HPCA 2023 Tutorial
Real-world Processing-in-Memory Architectures

Processing-Near-Memory
Real PNM Architectures
Programming General-purpose PIM

Dr. Juan Gomez Luna
Professor Onur Mutlu

m Ziirich SA F A R ’

Sunday, February 26, 2023

Two PIM Approaches

5.2. Two Approaches: Processing Using Memory
(PUM) vs. Processing Near Memory (PNM)

Many recent works take advantage of the memory
technology innovations that we discuss in Section 5.1/
to enable and implement PIM. We find that these works
generally take one of two approaches, which are cat-
egorized in Table 1: (1) processing using memory or
(2) processing near memory. We briefly describe each
approach here. Sections 6 and 7 will provide example
approaches and more detail for both.

Table 1: Summary of enabling technologies for the two approaches to
PIM used by recent works. Adapted from [341] and extended.

Example Enabling Technologies

SRAM

DRAM
Processing Using Memory Phase-change memory (PCM)
Magnetic RAM (MRAM)
Resistive RAM (RRAM)/memristors
Logic layers in 3D-stacked memory
Silicon interposers
Logic in memory controllers
Logic in memory chips (e.g., near bank)
Logic in memory modules
Logic near caches
Logic near/in storage devices

Approach

Processing Near Memory

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and

Rachata Ausavarungnirun,
" H

A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From

Von Neumann, Springer, to be published in 2021.
[A " ’ .)
Systems" (1 hour 51 minutes)]

. .]

SAFARI

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM _springer-emerging-computing-bookchapter21.pdf

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/watch?v=H3sEaINPBOE
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf

PIM Becomes Real

* UPMEM, founded in January 2015, SENews
announces the first real-world PIM

* UPMEM’s PIM-enabled DIMMs start
getting commercialized in 2019

Startup plans to embed processors
in DRAM

* In early 2021) Samsung announces October 13,2016 // By Peter Clarke
FIMDRAM at ISSCC conference

* Samsung’s LP-DDR5 and DIMM-based
PIM announced a few months later

* In early 2022, SK Hynix announces AiM
o Fabless chip company Upmem SAS (Grenoble,
and AI I ba ba an n Ou nces H B_P N M at France), founded in January 2015, is developing a

microprocessor for use in data-intensive applications
in the datacenter that will sit embedded in DRAM to be

ISSCC Conference close to the data.

Placing hundreds or thousands of processing elements
in DRAM able to perform work for a controlling server

SA FAR’ https://www.eenewsautomotive.com/news/startup-plans-embed-processors-dram-0# 3

UPMEM PIM

UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

% 8GB/128xDPU PIM R-DIMM Module

C P U UPMEM UPMEM UPMEM UPMEN UPMEM LIPMEN UPMEM UPMEM
PIM PiNA PiM P PIM PIM PIM PI
(x86, ARM, RV...) chip aip chip ehip ehip e chip thip

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

UPMEM DIMMs

* E19: 8 chips/DIMM (1 rank). DPUs @ 267 MHz
* P21: 16 chips/DIMM (2 ranks). DPUs (@ 350 MHz

SAFAR, www.upmem.com

http://www.upmem.com/

,560-DPU Processing-in-Memory System

Main Memory

O NET CN S e oy o
2 | | chip || chip || chip || chip || chip || chip)| chip || chip
T o e e o o e e o)
\Chlp chip || chip || chip)| chip || chip || chip Chlpj /
Host
CPUO)
/ S

PIM-enabled Memory

Main Memory

2,

ffﬁﬁﬁﬁf_\f_\f_\f_\\

- | crie) chiv |\ chip |\ chie)| chip |\ chie) chip J(chip
(oram\(oram (Bram(oram(oram (Gram\(oram (Grarm
\cmp chip || chip)| chip)| chip)\ chip |\ chip L‘hm/

y

x2

Host
CPU 1 \\
)
| —

PIM-enabled Memory

Benchmarking a New Paradigm: An Experimental Analysis of
a Real Processing-in-Memory Architecture

JUAN GOMEZ-LUNA, ETH Ziirich, Switzerland

1ZZAT EL HAJJ, American University of Beirut, Lebanon

IVAN FERNANDEZ, ETH Ziirich, Switzerland and University of Malaga, Spain
CHRISTINA GIANNOULA, ETH Ziirich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Zirich, Switzerland

ONUR MUTLU, ETH Zirich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally
‘memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a
significant overhead in terms of both latency and energy. A major reason is that this communication happens
through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound
workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data
movement bottleneck requires a paradigm where the memory system assumes an active role in computing by
integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM archi motivated by the of new 3D-
stacked memory technologies that integrate memory with a logic layer where processing elements can be
casily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware
prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available
real-world PIM i The UPMEM PIM i combines traditional DRAM memory arrays with
general-purpose in-order cores, called DRAM Processing Units (DPUS), integrated in the same chip.

‘This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architec-
ture. We make two key ions. First, we conduct an experimental ization of the UPMEM-based
PIM system using microbenchmarks to assess various architecture limits such as compute throughput and
memory bandwidth, yielding new insights. Second, we present PrIM (Processing-In-Memory benchmarks),
a benchmark suite of 16 workloads from different application domains (e, dense/sparse linear algebra,
databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we
identify as memory-bound. We evaluate the and scaling istics of PrIM
on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-
of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM
systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM
system, programming recommendations for software designers, and suggestions and hints for hardware and
architecture designers of future PIM systems.

SAFARI https://arxiv.org/pdf/2105.03814.pdf 7

https://arxiv.org/pdf/2105.03814.pdf

Understanding a Modern PIM Architecture

Benchmarking a New Paradigm:
Experimental Analysis and
Characterization of a Real
Processing-in-Memory System

JUAN GOMEZ-LUNA', I1ZZAT EL HAJJ?, IVAN FERNANDEZ'-3, CHRISTINA GIANNOULA' 4,
GERALDO F. OLIVEIRA', AND ONUR MUTLU

'ETH Ziirich

% American University of Beirut
3Univc.arsity of Malaga

“National Technical University of Athens

Corresponding author: Juan Gémez-Luna (e-mail: juang @ethz.ch).

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

SAFARI

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

UPMEM Patent

a2 United States Patent a0y Patent No.: US 10,324,870 B2
Devaux et al. 45) Date of Patent: Jun. 18, 2019
(54) MEMORY CIRCUIT WITH INTEGRATED (56) References Cited

PROCESSOR
U.S. PATENT DOCUMENTS

(71) Applicant: UPMEM, Grenoble (FR)

5,666,485 A ™ 9/1997 Suresh GO6F 13/1605
(72) Inventors: Fabrice Devaux, La Conversion (CH); 6.463.001 Bl 102002 Williams AR
Jean-Frangois Roy, Grenoble (FR) 7,349,277 B2* 3/2008 Kinsleyccoooo...... G11C 11/406
365/193
(73) Assignee: UPMEM, Grenoble (FR) 8,438,358 B1* 5/2013 Kraipakc.ccon. GI11C 7/04
711/167
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 15/551,418 EP 0780768 Al 6/1997
JP HO3109661 A 5/1991
(22) PCT Filed: Feb. 12, 2016 WO 2010/141221 Al 12/2010
(57) ABSTRACT

A memory circuit having: a memory array including one or
more memory banks; a first processor; and a processor
control interface for receiving data processing commands
directed to the first processor from a central processor, the
processor control interface being adapted to indicate to the
central processor when the first processor has finished
accessing one or more of the memory banks of the memory
array, these memory banks becoming accessible to the
central processor.

SA FA R’ Fabrice Devaux, Jean-Frangois Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.

UPMEM PIM System Organization (I)

* FIC. 1 schematically illustrates a computing system comprising DRAM circuits
having integrated processors according to an example embodiment

100
Bt
I 3
B 1{)3 B
DDR MASTER INTERFACE

PN
‘] r 140
A
g

’ J D -
DRA&/IO DRA&\,/II N/ DRAM2 X 7 DRAM3
" |DDRS.L DDR S.1. " |DDRS.L " |DDR 8.1
<108 =118 =128 <138
13 P 13 | P
107 __ 106 917116 27 926 937 436
MA MA MA MA
} ; 3 3
e { ({
104 114 124 134
Fig 1

SAFARI

Fabrice Devaux, Jean-Frangois Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.

UPMEM PIM System Organization (lI)

* Ina UPMEM-based PIM system UPMEM DIMMs coexist
with regular DDR4 DIMMs

Host
CcPU

Main Memory

-

p

y i

y -

DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM
ﬁ Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip

DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM

Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip

xM

SAFARI

PENCA A CACA A AR ER
J
&)
N

PpIM || pIM || PIm || PIM || PIM || PIM || PIM || PIM
chip || chip || chip || chip || chip || chip || chip || chip /

PIM-enabled Memory

11

UPMEM PIM System Organization (liI)

* AUPMEM DIMM contains 8 or 16 chips
- Thus, 1 or 2 ranks of 8 chips each

* Inside each PIM chip there are:

- 8 64MB banks per chip: Main RAM (MRAM) banks

- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per
rank

Main Memory PIM Ch ip
= ye ~\
/ Control/Status Interface <—>[DDR4 Interface]
DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM /
() < chip || chip || chip || chip)| chip || chip || chip || chip / A ‘
/
Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip \
/
/:M (— r#\\\
Host)/ DISPATCH
FETCH1 _
CPU £)/ Fercy)lap 23KB o
£ T FETCH3 IRAM v
ﬁ Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip) 4% - (READOP3 IE DRAM
- w
chip || chip || chip || chip)| chip || chip || chip || chip
‘/4xN g AW 64-KB = (D)
~ = ALU3 <P WRAM <€+ QO
PIM-enabled Memory S [7] ALU4 —;/
~ 2 MERGEL _—37
(& ([MERGE2)’; %8
- J

SAFARI 12

DRAM Processing Unit (1)

FIG. 4 schematically illustrates part of the computing system of FIG. 1in more
detail according to an example embodiment

SOC 193 A

I;DR MASTER INTERFACE

‘] r 140
//
2
DRAMO{7 DRAM! v DRAM V DRA.M3 i} -
|DDR§I]]DDMI! [pDR S.1.] . IDDRSII
lIIPI IIIPI il » | 1|p|
q07__%06 716 927926 137436
MA MA MA MA
; . , .
1 f [T
104 114 124 134
Fig1

P1

NP2 [«

SOC ™ 103

DDR

MASTER [N
INTERFACE|

DDR BUS

?l 6 412 DRAM 0
3 410 \
408k\ A
406 |
— =
REFRESH t
CONTROLLER 1424
: Dl_?AM
: s PRO(bSbOR425
- CONTROL| 420 L
4 INSTRUCTION
- A M
4265
v T, 2
P PIPELINE ;
< MEMORY 8 |]
p ARRAY
DDR CONTROL! |LOCAL MEMORY
SLAVE LI 3] -
INTERFACE N =422 i
<423 -
4&3 ¥ 418 v
G.I MEMORY =
BANK E | o
, A'
414
Fig4

SAFARI

Fabrice Devaux, Jean-Frangois Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.

DRAM Processing Unit (1)
PIM Chip

-

_

SAFARI

DPU Pipeline

* In-order pipeline

- Up to 425 MHz
* Fine-grain multithreaded

- 24 hardware threads
* 14 pipeline stages

: Thread selection
: Instruction fetch
- READOP: Register file
: Operand formatting

- ALU: Operation and WRAM
- MERGE: Result formatting

SAFARI

27 1

DISPATCH)

FETCH1

FETCH2

FETCH3

READOP1

READOP2

<>

24-KB
IRAM

To the DMA engine |

gister File

READOP3

FORMAT

ALU1

ALU2

ALU3

ALU4

ipeline(Re

MERGE1

P

—_———————)

r

MERGE2

64-KB
WRAM

Fine-grained Multithreading

Fine-Grained Multithreading (1)

* |dea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread

- By the time the fetched branch/instruction resolves, no instruction is
fetched from the same thread

- Branch/instruction resolution latency overlapped with execution of
other threads instructions

Instruction Operands

+ No logic needed for handling control and v ¥
. . Stream 3 Instruction
data dependences within a thread Instruction Fetch
. Stream 2 Instruction
- Single thread performance suffers Operand Fetch
Stream 1 Instruction
- I i Execution Phase
Extra logic for keeping thread contexts Laiecution Phase
- Does not overlap latency if not enough Execution Phase
threads to cover the whole pipeline '
Stream 4 Instruction
Result Store

SAFARI 17

Fine-Grained Multithreading (1)

* ldea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

* Tolerates the control and data dependence latencies by
overlapping the latency with useful work from other
threads

* Improves pipeline utilization by taking advantage of
multiple threads

 Thornton, “Parallel Operation in the Control Data 6600,”
AFIPS 1964

* Smith, “A pipelined, shared resource MIMD computer,”
ICPP 1978

SAFARI 18

Lecture on Fine-Grained Multithreading

Fine-Grained Multithreading

Each cycle, fetch engine fetches from a different thread.

o By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

o Branch/instruction resolution latency overlapped with execution
of other threads’ instructions

Instruction Operands

Stream 3 Instruction

+ No logic needed for handling control and [nstruction Fetch

tream 2 Instruction

ithi Operand Fetch
data dependences within a thread tregﬁflllnstmaﬁon
-- Single thread performance suffers e
- . E tion Phi
-- Extra logic for keeping thread contexts S
-- Does not overlap latency if not enough
Stream 4 Instruction

threads to cover the whole pipeline Result Store

Onur Mutlu - Digital Design & Comp Arch - Lecture 14: Pipelined Processor Design (Spring 2021)

1,193 views * Streamed live on Apr 22, 2021 |. 42 0 SHARE ‘+ SAVE

@ ?sn;:; Ziﬁ:ﬂtg&tures ANALYTICS EDIT VIDEO
«T> ’

SAFAR| nhtps:/iwww.youtube.com/watch?v=6e5KZcCGBYwa&list=PL5Q2s0XY2Zi_uej3aY39YB5pfW4SJ7LIN&index=16

DPU Pipeline

* In-order pipeline

- Up to 425 MHz
* Fine-grain multithreaded

- 24 hardware threads
* 14 pipeline stages

: Thread selection
: Instruction fetch
- READOP: Register file
: Operand formatting

- ALU: Operation and WRAM
- MERGE: Result formatting

SAFARI

27 1

DISPATCH)

FETCH1

FETCH2

FETCH3

READOP1

READOP2

<>

24-KB
IRAM

To the DMA engine |

gister File

READOP3

FORMAT

ALU1

ALU2

ALU3

ALU4

ipeline(Re

MERGE1

P

—_———————)

r

MERGE2

64-KB
WRAM

DPU Instruction Set Architecture

° S p e C ifi C 3 2 _ b it I SA U instruction Set Architecture — UPMEM DPU SDK 2021.2.0 Documentation

- Aiming at scalar, in-

O r d e r’ a n d @ » Instruction Set Architecture View page source
multithreaded

L] []
implementation
. . . This section covers the architecture concepts required to understand and use UPMEM DPU
- Al l OW' n g C O m p I I a tl O n processor as a software developer. It is also providing an exhaustive list of the available processor

instructions.
of 64-bit C code o
Software developers should use this section as a reference manual to develop or debug assembly
- LLVM/Clang compiler ~ =*

Resources overview

UPMEM development tools documentation

Instruction Set Architecture

Thread registers

The system is composed of 24 hardware threads. Each of them owns a set of private resources:

e 24 general purpose 32-bits registers named ro through r23
o A 16-bits wide program counter, named PC. Notice that the PC value does not address an
instruction in memory, but the index of such an instruction directly. For example, a PC
equal to 1 represents the second instruction in the DPU’s program memory.
e Two persistent flags, keeping information about the previous result of an arithmetic or
logical instruction:
o ZF: last result is equal to zero

Nienlav a manii —— . o

https://sdk.upmem.com/2021.2.0/201_IS.html#

SAFARI 21

Microbenchmark for INT32 ADD Throughput

1 #define SIZE 256
v 2 1int* bufferA = mem alloc(SIZE * sizeof(int));
S 3 for(int i = 0; i < SIZE; i++){
5 4 int temp = bufferA[i];
.§ 5 temp += scalar;
V) 6 bufferA[i] = temp;
7}
1 move r2, O
o5 2 .LBBO 1:
lg > 3 1lsl add r3, r0, r2, 2
5 5 4 1w r4, r3, 0
5= 5 add r4, r4, rl
L
g = 6 sw r3, 0, rd
05 7 add r2, r2, 1
~— 8 jneq r2, 256, .LBBO 1

SAFARI 22

More on the UPMEM PIM Architecture

2,560-DPU System (1)

* UPMEM-based PIM Main Memory
system wnth M |

- P21 DIMMs
- Dual x86 socket =ISISISISISI\=I= P

PIM-enabled Memory

coexist with regular Main Memory

DDR4 DIMMs f

» 2 memory R
controllers/socket (3 2 25000000 /8
channels each) poer y -

« 2 conventional DDR4 | L EeeEEEEREl

DIMMs on one G Nltl:l":lwltl::l"'/
R e 10

channel of one —

controller

Processing-in-Memory Course: Lecture 2: Real-world PIM: UPMEM PIM Architecture - Spring 2022

669 views + Premiered Mar 17, 2022 5 22 CP DISLIKE) SHARE §¢ CLIP =+ SAVE
e Onur Mutlu Lectures R o
< - > 25.9K subscribers .

https://youtu.be/6dwV_RBjK2c
SAFARI https://vyoutu.be/myG-H 8oNS8A

https://youtu.be/6dwV_RBjK2c
https://youtu.be/myG-H_8oN8A

Understanding a Modern PIM Architecture

Benchmarking a New Paradigm:
Experimental Analysis and
Characterization of a Real
Processing-in-Memory System

JUAN GOMEZ-LUNA', I1ZZAT EL HAJJ?, IVAN FERNANDEZ'-3, CHRISTINA GIANNOULA' 4,
GERALDO F. OLIVEIRA', AND ONUR MUTLU

'ETH Ziirich

% American University of Beirut
3Univc.arsity of Malaga

“National Technical University of Athens

Corresponding author: Juan Gémez-Luna (e-mail: juang @ethz.ch).

