems

Sparse 
Linear 
Algebra

1

PyGim (Sigmetrics’25)

An Efficient Graph Neural 
Network Framework for Real 
PIM Systems

Graph
Neural
Networks

2
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Sparse Matrix Vector Multiplication
Sparse Matrix Vector Multiplication (SpMV):
§ Widely-used kernel in graph processing,   

machine learning, scientific computing … 

§ A highly memory-bound kernel

Operational Intensity
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Real Near-Bank PIM Systems
Real Near-Bank Processing-In-Memory (PIM) Systems:
• High levels of parallelism
• Low memory access latency
• Large aggregate memory bandwidth

Host 
CPU

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory

DRAM 
Bank

PIM Core
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PIM Core
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PIM Core
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PIM Core
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DRAM 
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DRAM 
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DRAM 
Bank

DRAM 
BankBus
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SparseP: SpMV Library for Real PIMs
Our Contributions:
1. Design efficient SpMV kernels for current and future PIM 

systems
§ 25 SpMV kernels

§ 4 compressed matrix formats (CSR, COO, BCSR, BCOO)
§ 6 data types
§ 4 data partitioning techniques
§ Various load balancing schemes among PIM cores/threads
§ 3 synchronization approaches

2. Provide a comprehensive analysis of SpMV on the first 
commercially-available real PIM system 
§ 26 sparse matrices
§ Comparisons to state-of-the-art CPU and GPU systems
§ Recommendations for software, system and hardware 

designers
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SpMV Execution on a PIM System

bus bus
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Data Partitioning Techniques

1D Partitioning

=

1x
ou

tp
ut

 v
ec

to
r

*

4x
in

pu
t

ve
ct

or Core 1
Core 2
Core 3
Core 4

perform the complete
SpMV computation
only on PIM cores

2D Partitioning

2x
ou

tp
ut

 v
ec

to
r

=

2x
in

pu
t

ve
ct

or

*
Core 1 Core 2

Core 3 Core 4

trade-off 
computation vs 

data transfer costs

SparseP supports two types of data partitioning techniques:
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1D Partitioning Technique
Load-Balancing Approaches:
• #Rows or #NNZs
• CSR (row-granularity), COO

CSR

0 1 3 5 7 7 8 8 9
0 2 5 3 5 3 6 4 4
2 1 8 3 6 9 3 4 7

rowptr
colind
values

0 1 1 2 2 3 3 5 7
0 2 5 3 5 3 6 4 4
2 1 8 3 6 9 3 4 7

rowind
colind
values

COO

row-order nnz-order

Core 1

Core 2

Core 3

Core 1
Core 2

Core 3

row-
granularity

nnz-
granularity
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2D Partitioning Technique
Equally-Sized Tiles

output 
vector

+
Core 1 Core 3

Core 2 Core 4

4x 4x
2x

input vector

4x 4x

output 
vector

Core 1

Core 3

Core 2
Core 4

2x

input vector

+

output 
vector

+

Core 1
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Core 2
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3x 5x

2x

input vector

Equally-Wide Tiles Variable-Sized Tiles

High NNZ imbalance
across PIM cores

High NNZ balance
across PIM cores of the 
same vertical partition

High NNZ balance
across all PIM cores
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Parallelization across Threads
Multithreaded PIM Cores:

DRAM 
Bank

Multithreaded 
PIM Core

Core 1

Core 2

Core 4
Core 3

Core 1 Core 2

Core 4Core 3

1D Partitioning 2D Partitioning

Thread 2
Thread 1

Thread 2

Thread 1

• Various load-balance schemes across threads
• Various synchronization approaches among threads

Balance NNZs
Balance NNZs
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SparseP Software Package
25 SpMV kernels for PIM Systems à

https://github.com/CMU-SAFARI/SparseP

Load-balance 
across PIM cores/threads:
* row-granularity (CSR)
^ block-row-granularity (BCSR)

Synchronization 
among threads of a PIM core:
▵ lb-cg, lb-fg, lf (COO, BCOO)

Data Types:
• 8-bit integer
• 16-bit integer
• 32-bit integer
• 64-bit integer
• 32-bit float
• 64-bit float

Partitioning Matrix Format Load-Balancing

9x 
1D

Kernels

CSR rows, nnzs *

COO▵ rows, nnzs *, nnzs

BCSR blocks ^, nnzs ^

BCOO▵ blocks, nnzs

4x
2D 

Equally-Sized Tiles

CSR --

COO▵ --

BCSR --

BCOO▵ --

6x 
2D 

Equally-Wide Tiles

CSR nnzs *

COO▵ nnzs

BCSR blocks ^, nnzs ^

BCOO▵ blocks, nnzs

6x 
2D 

Variable-Sized Tiles

CSR nnzs *

COO▵ nnzs

BCSR blocks ^, nnzs ^

BCOO▵ blocks, nnz

https://github.com/CMU-SAFARI/SparseP
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UPMEM-based PIM System
• 20 UPMEM PIM DIMMs with 2560 PIM cores in total
• Each multithreaded PIM core supports 24 threads
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Sparse Matrix Data Set
26 sparse matrices*:
• Diverse sparsity patterns
• Variability on irregular patterns
• Variability on block patterns