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

SAFARI 24

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

Key Takeaway 1

64.00

0.03

Arithmetic Throughput (MOPS, log scale)

32.00 A
16.00 -
8.00 -
4.00 -
2.00 +
1.00 ~
0.50 -
0.25 ~
0.13 ~
0.06 -

(a) INT32, ADD (1 DPU)

Memory-bound
region

Compute-bound

region

@ > A o D o ©
VN <5 Vo v)) v
Q" O ¢ N/ > N

Operational Intensity (OP/B)

KEY TAKEAWAY 1

NV X D

The throughput
saturation point is as low
as ¥a OP/B,

i.e., 1integer addition per
every 32-bit element
fetched

The UPMEM PIM architecture is fundamentally compute bound.

As aresult, the most suitable workloads are memory-bound.

SAFARI

25

CPU/GPU: Performance Comparison

mCPU [IGPU 640DPUs 2556 DPUs
< 1024.000 i 7 i
(] - - o 1
g 256000 4 A] \— /
® 64.000 {1 | \ o - | - -
(e]0] A N . 1 mn 1
S 16000 {]] :
> 4000 1 AN AR i = \ :
o N 3 o L 3 N '
S 1.000 dr \ : \ — : :
5 0.250 Il ¢ ‘B LRIEE YN N A Y \ i
s oos {HR N R IR IR HER RN R MR IS S8 iy
2 0.016 ||| & 'R RIR vl R S AR] \ :
S 0004 {| ° N N (H R o R N R \ !
g 0.001 L= N D N AR) n 1 :
(Y]

KEY OBSERVATION

The UPMEM-based PIM system can outperform a state-of-the-art GPU
on workloads with three key characteristics:
1. Streaming memory accesses

2. No or little inter-DPU synchronization

3. No or little use of integer multiplication, integer division, or floating
point operations

These three key characteristics make a workload potentially suitable to

the UPMEM PIM architecture.

SAFARI

GMEAN

Key Takeaway 2

1024.000

o CPU GPU

640 DPUs

2556 DPUs

256.000 -
64.000 -
16.000 -
4.000 -
1.000

0.250 -
0.063 -
0.016 -
0.004 -
0.001

Speedup over CPU (log scale)

VA

SEL

UNI

BS

HST-S
HST-L

RED
SCAN-SSA
SCAN-RSS

TRNS

More PIM-suitable workloads (1)

KEY TAKEAWAY 2
The most well-suited workloads for the UPMEM PIM architecture

use no arithmetic operations or use only simple operations (e.g.,
bitwise operations and integer addition/subtraction).

SAFARI

GEMV
SpMV
TS
BFS
MLP
NW

Less PIM-suitable workloads (2)

GMEAN (1)

GMEAN (2)

GMEAN

27

Key Takeaway 3

_ NV3IND
[A
: (z) NVIWD
o Fg g F gy Frrd
_ (T) NVIWD
........................ —
o
(7,)
FFFFFFF e]
_ MN m
| . FEEEEEFEFEFE m
_ d1N o
S
] Q
_ S4d o
©
L A x
: Sl 3
1
(i A N
_ AWdS a
a
(2] | i
Q
2 AW3ID =
i Y R A UL SN P S S P B
(o}
LN
LN
(V]
| & EE Ly FEFEFFEFErF
¥ _ SNY1
| A i A \1'—'
_ SSY-NVIS =
(7] (7]
w | A A A w
o | VSS-NVIS | 8
o -z
< FFFFFFEFFFrFrFyFryFyrFyr) S
e} _ a3y m
" i h
_ 7-1SH o]
©
=
[A A A A u
= : S-1SH]
O >
D " . A —
_ Sd o
g
[i o
I E INN S
@ FFFFFFFFFgFFFFFFFrFr)
o _ 13S
" i
_ VA
O OO 0O 00O Mm W
OO0 OO0 00O WMNMmMuLVU-HOOoO
©Co0oooonNOOoOoOo
T O <FT O T H OO O OO
N 1N O
(@ Mo\
—

(1e3s 80]) NdD 49n0 dnpaads

KEY TAKEAWAY 3

=
J—y
A
=
=
=
o
=
<)
=
wd
o
=
2
.=
9
S
k
o
=)
=
=
<]
=
=
?
O
=
wd
2]
=
=
<)
=
=

7))
—
A
an]

7]

7]

(@)

S

()

«

e

o
u
b

«

()
u

S

=

=]

(S

o

e

B

(@)

Q
o
)
b
“

Q
=

=]

op

[<B)

9

L

|

-
)

()

Q
b
u
=

1)

)

4+

_—
=
(@)
ﬁ
°)
=
=
=]
£
£
(@)
()
=
(=
2
B
Q
)
=
&

28

SAFARI

Key Takeaway 4

KEY TAKEAWAY 4

e UPMEM-based PIM systems outperform state-of-the-art CPUs in
terms of performance (by 23.2x on 2,556 DPUs for 16 PrIM
benchmarks) and energy efficiency on most of PrIM benchmarks.

e UPMEM-based PIM systems outperform state-of-the-art GPUs on

a majority of PrIM benchmarks (by 2.54x on 2,556 DPUs for 10
PrIM benchmarks), and the outlook is even more positive for future
PIM systems.

e UPMEM-based PIM systems are more energy-efficient than state-
of-the-art CPUs and GPUs on workloads that they provide
performance improvements over the CPUs and the GPUs.

SAFARI

PrIM Repository

* All microbenchmarks, benchmarks, and scripts
* https://github.com/CMU-SAFARI/prim-benchmarks

H CMU-SAFARI/ prim-benchmarks & Unwatch ~ 2 {7 star 2 % Fork 1

<> Code () Issues 1 Pull requests (*) Actions [Projects [wiki () Security [~ Insights 2 Settings

¥ main + prim-benchmarks / README.md Go to file

Juan Gomez Luna PrIM -- first commit Latest commit 3desb49 9 days ago O History

A 1 contributor

:= 168 lines (132 sloc) 5.79 KB Raw Blame GJ 2 [}

PrIM (Processing-In-Memory Benchmarks)

PrIM is the first benchmark suite for a real-world processing-in-memory (PIM) architecture. PrIM is developed to evaluate,
analyze, and characterize the first publicly-available real-world processing-in-memory (PIM) architecture, the UPMEM PIM
architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called
DRAM Processing Units (DPUs), integrated in the same chip.

PrIM provides a common set of workloads to evaluate the UPMEM PIM architecture with and can be useful for programming,
architecture and system researchers all alike to improve multiple aspects of future PIM hardware and software. The workloads
have different characteristics, exhibiting heterogeneity in their memory access patterns, operations and data types, and
communication patterns. This repository also contains baseline CPU and GPU implementations of PrIM benchmarks for
comparison purposes.

Prim also includes a set of microbenchmarks can be used to assess various architecture limits such as compute throughput and
memory bandwidth.

SAFARI 30

https://github.com/CMU-SAFARI/prim-benchmarks

Samsung FIMDRAM
(aka HBM-PIM)

Samsung Function-in-Memory DRAM (2021)

Samsung
Newsroom CORPORATE | PRODUCTS | PRESSRESOURCES | VIEws | ABoutus (Q

Samsung Develops Industry’s First High
Bandwidth Memory with Al Processing Power

Korea on February 17, 2021 Audio Share

The new architecture will deliver over twice the system performance
and reduce energy consumption by more than 70%

Samsung Electronics, the world leader in advanced memory technology, today announced that it has developed the
industry’s first High Bandwidth Memory (HBM) integrated with artificial intelligence (Al)
HBM-PIMJ The new processing-in-memory (PIM) architecture brings powerful Al computing capabilities inside high-
Igh performance computing

processing power — the

performance memory, to accelerate large-scale processing in data centers,
systems and Al-enabled mobile applications.

Kwangil Park, senior vice president of Memory Product Planning at Samsung Electronics stated, “Our
groundbreaking HBM-PIM is the industry’s first programmable PIM solution tailored for diverse Al-driven workloads
such as HPC, training and inference. We plan to build upon this breakthrough by further collaborating with Al
solution providers for even more advanced PIM-powered applications.”

SA FA R, https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power 3 2

https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power

Samsung Function-in-Memory DRAM (2021)

B FIMDRAM based on HBM2

SID1
Core-die -
(HBM2)

SIDO
Core-die -
(FIMDRAM)

Buffer-die —»

[3D Chip Structure of HBM with FIMDRAM]

Chip Specification

128DQ / 8CH / 16 banks / BL4
32 PCU blocks (1 FIM block/2 banks)

1.2 TFLOPS (4H)

FP16 ADD /
Multiply (MUL) /
Multiply-Accumulate (MAC) /
Multiply-and- Add (MAD)

ISSCC 2021 / SESSION 25 / DRAM / 25.4

25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2
with a 1.2TFLOPS Programmable Computing Unit Using
Bank-Level Parallelism, for Machine Learning Applications

Young-Cheon Kwon', Suk Han Lee', Jaghoon Lee', Sang-Hyuk Kwon',

Je Min Ryu', Jong-Pil Son', Seongil 0, Hak-Soo Yu', Haesuk Lee',

Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi',

Hyun-Sung Shin’, Jin Kim', BengSeng Phuah’, HyoungMin Kim’',

Myeong Jun Song', Ahn Choi', Dagho Kim', SooYoung Kim', Eun-Bong Kim’,
David Wang?, Shinhaeng Kang', Yuhwan Ro?, Seungwoo Seo?, JoonHo Song?,
Jaeyoun Youn', Kyomin Sohn', Nam Sung Kim'

'Samsung Electronics, Hwaseong, Korea
zSamsung Electronics, San Jose, CA
*Samsung Electronics, Suwon, Korea

SAFARI

33

Samsung Function-in-Memory DRAM (2021)

Chip Implementation

- M i I Cell array Cell array | Cellarray | cell ;ﬁay
|Xe e S Ig n <1 for bank0 for bank4 - |- for bank0 for bank4

R e = Ll
PCU block PCU block [PCU block PCU block ||

Fosse—tee® e

|
meth Od0|ogy to {.for bank0 & 1 |.for bank4 & 5 |, for bank0 for bankd & 5

\

¢ Cellarray | ::Cellarray i Cell array Cell array
1 m I t F I M DR AM for bank1 for banks for bank1 for bank5
I p el I Ie n Cell array Cell array Cellarray | . Cell array

for bank2 forbank6 |- :‘forbank2 i for bank6

T 'PCU block PCU block PCU block PCU block
. FUII-CUStOm + Dlg Ital RTL | for bankgc&S for bankgc&7 l for bankgc&3 for bankgc&7 5

Cell array {-::Cell array Cell array Cell array
for bank3 | = for bank7 for bank3 for bank7

Cell array Cell array ; Cell array Cell array
for bank11: - | " for bank15 | - for bank11 | ' for bank15

Cell array. Cell array Cell array Cell array
for bank10 for bank14 for bank10 for bank14

Cell array [Cell array Cell array Cell array

[Dig|ta| RTL design for PCU blOCk] | for bank® for bank13 for bank9 | ' for bank13

|
I PCU block PCU block PCU block PCU block
{for bank8 & 9 (for bank12 & 13| for bank8 & 9 |for bank12 & 13{

ISSCC 2021 / SESSION 25 / DRAM / 25.4

Cellarray t Cell array Cell array Cell array :

25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2
with a 1.2TFLOPS Programmable Computing Unit Using

for bank8
Bank-Level Parallelism, for Machine Learning Applications _— —

for bank12 for bank8 for bank12

YYoung-Cheon Kwon', Suk Han Lee', Jaehoon Lee', Sang-Hyuk Kwon',

Je Min Ryu', Jong-Pil Son', Seongil 0', Hak-Soo Yu', Haesuk Lee',

Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi',
Hyun-Sung Shin’, Jin Kim', BengSeng Phuah', HyoungMin Kim',

Myeong Jun Song’, Ahn Choi', Daeho Kim', SooYoung Kim', Eun-Bong Kim',
David Wang?, Shinhaeng Kang', Yuhwan Ro?, Seungwoo Seo, JoonHo Song®,
Jaeyoun Youn', Kyomin Sohn', Nam Sung Kim'

'Samsung Electronics, Hwaseong, Korea

“Samsung Electronics, San Jose, CA
*Samsung Electronics, Suwon, Korea

SAFARI 34

FIMDRAM: System Organization

* PIM units respond to standard DRAM column
commands (RD or WR)

- Compliant with unmodified JEDEC controllers

* They execute one wide-SIMD operation commanded
by a PIM instruction with deterministic latency in a
lock-step manner

* A PIM unit can get 16 16-bit operands from IOSAs, a
register, and/or the result bus

From

HBM DRAM Die - Bank /
7 e / From

/ 10SA

\LRegisters
7 (cell)

BANK BANK BANK BANK BANK BANK BANK

PIM PIM PIM PIM PIM PIM PIM
UNIT = UNIT UNIT UNIT UNIT UNIT UNIT ¥

Result Bus

Column Decoder
Write Drivers

BANK BANK BANK BANK BANK BANK BANK ‘\ VVO Sense Amps | I,"
\ Registers ! | To
TSVs & Periphery % PIM Unit To Write

BANK BANK BANK BANK BANK BANK BANK Sl Registers | Driver

d

-------- (Cell)

R W g T WA o W Wa We WaW Aot WaWaWpWa W, e WellieaWeWeWeWsWeWeW,

(@) (b) (c)

SA FA Rl Lee et al., Hardware Architecture and Software Stack for PIM Based on Commercial DRAM Technology, ISCA 2021 3 5

Lecture on FIMDRAM/HBM-PIM

FIMDRAM: Bank-level Parallelism 6

Unlike standard DRAM devices, all banks can be accessed Ao G L,
concurrently for 8x higher bandwidth (with 16 pCHs)

In AB-PIM mode, a memory command triggers a PIM
instruction in the CRF

Single Bank All Bank

MODE (SB) MODE (AB) AB-PIM Mode

PIM CRF area
PIM GRF area
. PIM SRF area

AB enter sequence AB-PIM enter
———— e S
ACT/PRE row 0x27ff PIM_OP_MODE=1
of bank 0,1,8,9

AB exit sequence AB-PIM exit
A————

ACT/PRE row 0x2fff PIM_OP_MODE=0
of bank 0,1 p

Memory CMD triggers a CRF
to perform a target instgaetio

Processing-in-Memory Course: Lecture 4: Real-world PIM: Samsung HBM-PIM Architecture - Spring

2022
673 views * Streamed live on Mar 31, 2022 [& 28 g] DISLIKE ;{) SHARE % CLIP =+ SAVE

@ Onur Mutlu Lectures SUBSCRIBED Q
‘f > 25.9K subscribers)

SA FARI https://youtu.be/ CpWIJGKINO4

36

https://youtu.be/_CpWJGK9N04

Samsung AxDIMM

Samsung AxDIMM (2021)

e DIMM-based PIM Baseline System
- DLRM recommendation system

CHo! CH1! CH3!
1 1

OS/FC/Others SLS Offload OS/FC/Others

AxDIMM System

CH2!
1

OS/FC/Others SLS Offload OS/FC/Others

SA FA R’ Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxXDIMM", IEEE Micro (2021) 3 8

AXDIMM Design: Hardware Architecture

e e s o

Standard DIMM Interface

c Rank-0.NMP

S J == >

aNe] e Non-Acceleration Mode w —

s R = H E 1S

|2 5le = [LCONF REG| Acceleration Mode | g o
ol+ olglLLl2 S L~
Sle—| 3 2 O

:

o <|ao D

® ola oLl <

e 51 Rank-1.NMP S S8

< A —> . | — ¥

DDR4 slave PHY receives DRAM commands and NMP instructions
(via DQ pins) from the host side

SAFARI

AXDIMM Design: Execution Flow

Emb Table Rank-0.NMP .
Data _ ||
> —> TH >
Acc Mode T -1—1~| CONF REG| = T <
9 Enable % = Decode Inst 5 a =
Write Inst —H—=—1H 12 »| INST BUF || DEC |*{CMDGEN|—{-& ,Eg‘) &
Set SLS N - RD Psum %f'\r 1:
% 1| | |- [Esameur] >~ [appeR - {
ExeReg < J ADDER R b
o = Accumulate Psum,,,
o Read L
StatusReg E —
O x
Read Psum Rank-1.NMP = =
]
o
(b)
Host WR Mode WR SLS RD RD
Emb Table Change Inst Execute Status Reg Psum
Decode |Decode |Decode |Decode | _ _ _ _ ___ __ ___ | Decode
Decoder Inst Inst Inst Inst Inst
RD RD RD RD | __ RD
Data Fetch Psum | Psum | Psum | Psum Psum
Rank- RD RD RD
RD RD | o
NMP Data Fetch Emb | Emb | Emb | Emb Emb
Adder ADD | ADD | ADD | ADD | o o o] ADD
WR WR WR WR WR
Accumulate Psum | Psum | Psum | Psum [T """ 7====" Psum

SAFARI

Lecture on AxXDIMM

AxDIMM Design: Execution Flow

o I._l Rank-0 NMP
“ = {1 conF REG

g_-{ insT BuF | -[D | -[cmoGEN] '

|

Rank-1. NMP

Processing-in-Memory Course: Lecture 9: Real-world PIM: Samsung AxDIMM - Spring 2022

448 views * Premiered May 5, 2022 f5 19 CIDISLIKE 2> SHARE ¢ CLIP =+ SAVE
@ Onur Mutlu Lectures CUBSCRIBED a
< t > 25.9K subscribers k

SA FARI https://youtu.be/] prUKfnv7Q

https://youtu.be/J_prUKfnv7Q

SK Hynix AIiM

SK Hynix Accelerator-in-Memory (2022)

SKhynix NewsrooMm ® en

INSIGHT SK hynix STORY PRESS CENTER MULTIMEDIA Search Q

SK hynix Develops PIM, Next-Generation Al Accelerator

February 16, 2022 in)(f)(¥)(%

Seoul, February 16, 2022

SK hynix (or “the Company”, www.skhynix.com) announced on February 16 that it has developed PIM", a next-

generation memory chip with computing capabilities.

*PIM(Processing In Memory): A next-generation technology that provides a solution for data congestion issues for Al and big data by adding

computational functions to semiconductor memory

It has been generally accepted that memory chips store data and CPU or GPU, like human brain, process data. SK
hynix, following its challenge to such notion and efforts to pursue innovation in the next-generation smart memory,
has found a breakthrough solution with the development of the latest technology.

SK hynix plans to showcase its PIM development at the world’s most prestigious semiconductor conference, 2022 .) i i
11.1 A1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and

ISSCC’, in San Francisco at the end of this month. The company expects continued efforts for innovation of this Various Activation Functions for Deep-Learning Applications
. X . X X . Seongju Lee, SK hynix, Icheon, Korea
technology to bring the memory-centric computing, in which semiconductor memory plays a central role, a step closer in Paper11.1, SK Hynix describes an 1ynm, GDDR6-based accelerator-in-memory with a command set for deep-learning operation. The
L . 8Gb design achieves a peak throughput of 1TFLOPS with 1GHz MAC operations and supports major activation functions to improve
to the reality in devices such as smartphones. accuracy.

*ISSCC: The International Solid-State Circuits Conference will be held virtually from Feb. 20 to Feb. 24 this year with a theme of “Intelligent Silicon for a

Sustainable World”

For the first product that adopts the PIM technology, SK hynix has developed a sample of GDDR6-AIM (Accelerator” in
memory). The GDDR6-AIM adds computational functions to GDDR6" memory chips, which process data at 16Gbps. A
combination of GDDR6-AIM with CPU or GPU instead of a typical DRAM makes certain computation speed 16 times

faster. GDDR6-AIM is widely expected to be adopted for machine learning, high-performance computing, and big data

computation and storage.

SA FA R, https://news.skhynix.com/sk-hynix-develops-pim-next-generation-ai-accelerator/ 43

https://news.skhynix.com/sk-hynix-develops-pim-next-generation-ai-accelerator/

SK Hynix Accelerator-in-Memory (2022)

* 4 Gb AiM die with 16 processing units (PUs)

AiM Die Photograph 1 Process Unit (PU) Area
Total 0.19mm?
MAC 0.11mm?
Activation Function (AF) 0.02mm?
Reservoir Cap. 0.05mm?2
Etc. 0.01mm?

SA FAR’ Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation 44
Functions for Deep-Learning Applications, ISSCC 2022

SK Hynix AiM: System Organization (2022)

* GDDR6-based AiM architecture

P ommmmmmmmm—m—m——————— b
[T [[T [[T [[T [1 1
\ 1 \ \ 1 \ \ 1 \ \ | \ | 1
EmySmeany snni SRy SHA/ ny snn EErmnany saaBRSET SRR/ ARy Sum : [
I 5 1 = e e I
| 16b| 16bl 16b 16b)
4 £ ¥ 4 I\ ,L J, 2 256 b :
| PU | PU | PU | PU E I “16b| 160 716D *** “16b I
L= : . TUIES TS . :
: X X X eoe X ||Multiplier x 16 :
L ,pv | [,pv | |_,Ppu | [,Pul | - = =]
v " 7 \ : + + :
T il [T T il [T T il [T T T il [T T | Jars S Adder Tree I
I + o0 I
[[I I [[[[
S S S S ! o ;
+
I [
[T [
I Accumulator [
ety Tl : P U J |AF & AF :
) ol | |
I [
| RDMAC
[T [[T [[T [[T [: RDAF :
I I I T b !
[[[[[[[[
e O B o e I 1 o e o
-------------------------------- ‘
£ £ £ £] i
[fee] e] | [Cfee) [CFee] Lo :
1
1
i i
| PU || PU | PU | PU | : I
v 7 " " I < > 1
L N I [(S —-— L, N [y) () S — I 2KB 1
HRHRHRH | | R R HSHREHH | | AR 1 G B :
EEa i EEKimn EEE i e L Supplementary SRAM buffer I

SA FA Rl Lee et al., A 1Tynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation 4 5
Functions for Deep-Learning Applications, ISSCC 2022

Lecture on Accelerator-in-Memory

AiM: Adder Tree: Bank-wide Mantisa Shift ¢
Bank-wide Mantisa Shift (BWMS) |5 Sl '

o Find MAX EX of 16 EXs i, = :
) . - | Lo |
o Obtain the differences 2 o s ’
o Shift all MAs by the differences -
o Perform MA additions
"N (S (S () (e (o) (] (o) 1s'£xp P30 (50 [a10) (o1 (a12) (o1 [era] (o16]
aelEEEEEEIE SR EEEEE e o
[| | I | [I [,,,\.1‘ X I 1 I I T r $15, MA1S
Shiftes : [Y
verr - Exponent | Y
1% Stage MAY NAU AU MAU Ay A May Comparator | Bit
P e T S S EX_DIFFERENCE { Extension
Istage T ' Ay Shifer | m ; 4>(FP32)
4" Stage NS : 11,24
TSR SR ST T PERT IAR PRR U E N Db $0_SFT, MAD_SFT (FP32)
7~ Adder Tree Out
Before Shifter After Shifter
Diff. w/ Max
MuL Exponent (EX) | Sign (S), Mantissa (MA) EX Exponent (EX) Sign(S), Mantissa(MA)
out (8 bits) (1, 16 bits) (8 bits) (1, 24 bits)
wvioR | 00001100 +1.111110011111011 3 +0.00111111001111101100000
WVI1] | 00001111 | +1.000000011111011 Max EX +1.00000001111101
wv2] 00000100 -1 1 00001111 ~1.41111111111111110000000
- ——h —_——
wvits) | otm'im +1.000000011111111 '; - TL it HD —
1 4.5:00 AIM: Adde ce: Bank de Ma B > (03] o2 [] E E

Processing-in-Memory Course: Lecture 6: Real-world PIM: SK Hynix AiM - Spring 2022

607 views - Streamed live on Apr 14, 2022 {5 23 G DISLIKE 2 SHARE ¢ CLIP =+ SAVE
e Onur Mutlu Lectures Cneonias
< - > 25.9K subscribers

https://youtu.be/NDL77Xdcchs?t=159

SAFARI

https://youtu.be/NDL77Xdccbs?t=159

Alibaba HB-PNM

Alibaba HB-PNM: Overall Architecture (2022)

* 3D-stacked logic die and DRAM die vertically bonded
by hybrid bonding (HB)

3D-stacked illustration of 1Gb DRAM Core

the DRAM die and logic die = =
128Mb | @ @ | 128Mb
+8MbY) | B S| “8Mmb)
w w
Decoder/Control/Buffer
128Mb | & @ | 128Mb
+8Mb) | © S| (+8Mb)
17} 7]
128Mb | & & | 128Mb
+8Mb) | © S| (+8Mb)
o 173
Decoder/Control/Buffer
128Mb | B % | 128Mb
(+8Mb) S S (+8Mb)
x4
*On-die ECC

__

DRAM array layout illustration and its imposed
design constraints on logic die

[We] [,] [

MC| | > MC| | £ >

el |3 =) 3¢
) Neural Engine || -

MC| £ > MC||E >

[ve| | & we| | B E
Chip Package Lt =

Heat Sink tase ==

DRAM Die M| o M| | o
e LURRRRRRRR RN nnnnnntl ol | 5% o]\ 5 x
Logic Die [Me] | ‘5 Mo | '3
Ld Match Engine e
Substrate o) IP blocks .
© Ime| ;g>— e | §>-
| |8 a& me| (3 &

[ve] (= e} |

Cross-section illustration of the logic die and DRAM die Logic die physical constraints due to hybrid

vertically bonded by HB in a chip package bonding PHY and MC

SA FAR’ Niu et al., 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System,
ISSCC 2022

48

Alibaba HB-PNM: Compute Engines

* Match engine and neural engine for matching and ranking in a
recommendation system

DRAM Die
* | by N B B :
Image / ltem Query Bottleneck i . | . | o | o E
Fosssoooooooooo- ‘; ----------- B 5 DRAM P DRAM i DRAM | DRAM !
: } | 7' i 7' i 7S D 7% |
; Classification : c
| |
(]
{ ; 1 =
1 D : 5 8x Memory 8x Memory 8x Memory 8x Memory
: % Object Detection } g_ Controllers Controllers Controllers Controllers
| |
: $: Q <
| : O N
|
‘, Feature Extraction 1 Dual-mode Dual-mode Dual-mode Dual-mode
‘ ; Interface Interface Interface Interface
| ; ~: fs s i i
: . . : — Match Engine (ME) Neural Engine (NE)
| Coarse-grained Matching i = e
2 : o
O J, [e Control Dataflow Control Activation
O : o
: Fine-grained Ranking /
S j; ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ § Matching Top-K GEMM Transpose
Top-K Results
Logic Die
SA FAR' Niu et al., 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System, 49
ISSCC 2022

Lecture on HB-PNM

Match Engine: Distance Calculator

obtains similarity between input query and
feature vectors

It computes Hamming distance of two 512-bit vectors
Distance is filtered by root of max-heap

e) ¥) L
Addr Data Query Data

LR - EARTY) - ' e . '3

Bit-wise Hamming Distance

. A} - \J
AdaGen Partial | Partip
(Popcount UJ \Popcount 1]

Processing-in-Memory Course: Lecture 10: Real-world PIM: Alibaba HB-PNM - Spring 2022

410 views * Premiered May 12, 2022 [ﬁ 22 93 DISLIKE A) SHARE % D e G
e Onur Mutlu Lectures R A
< - > 25.9K subscribers .

SAFARI https://youtu.be/0ZjKnn-DbwA

https://youtu.be/OZjKnn-DbwA

More Real PIM

NeuroBlade

BLOCKS
& FILES.

HOME BLOCK FILE OBJECT DISK TAPE FLASH NVME SC

L]

NeuroBladers build a processing-in-
memory analytics chip and server

By Chris Mellor - October 6, 2021

An Israeli startup called NeuroBlade has exited stealth mode, built a processing-in-
memorf (PIM) analytics chip combining DRAM and thousands of cores, jput four of
them in an analytics accelerating server appliance box, and taken in $83 million in B-
round funding.

The idea is to takel a GPU approach to big data-style analytics and Al softwarelby
employing a massively parallel core design, but take it further by layering the cores

on DRAM with a wide I/0 bus architecture design linking the cores and memory to
speed processing even more. This design vastly reduces data movement between
storage and memory and also accelerates data transfer between memory and
processing cores.

SA FAR, https://blocksandfiles.com/2021/10/06/neurobladers-build-a-processing-in-memory-analytics-chip-and-server/

https://blocksandfiles.com/2021/10/06/neurobladers-build-a-processing-in-memory-analytics-chip-and-server/

NeuroBlade Patent (I)

a2 United States Patent
Sity et al.

ao) Patent No.: US 10,762,034 B2
45) Date of Patent: Sep. 1, 2020

(54)

(71
(72)

(73)

*)

(21
(22)

MEMORY-BASED DISTRIBUTED
PROCESSOR ARCHITECTURE

Applicant: NeuroBlade, Ltd., Hod-Hashron (IL)

Inventors: Elad Sity, Kfar Saba (IL); Eliad Hillel,
Kfar Saba (IL)

Assignee: NeuroBlade, Ltd., Hod-Hashron (IL)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 16/512,590

Filed: Jul. 16, 2019

(56) References Cited
U.S. PATENT DOCUMENTS
4,837,747 A * 6/1989 Dosakac....... G11C 8/12

365/189.05
5,155,729 A 10/1992 Rysko et al.

(Continued)
FOREIGN PATENT DOCUMENTS

CA 2149479 C 5/2001

OTHER PUBLICATIONS

Ahn et al., “A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing,” ISCA 15 (Jun. 13-17, 2015), pp.

105-117.

(57) ABSTRACT

Distributed processors and methods for compiling code for
execution by distributed processors are disclosed. In one
implementation, a distributed processor may include a sub-
strate; a. memory array disposed on the substrate; and a
processing array disposed on the substrate. The memory
array may include a plurality of discrete memory banks, and
the processing array may include a plurality of processor
subunits, each one of the processor subunits being associ-
ated with a corresponding, dedicated one of the plurality of
discrete memory banks. The distributed processor may fur-
ther include a first plurality of buses, each connecting one of
the plurality of processor subunits to its corresponding,
dedicated memory bank, and a second plurality of buses,
each connecting one of the plurality of processor subunits to
another of the plurality of processor subunits.