Regular Matrix Scale-Free Matrix

* Suite Sparse Matrix Collection: https://sparse.tamu.edu/ 

https://sparse.tamu.edu/
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Kernel Execution on PIM Cores

bus bus
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Comparison of Compressed Formats

0
1
2
3
4
5
6
7
8

regular matrices scale-free
matrices

Sp
ee

du
p

CSR COO

BCSR BCOO

6.86x
13.66x

Core 1

In scale-free matrices, COO + BCOO provide higher non-zero 
element balance across PIM cores than CSR + BCSR, respectively.
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Comparison of Compressed Formats
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The compressed matrix format used to store the input matrix 
determines the data partitioning across DRAM banks of PIM-enabled 
memory. As a result, it affects the load-balance across PIM cores (and 
threads of a PIM core) with corresponding performance implications. 

Key Takeaway 1

Design compressed data structures that can be effectively
partitioned across DRAM banks, with the goal of providing high 
computation balance across PIM cores (and threads of a PIM core).

Recommendation 1
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End-to-End Performance
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COO format, 32-bit integer
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Scalability

1D: #bytes to load the input vector grows linearly to #PIM cores

The scalability is limited 
by the load time



COO format, 32-bit integer
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Scalability

The 1D-partitioned kernels are severely bottlenecked by the high 
data transfer costs to broadcast the whole input vector into DRAM 
banks of all PIM cores, through the narrow off-chip memory bus.

Key Takeaway 2

Optimize the broadcast collective operation in data transfers to 
PIM-enabled memory to efficiently copy the input data into DRAM 
banks in the PIM system.

Recommendation 2



COO format, 32-bit integer
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Scalability

2D Equally-Sized: kernel time is limited by only
a few PIM cores assigned to the 2D tiles with the largest #NNZs

The scalability is limited 
by the kernel time



COO format, 32-bit integer
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Scalability

2D Equally-Wide + 2D Variable-Sized: 
high amount of zero padding to gather the output vector à 

parallel transfers supported at rank granularity = 64 PIM cores

> 88% of data is zeros

The scalability is limited 
by the retrieve time



COO format, 32-bit integer
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Scalability

88.6% 88.0%

Optimize the gather collective operation at DRAM bank granularity
in data transfers from PIM-enabled memory to efficiently retrieve 
the output results to the host CPU.

Recommendation 3

The 2D equally-wide and variable-sized kernels need fine-grained 
parallel data transfers at DRAM bank granularity (zero padding) to 
be supported by the PIM system to achieve high performance.

Key Takeaway 3
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1D vs 2D
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1D vs 2D
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Expensive data transfers to/from PIM-enabled memory performed 
via the narrow memory bus impose significant performance 
overhead to end-to-end SpMV execution. Thus, it is hard to fully 
exploit all available PIM cores of the system.

Key Takeaway 4

Design high-speed communication channels and optimized libraries
in data transfers to/from PIM-enabled memory, provide hardware
support to effectively overlap computation with data transfers in 
the PIM system, and/or integrate PIM-enabled memory as the main 
memory of the system.

Recommendation 4
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SpMV Execution on Various Systems
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CPU/GPU Comparisons

System Peak Performance Bandwidth TDP

CPU Intel Xeon
Silver 4110

660 GFlops 23.1 GB/s 2x85 W  

GPU NVIDIA
Tesla V100

14.13 TFlops 897 GB/s 300 W

PIM UPMEM
1st Gen.

4.66 GFlops 1.77 TB/s 379 W

Processor-
Centric

Memory-
Centric
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CPU/GPU Comparisons

System Peak Performance Bandwidth TDP

CPU Intel Xeon
Silver 4110

660 GFlops 23.1 GB/s 2x85 W  

GPU NVIDIA
Tesla V100

14.13 TFlops 897 GB/s 300 W

PIM UPMEM
1st Gen.

4.66 GFlops 1.77 TB/s 379 W

Processor-
Centric

Memory-
Centric

• Kernel-Only (COO, 32-bit float):
• CPU = 0.51% of Peak Perf.      
• GPU = 0.21% of Peak Perf.     
• PIM (1D) = 50.7% of Peak Perf.
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CPU/GPU Comparisons

System Peak Performance Bandwidth TDP

CPU Intel Xeon
Silver 4110

660 GFlops 23.1 GB/s 2x85 W  

GPU NVIDIA
Tesla V100

14.13 TFlops 897 GB/s 300 W

PIM UPMEM
1st Gen.