SAFARI

Sity et al., “Memory-based Distributed Processor Architecture,” US 10,762,034 B2

53

NeuroBlade Patent (II)

|

] 310a

| /\/

1} | Memory || Memory | | /3305 Memory
3303‘\}/ Instance || Instance 3309’\/ Instance

Memory
Instance

Processor Subunit

N

Memory
Instance

Processor Subunit

360a
/\/
350a \}{| Processor Subunit
i
1
1
T ss0e] | =
1
1
I
|
: Memory || Memory Memory
3306 \/}) Instance || Instance Instance
I
| L/\ /\j
l 330g
: 330d 360e
1
1
350c \;i{ Processor Subunit 360f
i
i
i \/380b

e T e, e T e e e 1
] |
| i
1 I
1 I
1 I
: Memory Instance !
1
| I
1 I
I I
I I
| 630 |
640 610
|
: L\ T~ /':\/
I I
650
: Processor Accelerators \f
11| Element 1
1 |
A A !
!
1 ! /670
_'- 1
8. »| FH—>
I
|
|
|
|
1
l
|

SAFARI

Sity et al., “Memory-based Distributed Processor Architecture,” US 10,762,034 B2

54

NeuroBlade: Xiphos

PIM XRAM chip

- IMPU (Intensive Memory Processing Unit)

x86 CPU, 32 NVMe SSDs

PCle fabric: “Everything is connected on top of PCle fabric.”

Wide 1/O bus: multiple x16 PCle buses

Xiphos appliance.

SA FAR' https://www.neuroblade.com

55

https://www.neuroblade.com/

Variety of Current Real PIM Architectures

* Differences

- Near-bank (UPMEM, FIMDRAM, AiM, HB-PNM) vs. near-chip
(AXDIMM)

- General-purpose (UPMEM) vs. special-function (FIMDRAM,
AiM, HB-PNM)

- FGMT (UPMEM) vs. SIMD (FIMDRAM, AiM, AXDIMM) vs.
systolic array (HB-PNM)

- Natively integer (UPMEM, HB-PNM) vs. floating point
(FIMDRAM)

* FP16 (FIMDRAM) vs. BF16 (AiM) vs. FP32 (AXDIMM)

- DDR4 (UPMEM, AXDIMM) vs. LPDDR4 (HB-PNM) vs. HBM2
(FIMDRAM) vs. GDDR6 (AiM)

SAFARI

Common Characteristics

* These PIM systems have some common characteristics:

1. Thereis a host processor (CPU or GPU) with access to (1)
standard main memory, and (2) PIM-enabled memory

2. PIM-enabled memory contains multiple PIM processing
elements (PEs) with high bandwidth and low latency
memory access

3. PIM PEs run only at a few hundred MHz and have a small
number of registers and small (or no) cache/scratchpad

4. PEs may need to communicate via the host processor

SAFARI 57

A State-of-the-Art PIM (PNM) System

Standard Main Memory

o ~
Host CPU /7
/7 Memory Array
& 4 (Rank or Bank)
S /
Q _ J
w -
Scratchpad
SN[— L emory | emory Instruction
< - Array Array
W ||Host-py
\ > PIM PE PIM PE
[][\lPIM Processing Elements;

M — =

PIM-enabled Memory

* These PIM systems have some common characteristics:

1. Thereis a host processor (CPU or GPU) with access to (1) standard main
memory, and (2) PIM-enabled memory

2. PIM-enabled memory contains multiple PIM processing elements (PEs) with
high bandwidth and low latency memory access

3. PIM PEs run only at a few hundred MHz and have a small number of
registers and small (or no) cache/scratchpad

4. PEs may need to communicate via the host processor

SAFARI 58

Programming a
General-purpose PIM System

Accelerator Model (1)
* UPMEM DIMMs coexist with conventional DIMMs

* Integration of UPMEM DIMMs in a system follows an
accelerator model

* UPMEM DIMMs can be seen as a loosely coupled
accelerator

- Explicit data movement between the main processor (host
CPU) and the accelerator (UPMEM)

- Explicit kernel launch onto the UPMEM processors

* This resembles GPU computing

SAFARI 60

GPU Computing

* Computation is offloaded to the GPU
* Three steps

- CPU-GPU data transfer (1)
- GPU kernel execution (2)
- GPU-CPU data transfer (3)

https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=digitaldesign-2018-lecture22-gpuprogramming-afterlecture.pdf

CPU
cores

CPU
memory

GPU
memory

Matrix

Matrix

GPU
cores

https://www.youtube.com/watch?v=y40-tYS5WJ8A

SAFARI

01

https://www.youtube.com/watch?v=y40-tY5WJ8A
https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=digitaldesign-2018-lecture22-gpuprogramming-afterlecture.pdf

Accelerator Model (IlI)

* FIG. 6 is a flow diagram representing operations in a method of delegating a
processing task to a DRAM processor according to an example embodiment

SOC LOADS DATA TO BE PROCESSED
TO DRAM MEMORY BANK
SOC TRANSMITS DATA PROCESSING
A 602
COMMAND TO DRAM PROCESSOR(S)
l B—__603
DATA PROCESSING BY DRAM PROCESSOR(S)
f 604
DATA PROCESSIN
COMPLETE 2
5)5
, ~
MEMORY BANK ACCESSIBLE BY SOC
Fig 6

SA FA R, Fabrice Devaux, Jean-Frangois Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.

System Organization

* FIC. 1 schematically illustrates a computing system comprising DRAM circuits
having integrated processors according to an example embodiment

100

B
&

. |02

rd
tDDR MASTER INTERFACE

ANy
Ll r 140
it
-

DRA&I:/IO {7 DRA&\’/II {; DRAI\?/I?. v DRA&'B B

DDR S.1. DDR S.1 DDR S.1. DDR S.L
2108 118 =128 138
4 3 B Ips pF
907106 917116 27 926 937 936
MA MA MA MA
7 7 7 ?
z 7 ({
104 114 124 134
Fig 1

SA FA R’ Fabrice Devaux, Jean-Frangois Roy. “Memory circuit with integrated processor.” US 10,324,870 B2. 63

First Programming Example:
Vector Addition

Observations, Recommendations, Takeaways

GENERAL PROGRAMMING RECOMMENDATIONS

Execute on the DRAM Processing Units (DPUs)
portions of parallel code that are as long as possible.
Split the workload into independent data blocks,
which the DPUs operate on independently.

Use as many working DPUs in the system as possible.
Launch at least 11 tasklets (i.e., software threads)
per DPU.

PROGRAMMING RECOMMENDATION 1

For data movement between the DPU’s MRAM bank and the
WRAM, use large DMA transfer sizes when all the accessed

data is going to be used.

KEY OBSERVATION 7

Larger CPU-DPU and DPU-CPU
transfers between the host main
memory and the DRAM Processing

Unit’s l_/[aln_ memory (MRAM) banks_ KEY TAKEAWAY 1
result in higher sustained bandwidth.
The UPMEM PIM architecture is fundamentally compute
bound. As a result, the most suitable work- loads are

memory-bound.

SAFARI

Vector Addition (VA)

* Our first programming example

* We partition the input arrays across:
- DPUs
- Tasklets, i.e., software threads running on a DPU

SAFARI

66

UPMEM SDK Documentation

@A / User Manual

User Manual

Getting started

e The UPMEM DPU toolchain

CrEED o Notes before starting

The toolchain purpose

o

o dpu-upmem-dpurte-clang

The UPMEM DPU toolchain = Limitations
Installing the UPMEM DPU toolchain

[e]

The DPU Runtime Library
Hello World! Example o The Host Library
dpu-lldb

[e]

e |[nstalling the UPMEM DPU toolchain
Introduction

o Dependencies

Tasklet management and synchronization

Memory management = Python

Standard library functions o Installation packages

Exceptions . . .

= Installation from tar.gz binary archive
Controlling the execution of DPUs from

host applications o Functional simulator

Communication with host applications e Hello World! Example

Advanced Features of the Host API
o Purpose

Logging

o Writing and building the program

SA FAR, https://sdk.upmem.com/2023.1.0/

https://sdk.upmem.com/2023.1.0/

General Programming Recommendations

* From UPMEM programming guide®, presentations*,
and white papers*

GENERAL PROGRAMMING RECOMMENDATIONS

. Execute on the DRAM Processing Units (DPUs)
portions of parallel code that are as long as
possible.

. Split the workload into independent data

blocks, which the DPUs operate on
independently.

. Use as many working DPUs in the system as
possible.

. Launch at least 11 tasklets (i.e., software
threads) per DPU.

* https://sdk.upmem.com/2021.1.1/index.html
* F. Devaux, "The true Processing In Memory accelerator," HotChips 2019. doi: 10.1109/HOTCHIPS.2019.8875680
* UPMEM, “Introduction to UPMEM PIM. Processing-in-memory (PIM) on DRAM Accelerator,” White paper

SAFARI

68

https://sdk.upmem.com/2021.1.1/index.html

DPU Allocation

* dpu alloc() allocates a number of DPUs
- Createsadpu_set

struct dpu_set_t dpu_set, dpu;
uint32_t nr_of_dpus;
DPU_ASSERT (dpu_alloc(NR_DPUS, NULL, &dpu_set));

DPU_ASSERT (dpu_get_nr_dpus(dpu_set, &nr_of_dpus));
printf("Allo d %d DPU(s)\n", nr_of_dpus);

Can we allocate different DPU sets
over the course of a program?

Yes, we can. We show an example next

We deallocate a DPU set with dpu free()

SAFARI 69

DPU Allocation: Needleman-Wunsch (NW)

* In NW we change the number of DPUs in the DPU set as
computation progresses

SAFARI

for (unsigned int blk = 1; blk <= (max_cols-1)/BL; blk++) {

unsigned nr_of_blocks = blk;

if (nr_of blocks < max_dpus) {
DPU_ASSERT(dpu_free(dpu_set));
DPU_ASSERT(dpu_alloc(nr_of_blocks, NULL, &dpu_set));
DPU_ASSERT (dpu_load (dpu_set, DPU_BINARY, NULL));
DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));

} else if (nr_of_dpus == max_dpus) {

} else {
DPU_ASSERT (dpu_free(dpu_set));
DPU_ASSERT(dpu_alloc(max_dpus, NULL, &dpu_set));
DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL));
DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));

70

Load DPU Binary

* dpu_ load() loads a program in all DPUs of a
dpu set

#ifndef DPU_BINARY
#define DPU_BINARY "./bin/dpu_code"
#endif

DPU_ASSERT (dpu_load(dpu_set, DPU_BINARY, NULL));

s it possible to launch different kernels onto different DPUs?

(Yes, it is possible. This enables: A
* Workloads with task-level parallelism
& Different programs using different DPU sets y

SAFARI 71

CPU-DPU/DPU-CPU Data Transfers

* CPU-DPU and DPU-CPU transfers
- Between host CPU’s main memory and DPUs’ MRAM banks

Main Memory

P

y =
.=
.=

DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM|[DRAM
\)‘ == | | 1P J\ Chip)| Chip |\ Chip J{ Chip)| chip |\ chip)| chip

,OQ‘ -— DRAI‘ﬂ[DRAI‘ﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ
Q\)/ —— chip || cnip || chip || cnip || chip || chip || chip || chip
%l xM
Host I
P =

b
= pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
@e=p-| (Chip || Chip || Chip)\ chip)| chip |\ chip || chip || chip
J
pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
chip || chip || chip || chip || chip)| chip || chip || chip /

xN
PIM-enabled Memory

e Serial CPU-DPU/DPU-CPU transfers:
- Asingle DPU (i.e., 1t MRAM bank)

* Parallel CPU-DPU/DPU-CPU transfers:
- Multiple DPUs (i.e., many MRAM banks)

* Broadcast CPU-DPU transfers:
- Multiple DPUs with a single buffer

SAFARI

72

Serial Transfers

* dpu_copy_to();

* dpu_copy from();

» We transfer (part of) a buffer to/from each DPU in the
dpu set

* DPU MRAM HEAP POINTER NAME: Start of the
MRAM range that can be freely accessed by applications
- We do not allocate MRAM explicitly

DPU_FOREACH (dpu_set, dpu) {

DPU_ASSERT (dpu_copy_to(dpu, DPU_MRAM_HEAP_POINTER_NAME | 0, bufferA + input_size_dpu_8bytes x i size_dpu_8bytes x sizeof(T)))

input_
DPU_ASSERT (dpu_copy_to(dpu, DPU_MRAM_HEAP_POINTER_NAME || input_size_dpu_8bytes x sizeof(T), bufferB + input_size_dpu_8bytes * i input_size_dpu_8bytes x sizeof(T)));
i++;

’ Offset within MRAM Pointer to main memory Transfer size

SAFARI /3

Parallel Transfers

* We push different buffers to/from a DPU set in one
transfer

- All buffers need to be of the same size
* First, prepare (dpu prepare xfer);
then, push (dpu push xfer)

* Direction:

- DPU_XFER_TO DPU
- DPU_XFER FROM DPU

DPU_FOREACH(dpu_set, dpu, i) { . - Pointer to main memory

DPU_ASSERT (dpu_prepare_xfer(dpu,/bufferA + input_size_dpu_8bytes * i
I
DPU_ASSERT (dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU DPU_MRAM_HEAP_POINTER_NAME,| 0, input_size_dpu_8bytes * sizeof(T)|| DPU_XFER_DEFAULT));

DPU_FOREACH(dpu_set, dpu, i) { Offset within MRAM Transfer size

DPU_ASSERT (dpu_prepare_xfer(dpu, bufferB + input_size_dpu_8bytes x 1i))

}
DPU_ASSERT (dpu_push_xfer(dpu_set,|DPU_XFER_TO_DPU|| DPU_MRAM_HEAP_POINTER_NAME,| input_size_dpu_8bytes * sizeof(T)]!input_size_dpu_8bytes x sizeof(T)}] DPU_XFER_DEFAULT));

SAFARI 74

Broadcast Transfers

* dpu broadcast to();
- Only CPU to DPU

* We transfer the same buffer to all DPUs in the dpu_ set

DPU_ASSERT (dpu_broadcast_to(dpu_set, DPU_MRAM_HEAP_POINTER_NAME, 0, bufferA,[input_size_dpu * si f(T)} DPU_XFER_DEFAULT));

Pointer to main memor

SAFARI 75

Different Types of Transfers in a Program

* An example benchmark that uses both parallel and serial
transfers

* Select (SEL)
- Remove even values

Select (remove)

mput 2|13 fofol1|afafofofa]r], ="
transfers

DPU 0 DPU 1 DPU 2
Predicate: True if it is even

oupa [T =]] son
transfers

DPUO DPU 1 DPU 2

SAFARI 76

Inter-DPU Communication

* There is no direct communication channel between DPUs

Main Memory

P
y =
y =

y =

DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM|[DRAM
\)‘ == | | 1P J\ Chip)| Chip |\ Chip J{ Chip)| chip |\ chip)| chip

,OQ - = DRAI‘ﬂ[DRAI‘ﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ
Q\>/ fpm— Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip
S/ M
Host I
P _

~ I -
pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
@e=p-| (Chip || Chip || Chip)\ chip)| chip |\ chip || chip || chip
J
pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
chip || chip || chip || chip || chip)| chip || chip || chip

PIM-enabled Memory

* Inter-DPU communication takes place via the host CPU using CPU-DPU
and DPU-CPU transfers

* Example communication patterns:

- Merging of partial results to obtain the final result
* Only DPU-CPU transfers

- Redistribution of intermediate results for further computation
* DPU-CPU transfers and CPU-DPU transfers

SAFARI 77

N

How Fast are these Data Transfers?

* With a microbenchmark, we obtain the sustained
bandwidth of all types of CPU-DPU and DPU-CPU transfers

* Two experiments:

- 1 DPU: variable CPU-DPU and DPU-CPU transfer size (8 bytes to
32 MB)

- 1rank: 32 MB CPU-DPU and DPU-CPU transfers to/from a set of
1to 64 MRAM banks within the same rank
* Preliminary experiments with more than one rank
- Channel-level parallelism

DDR4 bandwidth bounds the maximum transfer bandwidth

The cost of the transfers can be amortized,
if enough computation is run on the DPUs

.

SAFARI

/8

CPU-DPU/DPU-CPU Transfers: 1 DPU

* Data transfer size varies between 8 bytes and 32 MB

1.0000

--CPU-DPU
1| -@=-DPU-CPU

Sustained CPU-DPU
Bandwidth
(GB/s, log scale)
o o o
o o =
o = o
5 8 8

00001 T ! ! ! ! ! ! ! ! ! ! !

1

Data transfer size (bytes)

KEY OBSERVATION 7
Larger CPU-DPU and DPU-CPU transfers between the host main

memory and the DRAM Processing Unit's Main memory (MRAM)
banks result in higher sustained bandwidth.

SAFARI

79

CPU-DPU/DPU-CPU Transfers: 1 Rank (1)

* CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)
 The number of DPUs varies between 1 and 64

== CPU-DPU (serial) —@— DPU-CPU (serial)
16.00 4 =B CPU-DPU (parallel) =Q= DPU-CPU (parallel) 16.88
o] ' =—f— CPU-DPU (broadcast) !
% < 8.00 —66.68
[G - |
5 S5 8 400 - - 4.74
a2 7 2.00
© —_ i
5 'g - 1.00 =
.% 2 > 0.50 - =Q— 0.27
2 9 025 - —a —
v 013 4 Q=@ o O—==0 0, @012
0.06 | | | | . |
< (o) <
— (o)

KEY OBSERVATION 8

The sustained bandwidth of parallel CPU-DPU and DPU-CPU
transfers between the host main memory and the DRAM Processing
Unit’s Main memory (MRAM) banks increases with the number of
DRAM Processing Units inside a rank.

SAFARI 80

CPU-DPU/DPU-CPU Transfers: 1 Rank (1)

* CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)
 The number of DPUs varies between 1 and 64

16.00 -
8.00 4
4.00 -
2.00 -
1.00 -
0.50
0.25
0.13

Sustained CPU-DPU
Bandwidth
(GB/s, log scale)

0.06

=iyl KEY OBSERVATION 9

== CPU-DPU (broadcast)

The sustained bandwidth of
parallel CPU-DPU transfers is
higher than the sustained
bandwidth of parallel DPU-CPU
transfers due to different

implementations of CPU-DPU and
DPU-CPU transfers in the UPMEM
runtime library.

The sustained bandwidth of broadcast CPU-DPU transfers (i.e., the same
buffer is copied to multiple MRAM banks) is higher than that of parallel

CPU-DPU transfers (i.e., different buffers are copied to different MRAM
banks) due to higher temporal locality in the CPU cache hierarchy.

SAFARI

81

“Transposing” Library

The library feeds DPUs with correct data

Eight 64-bit “horizontal” words

are turned into 8 vertical words, DRAM chip
feeding 8 different DRAM chips have 8-bit
This way DPUs see full 64-bit data bus

words, not chunk of them

Word 0

Word 1 The transformation, a 8x8

Word 2 . W W W W W W W W matrix transposition, is

Library o o o o o o o o donebythe libraryinside

Word 3 .
— r | F ||| r|r|r a 64-byte cache line, thus

Word 4 d d d d d d d d veryefficiently.

Word 5 0 1 2 3 4 5 6 7

Word 6

Word 7

Copyright UPMEM® 2019 mem

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 04,2020 at 13:55:41 UTC from IEEE Xplore. Restrictions apply.

SA FA RI F. Devaux, "The true Processing In Memory accelerator," HotChips 2019. doi: 10.1109/HOTCHIPS.2019.8875680

Microbenchmark: CPU-DPU

* CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)

H CMU-SAFARI / prim-benchmarks ®Unwatch ~ 2 Y7 star 1 % Fork O

<> Code () Issues {1 Pull requests (*) Actions ("] Projects [Wiki) Security |~ Insights 51 Settings

¥ main + prim-benchmarks / Microbenchmarks / CPU-DPU / Go to file Add file ~
Juan Gomez Luna PrIM -- first commit 3de4bs9 7 days ago XY History
dpu PrIM -- first commit 7 days ago
host PrIM -- first commit 7 days ago
support PrIM -- first commit 7 days ago
Makefile PrIM -- first commit 7 days ago
run.sh PrIM -- first commit 7 days ago

SAFARI 83

DPU Kernel Launch

* dpu launch() launches a kernel onadpu_ set

- DPU_SYNCHRONOUS suspends the application until the
kernel finishes

- DPU_ASYNCHRONOUS returns the control to the application
* dpu sync ordpu status to check kernel completion

printf("Run program on DPU(s)

DPU_ASSERT (dpu_launch(dpu_set, DPU_SYNCHRONOUS));

What does the asynchronous execution enable?

Some ideas: h
* Task-level parallelism: concurrent execution of different kernels on
different DPU sets
(Concurrent heterogeneous computation on CPU and DPUs y

SAFARI 84

How to Pass Parameters to the Kernel?

* We can use serial and parallel transfers

* We pass them directly to the scratchpad memory of the

DPU
- Working RAM (WRAM): 64KB per DPU

* This is useful for input parameters and some results

~_host dpu_arguments_t DPU_INPUT_ARGUMENTS;
__host dpu_results_t DPU_RESULTS[NR_TASKLETS];

#ifdef SERIAL

DPU_FOREACH (dpu_set, dpu) {
DPU_ASSERT (dpu_copy_to(dpu, |"DPU_INPUT_ARGUMENTS", @, (const void x)&input_arguments[i], sizeof(input_arguments[0])));

i++;
¥
#else
DPU_FOREACH(dpu_set, dpu, i) {
DPU_ASSERT (dpu_prepare_xfer(dpu, &input_arguments[i]));
¥
DPU_ASSERT (dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, "DPU_INPUT ARGUMENTS",| 0, sizeof(input_arguments[@]), DPU_XFER_DEFAULT));

#endif

SAFARI 85

Recall: Vector Addition (VA)

* Our first programming example

* We partition the input arrays across:
- DPUs
- Tasklets, i.e., software threads running on a DPU

SAFARI

86

Programming a DPU Kernel (1)

* Vector addition

int main kernell() { Tasklet ID

unsigned int tasklet id = me() Size of vector tile processed by a DPU
uint32 t input_size dpu_bytes = DPU_INPUT_ARGUMENTS.size;
uint32_t input_size_dpu_bytes_transfer = DPU_INPUT_ARGUMENTS.transfer_size;

uint32 t base tasklet = tasklet id << BLOCK SIZE L0G2; MRAM addresses of arrays A and B
uint32_t mram_base_addr_A = (uint32_t)DPU_MRAM_HEAP_POINTER;
uint32_t mram_base_addr_B = (uint32_t) (DPU_MRAM_HEAP_POINTER + input_size_dpu_bytes_transfer);

T *xcache_A
T *cache_B

(T %) mem_alloc(BLOCK_SIZE); .
(T %) mem_alloc(Lock size); VRAM allocation

for(unsigned int byte_index = base_tasklet; byte_index < input_size_dpu_bytes; byte_index += BLOCK_SIZE * NR_TASKLETS){

uint32_t 1_size_bytes = (byte_index + BLOCK_SIZE >= input_size_dpu_bytes) ? (input_size_dpu_bytes - byte_index) : BLOCK_SIZE;

mram_ptr void constx)(mram_base_addr_A + byte_index), cache_A, 1_size_bytes); MRAM-WRAM DMA
mram_ptr void constx)(mram_base_addr_B + byte_index), cache_B, 1_size_bytes);|{ransfers

mram_read (
mram_read (

(|
(_

vector_addition(cache_B, cache_A, 1_size_bytes >> DIV); | \/ector addition (see next slide)

mram_write(cache_B, (__mram_ptr void#)(mram_base_addr_B + byte_index), 1_size_bytes); | \WRAM-MRAM DMA transfer
}

return 0;

SAFARI

Programming a DPU Kernel (I1)

* Vector addition

static void vector_addition(T xbufferB, T xbufferA, unsigned int 1_size) {

for (unsigned int i = 0; i < 1_size; i++){
bufferB[i] += bufferA[i];
}

SAFARI

88

Intra-DPU Synchronization

Synchronization Primitives

e A taskletis the software abstraction of a hardware
thread

* Each tasklet can have its
- Tasklets can also share data in WRAM by sharing pointers

* Tasklets within the same DPU can synchronize

- Mutual exclusion
* mutex lock(); mutex_unlock();

- Handshakes
* handshake wait for(); handshake notify();

- Barriers
* barrier wait();
- Semaphores
* sem give(); sem take();

SAFARI

Parallel Reduction (1)

* Tasklets in a DPU can work together on a parallel
reduction

TasAlet 3

SAFARI

91

Parallel Reduction (II)

* Each tasklet computes a local sum

Al0]

Tdsklet O

TastIet 1

Tasklet 2

Tasklet 3

A[N-1]

Local
Sum

Local
Sum

Sum

Local
Sum

Local
Sum

SAFARI

Parallel Reduction (llI)

* Each tasklet computes a local sum

for(unsigned int byte_index = base_tasklet; byte_index < input_size_dpu_bytes; byte_index += BLOCK_SIZE x NR_TASKLETS){
uint32_t 1_size_bytes = (byte_index + BLOCK_SIZE >= input_size_dpu_bytes) ? (input_size_dpu_bytes - byte_index) : BLOCK_SIZE;
mram_read((__mram_ptr void constx)(mram_base_addr_A + byte_index), cache_A, 1_size_bytes);

1_count += reduction(cache_A, 1_size bytes >> DIV); | Accumulate in a local sum
I

message [tasklet_id] = 1_count; | CopV local sum into WRAM

SAFARI 93

Final Reduction

* A single tasklet can perform the final reduction

for(unsigned int byte_index = base_tasklet; byte_index < input_size_dpu_bytes; byte_index += BLOCK_SIZE x NR_TASKLETS){
uint32_t 1_size_bytes = (byte_index + BLOCK_SIZE >= input_size_dpu_bytes) ? (input_size_dpu_bytes - byte_index) : BLOCK_SIZE;
mram_read((__mram_ptr void constx)(mram_base_addr_A + byte_index), cache_A, 1_size_bytes);

1_count += reduction(cache_A, 1_size_bytes >> DIV); | Accumulate in a local sum
}

message [tasklet_id] = 1_count; CoEi local sum into WRAM |

barrier_wait(&my_barrier);| Barrier synchronization

if(tasklet_id == 0){
#pragma unroll
for (unsigned int each_tasklet = 1; each_tasklet < NR_TASKLETS; each_tasklet++){
message[0] += message[each_taskletl; Sequential accumulation
}

result->t_count = messagel0];

SAFARI 94

Vector Reduction: Naive Mapping

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

8+9

iterations

e
\

|
i

SAFARI

95

Using Barriers: Tree-Based Reduction

* Multiple tasklets can perform a tree-based reduction
- After every iteration tasklets synchronize with a barrier
- Half of the tasklets retire at the end of an iteration

barrier_wait(&my_barrier);

#pragma unroll
for (unsigned int offset = 1; offset < NR_TASKLETS; offset <<= 1){

if((tasklet_id & (2xoffset - 1)) == 0){

message [tasklet _id] += messageltasklet id + offset]; “offset” tasklets working
}

barrier_wait(&my_barrier); Barrier synchronization
+

A handshake-based tree-based reduction is also possible.
We can compare single-tasklet, barrier-based,
and handshake-based versions*

*Goémez-Luna et al., “Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture,”
SA FA R ’ https://arxiv.org/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf

Parallel Reduction on GPU

ETHzurich

Search Space of Parallel Reduction

Dy Tile Distribute (Figure 1(b)) @ D Dya D Grid

D Stride Distribute (Figure 1(b)) @ ™) s Ve 2B Block
3 r

Dya Global Atomic Tile Distribute @ 4 s o/ Thread

Dsa Global Atomic Stride Distribute (a) (b) (c) (d) (e)

Dia Dra Dra Dra Dya Grid
V Cooperative (Figure 1(c))

Dy v Dy Vs Dy v, Dy Va2 Dy Vaus Block
V, Cooperative + Shuffle - o

S S S S Thread

S
(f) (9) (h) (i) (i)
Vaz Shared Memory Atomic 2 (Figure 3(b)) . o, Den o, Grid
A LA
Vazs Shared Memory Atomic 2 + Shuffle ¢ & : 7 Y g Block
AL A2
$ Scalar (Figure 1(a)) ,
. Thread

(k) () (m) (n) (o) (p) GPU

Codelets and Variants Code Versions Hierarchy

Var Shared Memory Atomic 1 (Figure 3(a))

Over 85 different versions possible!

N

_— Gamade Gonzalo et al., “"Automatic Generation of Warp-Level Primitives and Atomic Instructions for Fast and P

HetSys Course: Lecture 6: Parallel Patterns: Reduction (Spring 2022)

201 views * Premiered Apr 19, 2022 5 15 &P DISLIKE ~> SHARE % CLIP =+ SAVE
@ Onur Mutlu Lectures SUBSCRIBED Q
24.1K subscribers kd

<«

Project & Seminar, ETH Ziirich, Spring 2022
Hands-on Acceleration on Heterogeneous Computing Systems (
https://safari.ethz.ch/projects_and_s...)

SA FA RI https://youtu.be/XpOHHpcDwUc

https://youtu.be/Xp0HHpcDwUc

UPMEM SDK Documentation

@A / User Manual

User Manual

Getting started

e The UPMEM DPU toolchain

CrEED o Notes before starting

The toolchain purpose

o

o dpu-upmem-dpurte-clang

The UPMEM DPU toolchain = Limitations
Installing the UPMEM DPU toolchain

[e]

The DPU Runtime Library
Hello World! Example o The Host Library
dpu-lldb

[e]

e |[nstalling the UPMEM DPU toolchain
Introduction

o Dependencies

Tasklet management and synchronization

Memory management = Python

Standard library functions o Installation packages

Exceptions . . .

= Installation from tar.gz binary archive
Controlling the execution of DPUs from

host applications o Functional simulator

Communication with host applications e Hello World! Example

Advanced Features of the Host API
o Purpose

Logging

o Writing and building the program

SA FAR, https://sdk.upmem.com/2023.1.0/

https://sdk.upmem.com/2023.1.0/

Microbenchmarking of
UPMEM PIM

DPU Pipeline

* In-order pipeline

- Up to 425 MHz
* Fine-grain multithreaded

- 24 hardware threads
* 14 pipeline stages

: Thread selection
: Instruction fetch
- READOP: Register file
: Operand formatting

- ALU: Operation and WRAM
- MERGE: Result formatting

SAFARI

27 1

DISPATCH)

FETCH1

FETCH2

FETCH3

READOP1

READOP2

<>

24-KB
IRAM

To the DMA engine |

gister File

READOP3

FORMAT

ALU1

ALU2

ALU3

ALU4

ipeline(Re

MERGE1

P

—_———————)

r

MERGE2

64-KB
WRAM

Arithmetic Throughput: Microbenchmark

e Goal

- Measure the maximum arithmetic throughput for different
datatypes and operations

e Microbenchmark

- We stream over an array in WRAM and perform read-modify-write
operations

Experiments on one DPU

We vary the number of tasklets from 1 to 24
Arithmetic operations: add, subtract, multiply, divide
Datatypes: int32, int64, float, double

* We measure cycles with an accurate cycle counter that the
SDK provides

- We include WRAM accesses (including address calculation) and
arithmetic operation

SAFARI 101

Microbenchmark for INT32 ADD Throughput

1 #define SIZE 256
v 2 1int* bufferA = mem alloc(SIZE * sizeof(int));
S 3 for(int i = 0; i < SIZE; i++){
5 4 int temp = bufferA[i];
.§ 5 temp += scalar;
V) 6 bufferA[i] = temp;
7}
1 move r2, O
o5 2 .LBBO 1:
lg > 3 1lsl add r3, r0, r2, 2
5 5 4 1w r4, r3, 0
5= 5 add r4, r4, rl
L
g = 6 sw r3, 0, rd
05 7 add r2, r2, 1
~— 8 jneq r2, 256, .LBBO 1

SAFARI 102

Arithmetic Throughput: 11 Tasklets

70 70
(a) INT32 (1DPU)

o]

o

D

o
1

(%
o
1
(%))
o
1

KEY OBSERVATION 1

The arithmetic
throughput of a DRAM
Processing Unit
saturates at 11 or more
tasklets.