4.66 GFlops 1.77 TB/s 379 W

Processor-
Centric

Memory-
Centric

• Kernel-Only (COO, 32-bit float):
• CPU = 0.51% of Peak Perf.      
• GPU = 0.21% of Peak Perf.     
• PIM (1D) = 50.7% of Peak Perf.

• End-to-End (COO, 32-bit float):
• CPU =  4.08 GFlop/s
• GPU =  1.92 GFlop/s       
• PIM (1D) =  0.11 GFlop/s
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CPU/GPU Comparisons
• Kernel-Only (COO, 32-bit float):
• CPU = 0.51% of Peak Perf.      
• GPU = 0.21% of Peak Perf.     
• PIM (1D) = 50.7% of Peak Perf.

• End-to-End (COO, 32-bit float):
• CPU =  4.08 GFlop/s
• GPU =  1.92 GFlop/s       
• PIM (1D) =  0.11 GFlop/s

Many more results in the full paper: 
https://arxiv.org/pdf/2201.05072.pdf

https://arxiv.org/pdf/2201.05072.pdf
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SparseP (Sigmetrics’22)

A Library of Efficient Sparse 
Matrix Vector Multiplication 
Kernels for Real PIM Systems

Sparse 
Linear 
Algebra

1

PyGim (Sigmetrics’25)

An Efficient Graph Neural 
Network Framework for Real 
PIM Systems

Graph
Neural
Networks

2



Applications of Graph Neural Networks (GNNs) 

42

Drug Discovery

Recommendation Systems

Fraud Detection



A GNN Layer
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Input Graph

Aggregation

Input Feature Matrix

Small 
Neural 
Network

Combination

Output Feature Matrix

A GNN Layer



GNN Execution is Bandwidth-Bound

44

Input Graph

Aggregation

Input Feature Matrix

Small 
Neural 
Network

Combination

Output Feature Matrix

A GNN Layer

In an RTX 3090 GPU with ~900 GB/s 
bandwidth, GNN aggregation: 
• takes ~91% of the inference time
• achieves ~3% core utilization 

GNN execution is significantly limited by 
memory bandwidth in processor-centric systems



The PyGim Framework: Overview
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PyGim

PyGim:
• An efficient GNN framework for real 

PIM systems
• Bridges the gap between ML engineers 

and real PIM hardware for GNNs
• Incorporates 4 key techniques:

1. Cooperative Acceleration (CoA)
2. Parallelism Fusion (PaF)
3. Lightweight Tuner
4. Python-like Programming Interface



PyGim Cooperative Acceleration (CoA)
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• Combination runs on Host cores
• Aggregation runs on PIM cores 



PyGim Parallelism Fusion (PaF)
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3 parallelization levels with different strategy at each level
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PyGim Parallelism Fusion (PaF)
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• Provides various parallelization and load balancing 
strategies across, within PIM clusters and within a PIM core

• Strives a balance between computation and data transfer 
costs for various real-world graphs

Real-world graphs have different characteristics



PyGim Tuner
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Tuner selects the best-performing parallelization strategy
based on:
• Real-world graph characteristics
• PIM hardware characteristics
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Real-world Graph
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PyGim Interface
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A handy Python interface (currently integrated with PyTorch)



Performance Evaluation
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PyGim outperforms PyTorch CPU and prior PIM-based 
schemes by 3.1x and 4.4x, respectively



Energy Efficiency Evaluation
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PyGim is 2.7x and 3.3x more energy efficient than 
PyTorch CPU and prior PIM-based schemes
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Conclusion
• Sparse computational kernels form the backbone of many important 

applications (HPC, machine learning, graph analytics… )

• Sparse kernels are typically a highly memory-bound kernel in processor-
centric systems (e.g., CPU and GPU systems)

• Real near-bank PIM systems can tackle the data movement bottleneck 
(high parallelism, large aggregate memory bandwidth)

• Real PIM systems typically provide specialized low-level programming 
interfaces and need high expertise of PIM hardware
• Our Contributions:
• SparseP : first open-source SpMV library for real PIM systems
• PyGim : first open-source GNN framework for real PIM systems
• Recommendations for future PIM hardware and software

SparseP Code: https://github.com/CMU-SAFARI/SparseP
SparseP Paper: https://arxiv.org/pdf/2201.05072.pdf

PyGim Code: https://github.com/CMU-SAFARI/PyGim
PyGim Paper: https://arxiv.org/pdf/2402.16731.pdf

Our Work

https://github.com/CMU-SAFARI/SparseP
https://arxiv.org/pdf/2201.05072.pdf
https://github.com/CMU-SAFARI/
https://arxiv.org/pdf/2402.16731
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