I
o
1
N
o
1

30 A

w
o
1

N
o
1

Arithmetic Throughput (MOPS)
Arithmetic Throughput (MOPS)

This observation is
consistent for different
datatypes (INT32, INT64,
UINT32, UINT64, FLOAT,
DOUBLE) and operations
(ADD, SUB, MUL, DIV).

(2}
1
(2}

N
1
I

N
1
N

Arithmetic Throughput (MOPS)
w

Arithmetic Throughput (MOPS)
w

=
=

0

N 1N N O A N NN O A M
= A = a4 N N

#Tasklets

SAFARI 103

Arithmetic Throughput: ADD/SUB

(a) INT32 (1 DPU) " (b) INT64 (1 DPU)

P I DD DD i i .

~N
o

o)
o
~
S
g
e

I
)
>
,
>
)
S
S
>
S
)
»
)
S

) gkl INT32 ADD/SUB are
2 oul 17% faster than

[

o
~
L

w

o
1

D
o
>
| £
>
|w)
)

w
o
L
2
S

Arithmetic Throughput (MOPS)
b
wm
c
on)
Arithmetic Throughput (MO
i

o] A = INT64 ADD/SUB

20 4 =~y -D-MUL
=y =0=DIV

N
o
~

L

[uny
o o
1 1 1 1 1 1
%
L 3
>
)
)
>
3
>
)

M NN~ OO A MmO N ™~ O 1 M T N 1N N O - m n ™~ O = o
I v = = = N - I = = N
#Tasklets #Tasklets

: : : frequencyppy
Arithmetic Throughput (inOPS) = ———
#instructions
¢¢
iasklets Masklets

SAFARI 104

Arithmetic Throughput: #Instructions

* Compiler explorer: https://dpu.dev

} faefine BLOCK sTZE 1024 TEETT A OM010 O.Jaout B.AX0: Btext @/ O\
2 .
X 1 Benchmark 32bits:
3 typedef int T; , S) .
4 void Benchmark 32bits(T *cache A, T scalar) { ; . move rzZ,
5 for (int i = 0; i < BLOCK_SIZE / sizeof(T); i++)({ . -LBB _(.1 — - — \
6 ////// WRAM READ ////// . 15 _: ;‘3,Or ; ¥2,
7 T temp = cache A[i]; . azdrr; rr; .
8 14 ’
9 temp += scalar; // ADD ; Szdr3; 0,2r41
a r2, r2,
10
11 ////// WRAM WRITE ////// 12 \?neq r; 256, .LBBO_1
i jump r
12 cache_A = temp;
13 } . ; 11 Benchmark 64bits:
14 } 12 move rl, 0
15 13 .LBB1 1:
16 typedef long T long; 12 (izlgzddrz‘lroror rl, 3 \
17 void Benchmark 64bits(T_long *cache A, T long scalar) ({ a ; ; ;
18 for (int i = 0; i < BLOCK_SIZE / sizeof(T long); i++){ 15 add r7, r7, r -
19 ////// WRAM READ ////// 1; ad C4r6(,) rzé r
20 T long temp = cache A[i]; i zddrr; ;l X
21 0 .
22 temp += scalar; // ADD 2(1) \J'neq r;: 128, .LBBl 1 /
23 jump r23
24 \
s 6 instructions in the 32-bit ADD/SUB microbenchmark
27 1 g o . .
7 instructions in the 64-bit ADD/SUB microbenchmark
J

SAFARI 105

https://dpu.dev/

Arithmetic Throughput: ADD/SUB

70

~N
o

(a) INT32 (1 DPU) (b) INT64 (1 DPU)
5 60 - & 00
o R o 0
s, A N R = INT32 ADD/SUB are
3 £ 3 a
£ 40 | - —&—ADD || £ 40 | a 17% faster than
3 v= susB 3 o
£ 30 - § £ 30 . a —A—ADD
A Y Do) 2o 4 aor INT64 ADD/SUB
24 ia 2 50 - S =O-muL
£ £ = =O=DIV
<1 <10 {4

#Tasklets #Tasklets

| Peak throughput at 11 tasklets. I
One instruction retires every cycle when the pipeline is full

frequencyppy

#instructions

Arithmetic Throughput (in OPS) =
L 64-bit ADD/SUB: 7 instructions — 50.00 MOPS J

at frequencyppy = 350 MHz

SAFARI 106

Arithmetic Throughput: MUL/DIV

~
o

0
(a) INT32 (1 DPU) ’ (b) INT64 (1 DPU)

o]
o
D
o

Huge throughput
JLSEESRIORRe difference between
ADD/SUB and MUL/DIV

(%
o
1
~
L
(%))
o
1

iy
o
1
~
¢

~\

DPUs do not have
a 32-bit multiplier

Arithmetic Throughput (MOPS)
L

4 n

4 c
o)

Arithmetic Throughput (MOPS)

N N ™~ A MmO N ™~ O
R B o B B B B o

#Tasklets

)
; MUL/DIV b

(d) DOUBLE (1 DPU)

g 251 implementation is based
= = . .
= y = on an instruction that
< \ SU < . . o
5] A ol 5 K performs bit shifting and
= 2\ —0—DIV £ 2) ey o .
< \ 3, A g addition in 1 cycle
€ IS A .
.] 48 oo (MUL/DIV take a
) - maximum of 32

mmw~ oD nynagQ R B R instructions)
#Tasklets #Tasklets k)

SAFARI 107

Arithmetic Throughput: Native Support

Arithmetic Throughput (MQP

Arithmetic Throughput (MQ

N
1

w
1

(c) FLOAT (1 DPU)

A —A—ADD

/\ SUB
/\ =O-MUL
/'\ =0=DIV

SAFARI

Arithmetic Throughput (MQR

30 A

(b) INT64 (1 DPU)

#Tasklets

(d) DOUBLE (1 DPU)

KEY OBSERVATION 2

* DPUs provide native
hardware support for 32-
and 64-bit integer
addition and subtraction,
leading to high throughput
for these operations.

* DPUs do not natively
support 32- and 64-bit
multiplication and
division, and floating
point operations. These
operations are emulated by
the UPMEM runtime
library, leading to much
lower throughput.

108

Microbenchmark: Arithmetic Throughput

* Arithmetic throughput for different operations and datatypes

H CMU-SAFARI/ prim-benchmarks ® Unwatch ~ 2 Y7 star 2 % Fork 1

<> Code (*) Issues {0 Pull requests (») Actions [1] Projects [wiki () Security [~ Insights 51 Settings

¥ main v prim-benchmarks / Microbenchmarks / Arithmetic-Throughput / Go to file Add file ~
Juan Gomez Luna PrIM -- first commit 3desbs9 9 daysago O History
dpu PrIM -- first commit 9 days ago
host PrIM -- first commit 9 days ago
support PrIM -- first commit 9 days ago
Makefile PrIM -- first commit 9 days ago
run.sh PrIM -- first commit 9 days ago

SAFARI

109

DPU: WRAM Bandwidth
PIM Chip

-

4 DISPATCH)|

FETCH1
FETCH?2
FETCH3
READOP1
READOP?2
READOP3
FORMAT (")

ALU1

ALU2 64-KB

ALU3 4>
T WRAM

MERGE1
MERGE2 - ~

c__:;ister File

v

ipeline(Re

[

g

SAFARI 110

WRAM Bandwidth: Microbenchmark

e Goal
- Measure the WRAM bandwidth for the STREAM benchmark

e Microbenchmark

- We implement the four versions of STREAM: COPY, ADD,
SCALE, and TRIAD

- The operations performed in ADD, SCALE, and TRIAD are
addition, multiplication, and addition+multiplication,
respectively

- We vary the number of tasklets from 1to 16
- We show results for 1 DPU

 We do not include accesses to MRAM

SAFARI 111

STREAM Benchmark in WRAM

, _ _ . 8 bytes read, 8 bytes written,
for(int 1 = 0; 1 < SIZE; 1i++){ no arithmetic operations

bufferB[i] = bufferA[i];

}

16 bytes read, 8 bytes written,
for(int 1 = 0; i < SIZE; i++){ ADD

bufferC[i] = bufferA[i] + bufferB[i];

}

8 bytes read, 8 bytes written,
for(int 1 = 0; i < SIZE; i++){ MUL

bufferB[i] = scalar * bufferA[i];

}

)) _ 16 bytes read, 8 bytes written,
for(int 1 = 0; 1 < SIZE; i++){ MUL, ADD

bufferC[1i] bufferA[i] + scalar * bufferB[i];

}
SAFARI 112

WRAM Bandwidth: STREAM

3000
STREAM (WRAM, INT64, 1DPU) O—O—OO—O—CO0—X%
S & 2500 - O 2,818.98
i -0-COPY O
o;c S 2000 - | -A-ADD & 1,682.46
g -3-SCALE 9 N—/\N—"—"+—"+—\
e
@ + 1500 - TRIAD A K A1
< 3 /\
= -2 1000 - O A1
3 S O /\
@ @ 500 - oA
A, 42.03
0 | r r r r Y L L T el el el el V)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
HTasklets

How can we estimate the bandwidth?

Assuming that the pipeline is full, and Bytes is the number of
bytes read and written:

B) ~ Bytes X frequencyppy

WRAM Bandwidth (ing

#Hinstructions

SAFARI 113

WRAM Bandwidth: COPY

STREAM (WRAM, INT64, 1DPU)
T o -0—-COPY
£ S 2000 - | -A-ADD
s = O-SCALE
8 + 1500
©
£ 3
© 5 1000 -
2 5
oo 500 H
42.03
0 FPY P Y Y Y Yy Y Y)
Tud
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

HTasklets

COPY executes 2 instructions (WRAM load and store).
With 11 tasklets, 11 x 16 bytes in 22 cycles:

B MB
WRAM Bandwidth (in E) = Z,SOOTat 350 MHz

SAFARI 114

WRAM Bandwidth: ADD

STREAM (WRAM, INT64, 1DPU)
s - 2500 +
T o -0-COPY
& S 2000 4 | -A-ADD
s = O-SCALE
8 + 1500
©
£ 2
& 5 1000
2 %
1 o« 500
0 2 T 2 D 2o I 2. IR 2. IR o I o R 2o RN o IR o RN (o RN () N G RN G RN)
e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#Tasklets

B Bytes X frequenc
WRAM Bandwidth (in —) _ Bytes X frequencyppy
S #instructions

ADD executes 5 instructions (2 1d, add, addc, sd).
With 11 tasklets, 11 x 24 bytes in 55 cycles:

B MB
WRAM Bandwidth (m§> = 1,680Tat 350 MHz

SAFARI 115

WRAM Bandwidth: Access Patterns

* All 8-byte WRAM loads and stores take one cycle when
the DPU pipeline is full

KEY OBSERVATION 3

The sustained bandwidth provided by the DPU’s internal Working
memory (WRAM) is independent of the memory access pattern
(either streaming, strided, or random access pattern).

All 8-byte WRAM loads and stores take one cycle, when the DPU’s
pipeline is full (i.e.,, with 11 or more tasklets).

* Microbenchmark: c[a[i]]=b[a[i]];
- Unit-stride: a[i]=a[i-1]+1;
- Strided: a[i]=a[i-1]+stride;
- Random: af[i]=rand();

SAFARI 116

Microbenchmark: STREAM and WRAM

* STREAM benchmark and WRAM access patterns

H CMU-SAFARI/ prim-benchmarks ® Unwatch ~ 2 Y7 Star 2 % Fork 1
<> Code (*) Issues Il Pull requests (*) Actions ("] Projects [wiki () Security |~ Insights 51 Settings
¥ main v prim-benchmarks / Microbenchmarks / STREAM / Go to file Add file ~
¥ main v prim-benchmarks / Microbenchmarks / WRAM / Go to file Add file ~

Juan Gomez Luna PrIM -- first commit 3de4bs9 9 days ago O History
dpu PrIM -- first commit 9 days ago
host PrIM -- first commit 9 days ago
support PrIM -- first commit 9 days ago
Makefile PrIM -- first commit 9 days ago
run.sh PrIM -- first commit 9 days ago

SAFARI 117

DPU: MRAM Latency and Bandwidth

PIM Chip
-
)
c
= 64-MB
Q) | 64 bits
- P DRAM
S (I\E;RII:I)
64-KB =
wraM €% ©
./
_

SAFARI

118

MRAM Bandwidth

e Goal

- Measure MRAM bandwidth for different access patterns

e Microbenchmarks

* mram read();
e mram write();

- Latency of a single DMA transfer for different transfer sizes

]

AVl benchmark
« COPY, COPY-DMA
e ADD, SCALE, TRIAD

- Strided access pattern
* Coarse-grain strided access
* Fine-grain strided access

- Random access pattern (GUPS)

* We do include accesses to MRAM

SAFARI

119

MRAM Read and Write Latency (1)

1000

Bandwidth (MB/s)

[EEN

628.23 -

=
o
|

MRAM Read -

- 128

T T T
< 0 O N <
in «+
o
i

2048

Data transfer size (bytes)

B
MRAM Bandwidth (in E)

2048

512

32

Latency (cycles)

1000

633.22

100

10

Bandwidth (MB/s)

1

MRAM Write -

2048

512

- 128

Latency (cycles)

32

00

Ssize

16

32
64
8
6
2

<
N 1N I
- &N "N O

i

2048

Data transfer size (bytes)

X frequencyppy

MRAM Latency

We can model the MRAM latency with a linear expression

MRAM Latency (in cycles) = a + BXsize

In our measurements, f equals 0.5 cycles/byte.
Theoretical maximum MRAM bandwidth = 700 MB/s at 350 MHz

SAFARI

120

MRAM Read and Write Latency (lI)

___ 1000 628.23 1000 633.22
“ MRAM Read - 2048 . @ MRAM Write - 2048
s S S s
< 100 L 512 % = 1001 - 512 %
E N f N
S o B o
Z 0 128 g 2 10 L 128 5
S 85 5 8
0 1 T T T T T T T T 32 o 1 T T T T | | | | 32
c0 O < 0 O o < o0 e} (o] AN < 0 O o < o0
— o (o) (g} LN — o < — on (\o} (@] LN i o <
Data transfer size (bytes) Data transfer size (bytes)

KEY OBSERVATION 4

* The DPU’s Main memory (MRAM) bank access latency increases

linearly with the transfer size.
* The maximum theoretical MRAM bandwidth is 2 bytes per cycle.

SAFARI 121

MRAM Read and Write Latency (lII)

1000

Bandwidth (MB/s)

[EEN

628.23

=
o
|

MRAM Read

<
N
o

Data transfer size (bytes)

2048

- 2048

- 512

- 128

32

Latency (cycles)

1000

Bandwidth (MB/s)

=

PROGRAMMING RECOMMENDATION 1
For data movement between the DPU’s MRAM bank and the WRAM, use

large DMA transfer sizes when all the accessed data is going to be

used.

633.22

=
o
|

MRAM Write -

- 128

00

16
32
64

N <
—
n O

—

Data transfer size (bytes)

Read and write accesses to MRAM are symmetric

The sustained MRAM bandwidth increases
with data transfer size

2048

2048

Latency (cycles)

32

SAFARI

122

MRAM Read and Write Latency (IV)

1000 628.23 1000 633.22

g MRAM Read - 2048 Tﬂ\ g MRAM Write - 2048 %\
= 100 1 0y S = 100 1 S
L O B (®]
E> P~ pe
— (@] o— O
Z 0 128 g 2 10 L 128 5
4= c 4+
g S8 g
1 T T T T T T T T 32 1 T T T | | | | | 32
c0 (o) (] < 0 O o < o0 e} (o] AN < 0 O o < o0
— o (o) (g} LN — o < — on (\o} (@] LN — o <
Data transfer size (bytes) Data transfer size (bytes)

MRAM latency changes slowly between 8 and 128 bytes

For small transfers, the fixed cost (@) dominates the variable cost (5 Xxsize)

PROGRAMMING RECOMMENDATION 2

For small transfers between the MRAM bank and the WRAM, fetch more bytes
than necessary within a 128-byte limit. Doing so increases the likelihood of

finding data in WRAM for later accesses (i.e., the program can check whether the
desired data is in WRAM before issuing a new MRAM access).

SAFARI 123

MRAM Read and Write Latency (V)

63

1000 J 1000

MRAM Read 2048 2048

MRAM Write

-
o
o
=
o
o

- 512

[EEN

o
|

=

o
|

L 128 L 128

Bandwidth (MB/s)
Latency (cycles)

Bandwidth (MB/s)

[EEN

32

=

32

< <
N 1N «+H N 1N «H
o o

1
2048
1
2048

Data transfer size (bytes) Data transfer size (bytes)

2,048-byte transfers are only 4% faster than 1,024-byte transfers

Larger transfers require more WRAM, which may limit the number of tasklets

PROGRAMMING RECOMMENDATION 3

Choose the data transfer size between the MRAM bank and the WRAM based
on the program’s WRAM usage, as it imposes a tradeoff between the sustained
MRAM bandwidth and the number of tasklets that can run in the DPU (which is
dictated by the limited WRAM capacity).

SAFARI 124

MRAM Bandwidth

* Goal
- Measure MRAM bandwidth for different access patterns

e Microbenchmarks

- Latency of a single DMA transfer for different transfer sizes
* mram read();
* mram write();

[— STREAM benchmark]

* COPY, COPY-DMA
« ADD, SCALE, TRIAD
- Strided access pattern
* Coarse-grain strided access
* Fine-grain strided access
- Random access pattern (GUPS)

* We do include accesses to MRAM

SAFARI 125

STREAM Benchmark in MRAM

// COPY
// Load current MRAM block to WRAM

for(int i = 0; i < SIZE; i++){

// Write WRAM block to MRAM

// COPY-DMA
// Load current MRAM block to WRAM

// Write WRAM block to MRAM

SAFARI

126

STREAM Benchmark: COPY-DMA

1STREAM (MRAM, INT64, 1DPU)

~
o
o

o
o

-0-COPY-DMA
-0-COPY
-/~-ADD
-3-SCALE
TRIAD

N W B U1 O
o O
o O
1

Sustained MRAM
Bandwidth (MB/s)

42.01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
HTasklets

The sustained bandwidth of COPY-DMA is close to

the theoretical maximum (700 MB/s): ~1.6 TB/s for 2,556 DPUs

(COPY-DMA saturates with two tasklets, even though)
L the DMA engine can perform only one transfer at a time)
f Using two or more tasklets guarantees that there is always)
L a DMA request enqueued to keep the DMA engine busy)

SAFARI 127

STREAM Benchmark: Bandwidth Saturation (1)

~
o
o

1STREAM (MRAM, INT64, 1DPU)

o
o

-0-COPY-DMA
-0-COPY
-/~-ADD
-3-SCALE
TRIAD

N W B U1 O
o O
o O

Sustained MRAM
Bandwidth (MB/s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
HTasklets

COPY and ADD saturate at 4 and 6 tasklets, respectively

SCALE and TRIAD saturate at 11 tasklets

The latency of MRAM accesses becomes longer than the pipeline IatencyN
after 4 and 6 tasklets for COPY and ADD, respectively

. J

The pipeline latency of SCALE and TRIAD is longer than the MRAM
latency for any number of tasklets (both use costly MUL)

. J

SAFARI 128

STREAM Benchmark: Bandwidth Saturation (1)

700 {STREAM (MRAM, INT64, 1DPU)
S © 600 -
< o
OEC S 500 - -0-COPY-DMA
=z S0 - ~o-COPY
A ~A-ADD
E E 300 - 3-SCALE
§ 2 200 TRIAD

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
HTasklets

KEY OBSERVATION 5

 When the access latency to an MRAM banKk for a streaming benchmark (COPY-
DMA, COPY, ADD) is larger than the pipeline latency (i.e., execution latency of
arithmetic operations and WRAM accesses), the performance of the DPU saturates at a

number of tasklets smaller than 11. This is a memory-bound workload.

* When the pipeline latency for a streaming benchmark (SCALE, TRIAD) is larger
than the MRAM access latency, the performance of a DPU saturates at 11 tasklets.
This is a compute-bound workload.

SAFARI 129

MRAM Bandwidth

* Goal
- Measure MRAM bandwidth for different access patterns

* Microbenchmarks
- Latency of a single DMA transfer for different transfer sizes
* mram read();
e mram write();
- STREAM benchmark
 COPY, COPY-DMA
* ADD, SCALE, TRIAD
(- Strided access pattern)
* Coarse-grain strided access
* Fine-grain strided access
.- Random access pattern (GUPS) D

* We do include accesses to MRAM

SAFARI 130

Strided and Random Access to MRAM

mram read((__mram ptr void const*)mram address A, bufferA,
SIZE * sizeof(uint64 t));
mram read((__mram ptr void const*)mram address B, bufferB,

SIZE * sizeof(uint64 t));

for(int i = 0; i < SIZE;|i += stride)({
bufferB[i] = bufferA[i];
}

mram write(bufferB, (_mram ptr void*)mram address B,
SIZE * sizeof(uint64 t));

for(int i = 0; i < SIZE; i += stride)({
int index = 1 * sizeof(uint64 t);

mram read((_mram ptr void const*)(mram address A ¥ indeX), buffera,
sizeof (uint64 t));

mram write(bufferA, (mram ptr void*)(mram address B # index),
sizeof (uint64 t));

}
SAFARI 131

Strided and Random Accesses (1)

700 90
(a) Coarse-grained Strided (MRAM, 1 DPU)
S 600 ES 80 1
S 500 A 2 .
© O
@ @ __ A
S 10 400 == Coarse-grained DMA - 1 tasklet = L50 A
3 g =O—Coarse-grained DMA - 2 tasklets I g 40 |
S £ 300 - =/ Coarse-grained DMA - 4 tasklets > —
© Coarse-grained DMA - 8 tasklets g 30 A 0
GCJ 200 - =0-Coarse-grained DMA - 16 tasklets c =3¢—Fine-grained DMA - 1 tasklet
‘© © 20 4 | =©O=Fine-grained DMA - 2 tasklets
+ +
3 100 A \] 3 ~/x—Fine-grained DMA - 4 tasklets X
%) ‘ 2 10 Fine-grained DMA - 8 tasklets
=0O—Fine-grained DMA - 16 tasklets
0 T T T T T 0 T T T T T T T T T T
.9.‘..9 — N S 00 VW & S 0 VW N T W W € &
— ™ o) ~ N — ~ < o} a4 M OV N 1N 4 & 9 9D o ¢
— (o] n o o o — (@] N o o o o] =)
Stride Stride € =

Large difference in maximum sustained bandwidth between
coarse-grained and fine-grained DMA

Coarse-grained DMA uses 1,024-byte transfers,
while fine-grained DMA uses 8-byte transfers

Random access achieves very similar maximum sustained

bandwidth to fine-grained strided approach

SAFARI 132

Strided and Random Accesses (Il)

700 90
(a) Coarse-grained Strided (MRAM, 1 DPU)
- 622.36 <
5 600 A]
S S
3 3
S 500 - =
© O
@ @ __
S o 400 1 =¥ Coarse-grained DMA - 1 tasklet =2
< g —Q—Coarse-grained DMA - 2 tasklets < g
S £ 300 - =/ Coarse-grained DMA - 4 tasklets > —
o Coarse-grained DMA - 8 tasklets B
g 200 =0O—Coarse-grained DMA - 16 tasklets c
2 100 a
0 0

64
51
102
204
409

Stride

80 A

(b) Fine-grained Strided & Random (MRAM, 1 DPU)

—=O—Fine-grained DMA - 2 tasklets
~{x—Fine-grained DMA - 4 tasklets
Fine-grained DMA - 8 tasklets
=0O—Fine-grained DMA - 16 tasklets
T T T T T T T

A
=3¥—Fine-grained DMA - 1tasklet 0
X

T T T
" N S 00 W & T 0 W N S 0 W € &
- M © N 1 49 & g O c ¥

- N In O © O S
— N < c:)
. c O
Stride =

The sustained MRAM bandwidth of coarse-grained DMA

decreases as the stride increases

r

_

The effective utilization of the transferred data decreases
as the stride becomes larger (e.g., a stride 4 means that only one
fourth of the transferred data is used)

J

SAFARI

133

Strided and Random Accesses (lll)

700 90
(a) Coarse-grained Strided (MRAM, 1 DPU)
- 622.36 < 80
5 600 A +
S S
% 500 % .
= & 60 -
fai] o
S o 400 1 =3¢—Coarse-grained DMA - 1 tasklet = L50
é g =Q—Coarse-grained DMA - 2 tasklets é g 40 -
S <300 - Coarse-grained DMA - 4 tasklets S =)é ae)é)e)é)é)é)é)é)é)é)é)(
o Coarse-grained DMA - 8 tasklets B 30 A <>
2 20 - ~O—Coarse-grained DMA - 16 tasklets < =¥—Fine-grained DMA - 1tasklet
© © 20 { |=0—Fine-grained DMA - 2 tasklets
%] 3 Fine-grained DMA - 4 tasklets X
3 100 - . .
%) 2 10 Fine-grained DMA - 8 tasklets
- @l =0O—Fine-grained DMA - 16 tasklets
0 T ".'—.f 0 T T T T T T T T T T
O N o ® W N ¥ v A N S 00 W & < 0 W N < 0 W € &
— ™ O ~ ! — ~ < bex) - (32] o o~ LN — N < [e2] O A
— (o] n o o o — (@] N o o o o]
. - & 9 ' s & 3 €3
Stride Stride e =

For a stride of 16 or larger, the fine-grained DMA approach

achieves higher bandwidth

" With stride 16, only one sixteenth of the maximum sustained A
bandwidth (622.36 MB/s) of coarse-grained DMA
is effectively used, which is lower than
\ the bandwidth of fine-grained DMA (72.58 MB/s))

SAFARI 134

Strided and Random Accesses (IV)

700 90
(a) Coarse-grained Strided (MRAM, 1 DPU) (b) Fine-grained Strided & Random (MRAM, 1 DPU)

ioToT0 0070 0 0T070%0 0 o 5e
OO0

622.36
600 -

500 A

"o 400 A
~
om

2300 .

=3¢=Coarse-grained DMA - 1 tasklet

=Q=—Coarse-grained DMA - 2 tasklets
Coarse-grained DMA - 4 tasklets
Coarse-grained DMA - 8 tasklets

=0-Coarse-grained DMA - 16 tasklets

XK

=3¢—Fine-grained DMA - 1 tasklet

20 4 | =©=Fine-grained DMA - 2 tasklets

Fine-grained DMA - 4 tasklets

10 ~ Fine-grained DMA - 8 tasklets

=0O=Fine-grained DMA - 16 tasklets
T

200 ~

X <

Sustained MRAM Bandwidth
Sustained MRAM Bandwidth
B

77.86

O 0 T T T T T T T T T T T T IE
- N © < " N S 00 W & T 0 W N S 0 W —
— %) %) ~ LN — N < D A4 M O N 1N d &8 g o0 c ¥
- L o o o - N In O © O 55
i o < — (V] < c IG)
.) S
Stride Stride e =

PROGRAMMING RECOMMENDATION 4

* For strided access patterns with a stride smaller than 16 8-byte
elements, fetch a large contiguous chunk (e.g., 1,024 bytes) from a

DPU’s MRAM bank.
* For strided access patterns with larger strides and random access
patterns, fetch only the data elements that are needed from an

MRAM bank.

SAFARI 135

Microbenchmark: Strided and Random

e Strided and random accesses to MRAM

H CMU-SAFARI / prim-benchmarks @ Unwatch ~ 2 % Star 2 % Fork 1

<> Code (©) Issues 10 Pull requests (») Actions ("] Projects 1] wiki) Security |~ Insights 5} Settings

¥ main + prim-benchmarks / Microbenchmarks / STRIDED / Go to file Add file ~

¥ main ~ prim-benchmarks / Microbenchmarks / Random-GUPS / Go to file Add file ~
Juan Gomez Luna PrIM -- first commit 3de4bs9 9 days ago Y History
dpu PrIM -- first commit 9 days ago
host PrIM -- first commit 9 days ago
support PrIM -- first commit 9 days ago
Makefile PrIM -- first commit 9 days ago
run.sh PrIM -- first commit 9 days ago

SAFARI 136

DPU: Arithmetic Throughput vs. Operational Intensity

PIM Chip
(6 . ~

N
)
J

DISPATCH
FETCH1
FETCH2
FETCH3
READOP1
READOP2 >
READOP3
FORMAT ()
ALU1

ALU2 -
ALU3 4P e 4>

. WRAM
MERGE1

\ MERGE2

- Y
SAFARI

64-MB
DRAM
Bank
(MRAM)

64 bits
<>

v

DMA Engine

ipeline|Register File

P

\—
4
L

Arithmetic Throughput vs. Operational Intensity (1)

e Goal

- Characterize memory-bound regions and compute-bound regions for
different datatypes and operations

 Microbenchmark

- We load one chunk of an MRAM array into WRAM
- Perform a variable number of operations on the data
- Write back to MRAM

* The experiment is inspired by the Roofline model*

* We define operational intensity (Ol) as the number of
arithmetic ogerations performed per byte accessed from
MRAM (OP/B)

* The pipeline latency changes with the operational intensity,
but the MRAM access latency is fixed

SA FA Rl *S. Williams et al., “Roofline: An Insightful Visual Performance Model for Multi-core Architectures,” CACM, 2009 1 3 8

Arithmetic Throughput vs. Operational Intensity (II)

int)input repeat : 1;

int repetitions = [input repeat >= 1.0 (
1.0 1 : (int) (1 / input repeat);

?
int stride = input repeat >= ?

mram read((mram ptr void const*)mram address A, bufferA, SIZE * sizeof(T));

ﬂnput_repeat greater or equzh
to 1indicates the (integer)
number of repetitions per input

for(int r = 0; r < repetitions; r++){
for(int i = 0; i < SIZE; i+=stride){
#ifdef ADD

bufferA[i] += scalar; element
#elif SUiufferA[i] - scalar; .i?put_repeaténmﬂerﬂmn1
#elif MUL indicates the fraction of elements
i that are updated
bufferA[i1] *= scalar;
#elif DIV
bufferA[i] /= scalar;
#endif
}
}

mram write(bufferA, (mram ptr void*)mram address B, SIZE * sizeof(T));

SAFARI 139

Arithmetic Throughput vs. Operational Intensity (111)

— 64.00 _64.00
T 32.00 2 3500 J| (b)INT32, MUL (1 DPU)
Eﬂ gns‘oo 7
o » 8.00 R R R R R R
& a- N - B 5
o O 4.00 - g Y 4 M
2 s
= = 200
g 2 100 @
ey = .
3 % 050 @ ® ©)
o o o
= £ 025 @
= £ 013 - @
Q 9]
£ £ 006
= NN T 003 q; “.‘
RN O RFD e ® > MY % PV LR > F W@ > x®
RCICEN AN VIR EEN NN NN KOOV IS NN ENGEN NIENEEN
Operational Intensity (OP/B) Operational Intensity (OP/B)

64.00 64.00

32.00 [() FLOAT, ADD (1 DPU) 32.00 [(d) FLOAT, MUL (1 DPU)

16.00 - 16.00

8.00 - 8.00 -

4.00 - 4.00 -

(1)

2.00 -
1.00
0.50 A
0.25 A
0.13 ~
0.06 -
0.03

2.00 A
1.00 -
0.50 -
0.25 A
0.13 A
0.06 -
0.03

Arithmetic Throughput (MOPS, log scale)
Arithmetic Throughput (MOPS, log scale)

We show results of arithmetic throughput vs. operational intensity for
(a) 32-bit integer ADD, (b) 32-bit integer MUL,

(c) 32-bit floating-point ADD, and (d) 32-bit floating-point MUL
(results for other datatypes and operations show similar trends)

SAFARI 140

Arithmetic Throughput vs. Operational Intensity (IV)

(

In the memory-bound R
region, the arithmetic
throughput increases with
. the operational intensity)

__64.00
32.00 A
16.00
8.00 -
4.00 -
2.00 1
1.00 -
0.50 -
0.25 -
0.13 -
0.06 -
0.03

e

(a) INT32, ADD (1 DPU)

cal

Compute-bound
region region [

In the compute-bound R
region, the arithmetic
throughput is flat at its
Operational Intensity (OP/B) K maXimum)

Arithmetic Throughput (MOPS, log s

Y o> o D © *x P
VN <y Vo v)) v N Vv
Q" O ¢ N > N

The throughput saturation point is the operational intensity
where the transition between

\the memory-bound region and the compute-bound region happensj

The throughput saturation point is as low as ¥ OP/B,

i.e., 1integer addition per every 32-bit element fetched

SAFARI 141

Arithmetic Throughput vs. Operational Intensity (V)

__64.00 __64.00
(9]
3 32,00 - (a) INT32, ADD (1 DPU) %332_00 1 (b) INT32, MUL (1 DPU)
& 16.00 & 16.00
5 800 g 800
9 4.00] 4.00
< 200 @ = 2.00
3 3
_nco 1.00 @ -OCD 1.00
2 050 @ 2 050
£ 025 @ £ 025
£ 013 @ £ 013
£ 006 £ 006
5 003 ' - Z 003
SN © % N SR VS SR
PP LR > e >0 Y SRV L S RN IR I SR S SR S
»\"9»\'& RIS VARV SN GENGEENEN N \/\’19 ,\/\'\9 U VRNV GENEEN NN
Operational Intensity (OP/B) Operational Intensity (OP/B)
64.00

32.00 J (€)FLOAT, ADD (1 DPU)

ic Throughput (MOPS, log scale)

ic Throughput (MOPS, log scale)

0.13 4

The arithmetic throughput of a DRAM Processing Unit (DPU) saturates at
low or very low operational intensity (e.g., 1 integer addition per 32-bit

element). Thus, the DPU is fundamentally a compute-bound processor.
We expect most real-world workloads be compute-bound in the UPMEM PIM
architecture.

SAFARI 142

Microbenchmark: Arithmetic Throughput vs. Operational Intensity

* Arithmetic Throughput versus Operational Intensity

H CMU-SAFARI/ prim-benchmarks ®Unwatch ~ 2 {7 Star 2 % Fork 1

<> Code (©) Issues 10 Pull requests (») Actions ["] Projects 1] wiki) Security |~ Insights 51 Settings

¥ main ~ prim-benchmarks / Microbenchmarks / Operational-Intensity / Go to file Add file ~
Juan Gomez Luna PrIM -- first commit 3de4bs9 9 days ago & History
dpu PrIM -- first commit 9 days ago
host PrIM -- first commit 9 days ago
support PrIM -- first commit 9 days ago
Makefile PrIM -- first commit 9 days ago
run.sh PrIM -- first commit 9 days ago

SAFARI 143

Benchmarking and
Workload Suitability

PriM Benchmarks

e Goal

- A common set of workloads that can be used to
e evaluate the UPMEM PIM architecture,
* compare software improvements and compilers,
* compare future PIM architectures and hardware

* Two key selection criteria:
- Selected workloads from different application domains
- Memory-bound workloads on processor-centric architectures

* 14 different workloads, 16 different benchmarks*

SA FARI *There are two versions for two of the workloads (HST, SCAN). 1 45

PrIM Benchmarks: Application Domains

Domain Benchmark Short name
Vector Addition VA
Dense linear algebra
Matrix-Vector Multiply GEMV
Sparse linear algebra Sparse Matrix-Vector Multiply SpMV
Select SEL
Databases
Unique UNI
Binary Search BS
Data analytics
Time Series Analysis TS
Graph processing Breadth-First Search BFS
Neural networks Multilayer Perceptron MLP
Bioinformatics Needleman-Wunsch NW
Image histogram (short) HST-S
Image processing
Image histogram (large) HST-L
Reduction RED
Prefix sum (scan-scan-add) SCAN-SSA
Parallel primitives
Prefix sum (reduce-scan-scan) SCAN-RSS
Matrix transposition TRNS

SAFARI

146

Roofline Model

* Intel Advisor on an Intel Xeon E3-1225 v6 CPU

16 - -~ 7 Peak compute performance
5 84 / G- MLP /
é sl 7 Gemvy ew
= - BS~@Q/(§HST
s 27 @ UNI_ &~ NW
& 1 - V—¢g O TRNS
S © 0% GRED
£ 05 | SEL BFS
9 SCAN
W
0.25 -&
0.125 . .
0.01 0.1 1 10

Arithmetic Intensity (OP/B)

[All workloads fall in the memory-bound area of the Roofline]

SAFARI 147

PrIM Benchmarks: Diversity

* PrIM benchmarks are diverse:
- Memory access patterns
- Operations and datatypes
- Communication/synchronization

. Memory access pattern Computation pattern

Domain Benchmark Short name Sequential T Stridedpl Random 0peraI:ions II) Datatype Intra-DPU | Inter-DPU

Dense linear algebra Vector Addition VA Yes add int32_t
Matrix-Vector Multiply GEMV Yes add, mul uint32_t

Sparse linear algebra | Sparse Matrix-Vector Multiply SpMV Yes Yes add, mul float

Databases Select SEL Yes add, compare int64_t handshake, barrier Yes
Unique UNI Yes add, compare int64_t handshake, barrier Yes

. Binary Search BS Yes Yes compare int64_t

Data analytics Time }S’,eries Analysis TS Yes add, sub,pmul, div int32_t

Graph processing Breadth-First Search BFS Yes Yes bitwise logic uint64_t barrier, mutex Yes

Neural networks Multilayer Perceptron MLP Yes add, mul, compare | int32_t

Bioinformatics Needleman-Wunsch NW Yes Yes add, sub, compare int32_t barrier Yes

Image processing Image histogram (short) HST-S Yes Yes add uint32_t barrier Yes
Image histogram (long) HST-L Yes Yes add uint32_t barrier, mutex Yes
Reduction RED Yes Yes add int64_t barrier Yes

Parallel primitives Prefix sum (scan-scan-add) SCAN-SSA Yes add int64_t § handshake, barrier Yes
Prefix sum (reduce-scan-scan) | SCAN-RSS Yes add int64_t | handshake, barrier Yes
Matrix transposition TRNS Yes Yes add, sub, mul int64_t mutex

SAFARI

148

PrIM Benchmarks: Inter-DPU Communication

Short name I

Memory access pattern

Computation pattern

Communication/synchronization

Domain Benchmark Sequential | Strided | Random Operations Datatype Intra-DPU Inter-DPU
Dense linear algebra Vector Addition VA Yes add int32_t
Matrix-Vector Multipl GEMV Yes add. mul uint32 t
Sparse linear algebra | Sparse Matrix-Vector Multiply SpMV Yes Yes add, mul float
Dat ‘)as f S .l'egth L SEL » I , Yes add, compare %nt64_t handshake, barr%er Yes
n t e Shigk U) COITITHTIUI] LB % add, compare int64_t [handshake, barrier Yes
Data analytics Binary Search BS Yes Yes compare int64_t
Time Spyies Apalysis. 7 .~ Ao TS Yes add, sub, mul, div int32_t
Graph processing! \ -Brekdth-Firdt Sdarel 5' I'T& e« BFS Yes Yes bitwise logic uint64_t barrier, mutex Yes
Neural networks Mu}.ﬁl‘ayfr Perceptron |~ ~ MLE .3, Yas - add, mul, compare int32_t
Bioinformatics .Nealﬁhy*uhl&l) A>1-D> ,Nm D 'L,) Yes add, sub, compare int32_t barrier Yes
Image processing Image histogr) HST-S __Yes Yes add uint32_t barrier Yes
Im T oRg) ™~ j‘tﬁ&ﬂS‘lel Ses Yes add uint32_t barrier, mutex Yes
Redyction ,, e ARED Yes . Yes . add int64_t barrier Yes
paralll primived R RS ER @ T Oy [ateresyfitsraa inted_t_ || Randshake, barrier | Yes
Prefix sum (reduce-scan-scan) | SCAN-RSS Yes add int64_t § handshake, barrier Yes
sMaR:FqspPeflitnD NI\\/ TRESA |\I_S gé ‘ A |N 1R &5 add, sub, mul int64 t mutex
Do, "L, NV, O /A

e DPU-CPU and CPU-DPU transfers

SAFARI

149

PriM Benchmarks

H CMU-SAFARI/ prim-benchmarks L

* 16 benchmarks and scripts
for evaluation

e https://github.com/CMU-

<> Code () Issues 19 Pull requests () Actions [Projects 17 wiki @) Security |~ Insights 1 Settings

¥ main ~ ¥ 1branch © 0 tags Go to file Add file ~

Juan Gomez Luna PrIM -- first commit 3desbs9 15 days ago O 2 commits
SAFARI/ rim_benchmarks BFS PriM -- first commit 15 days ago
- p EE— - - — BS PrIM -- first commit 15 days ago

GEMV PrIM -- first commit 15 days ago

HST-L PrIM -- first commit 15 days ago

HST-S PrIM -- first commit 15 days ago

MLP PriM -- first commit 15 days ago

Microbenchmarks PrIM -- first commit 15 days ago

NW PrIM -- first commit 15 days ago

RED PrIM -- first commit 15 days ago

SCAN-RSS PrIM -- first commit 15 days ago

SCAN-SSA PrIM -- first commit 15 days ago

SEL PrIM -- first commit 15 days ago

SpMV PrIM -- first commit 15 days ago

TRNS PrIM -- first commit 15 days ago

TS PriM -- first commit 15 days ago

UNI PrIM -- first commit 15 days ago

VA PrIM -- first commit 15 days ago

[LICENSE PrIM -- first commit 15 days ago
[README.md PrIM -- first commit 15 days ago
[run_strong_full.py PrIM -- first commit 15 days ago
[run_strong_rank.py PriM -- first commit 15 days ago
D run_weak.py PrIM -- first commit 15 days ago

SAFARI

150

https://github.com/CMU-SAFARI/prim-benchmarks
https://github.com/CMU-SAFARI/prim-benchmarks

Outline

(« Introduction b
- Accelerator Model

. - UPMEM-based PIM System Overview)

(¢ UPMEM PIM Programming)
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth)

(» DRAM Processing Unit h
- Arithmetic Throughput

. - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity)

(» Evaluation B
- Strong and Weak Scaling

. - Comparison to CPU and GPU)

* Key Takeaways

SAFARI

Evaluation Methodology

* We evaluate the 16 PrIM benchmarks on two UPMEM-
based systems:
- 2,556-DPU system
- 640-DPU system

* Strong and weak scaling experiments on the 2,556-DPU
system
- 1 DPU with different numbers of tasklets
- 1rank (strong and weak)
- Up to 32 ranks

N\

[Strong scaling refers to how the execution time of a program solving a particular problem varies
with the number of processors for a fixed problem size

S
~

Weak scaling refers to how the execution time of a program solving a particular problem varies
with the number of processors for a fixed problem size per processor

\ S

SAFARI 152

Evaluation Methodology

* We evaluate the 16 PrIM benchmarks on two UPMEM-
based systems:
- 2,556-DPU system
- 640-DPU system

* Strong and weak scaling experiments on the 2,556-DPU
system
- 1 DPU with different numbers of tasklets
- 1rank (strong and weak)
- Up to 32 ranks

* Comparison of both UPMEM-based PIM systems to
state-of-the-art CPU and GPU

- Intel Xeon E3-1240 CPU
- NVIDIA TitanV GPU

SAFARI 153

2,560-DPU System

* UPMEM-based PIM

Main Memory

system with 20 .U PMEM 1,
DIMMs of 16 chips each
Host
(40 ranks) cPU 0 P 2560 DPUs*
P21 DIMMs PN 67 BN BN B o BB G
Dual x86 socket VA0

° UP M E M DI MMS PIM-enabled Memory
coexist with regular Main Memory
DDR4 DIMMs =

e > memory 4—»[
controllers/socket (3 2
channels each) crU 1 ,,

« 2 conventional DDR4 4. [ﬂﬂﬂﬂﬂﬂﬂﬂ
DIMMSs on one BEEEEEEE
channel of one ..gwg,ze.../m
controller

160 GB
SA FAR’ * There are 4 faulty DPUs in the system that we use in our experiments. Thus, the maximum number of DPUs we can use is 2,556. 1 54

640-DPU System

* UPMEM-based PIM
system with 10 UPMEM
DIMMs of 8 chips each

(1 o ran kS) Main Memory
- E19 DIMMs £
- x86 socket f—ﬁ{“)(l)ﬁﬂ()(lﬂ()
* 2 memo ry contro l I ers Chip)(chip; \cnip)(cmp)(éiﬁ,;; \Chi;ﬂﬁ&?ﬂ@;%ﬂ
(3 channels each) aoor P
* 2 conventional DDR4 o
DIMMs on one ~—<->&f:;::}Ez::}{:z::}{:::}{:z:)(::
Cha n nel Of On e Chip || Chip || Chip || Chip || Chip || Chip
controller PIM-enable

SAFARI 155

Datasets

 Strong and weak scaling experiments

Benchmark I Strong Scaling Dataset Weak Scaling Dataset N;m;ﬁvg&?
VA | 1 DPU-1 rank: 2.5M elem. (10 MB) |32 ranks: 160M elem. (640 MB) I 2.5M elem./DPU (10 MB) 1024 bytes
GEMV 1 DPU-1 rank: 8192 X 1024 elem. (32 MB) | 32 ranks: 163840 x 4096 elem. (2.56 GB) 1024 x 2048 elem./DPU (8 MB) 1024 bytes
SpMV besstk30 [253] (12 MB) besstk30 [253] 64 bytes

SEL 1 DPU-1 rank: 3.8M elem. (30 MB) | 32 ranks: 240M elem. (1.9 GB) 3.8M elem./DPU (30 MB) 1024 bytes

UNI 1 DPU-1 rank: 3.8M elem. (30 MB) | 32 ranks: 240M elem. (1.9 GB) 3.8M elem./DPU (30 MB) 1024 bytes

BS 2M elem. (16 MB). 1 DPU-1 rank: 256K queries. (2 MB) | 32 ranks: 16M queries. (128 MB) 2M elem. (16 MB). 256K queries./DPU (2 MB). 8 bytes

TS 256 elem. query. 1 DPU-1 rank: 512K elem. (2 MB) | 32 ranks: 32M elem. (128 MB) 512K elem./DPU (2 MB) 256 bytes

BFS loc-gowalla [254] (22 MB) rMat [255] (=100K vertices and 1.2M edges per DPU) [18 bytes

MLP 3 fully-connected layers. 1 DPU-1 rank: 2K neurons (32 MB) | 32 ranks: ~160K neur. (2.56 GB) 3 fully-connected layers. 1K neur./DPU (4 MB) 1024 bytes

NW 1 DPU-1 rank: 2560 bps (50 MB), large/small sub-block=2580—/2 | 32 ranks: 64K bps (32 GB), 1./s.=32/2 | 512 bps/DPU (2MB), 1/s.=512/2 8, 16, 32, 40 bytes
HST-S 1 DPU-1 rank: 1536 X 1024 input image [256] (6 MB) | 32 ranks: 64 X input image 1536 x 1024 input image [256]/DPU (6 MB) 1024 bytes
HST-L 1 DPU-1 rank: 1536 X 1024 input image [256] (6 MB) | 32 ranks: 64 X input image 1536 x 1024 input image [256]/DPU (6 MB) 1024 bytes

RED 1 DPU-1 rank: 6.3M elem. (50 MB) | 32 ranks: 400M elem. (3.1 GB) 6.3M elem./DPU (50 MB) 1024 bytes
SCAN-SSA 1 DPU-1 rank: 3.8M elem. (30 MB) | 32 ranks: 240M elem. (1.9 GB) 3.8M elem./DPU (30 MB) 1024 bytes
SCAN-RSS 1 DPU-1 rank: 3.8M elem. (30 MB) | 32 ranks: 240M elem. (1.9 GB) 3.8M elem./DPU (30 MB) 1024 bytes
TRNS 1 DPU-1 rank: 12288 X 16 X 64 x 8 (768 MB) | 32 ranks: 12288 x 16 x 2048 X 8 (24 GB) 12288 x 16 x 1 x 8/DPU (12 MB)

The PrIM benchmarks repository includes

all datasets and scripts used in our evaluation

SAFARI 156

https://github.com/CMU-SAFARI/prim-benchmarks

Strong Scaling: 1 DPU (1)

* Strong scaling
experiments on 1 DPU 1200 ORGP iy

E==]CPU-DPU
- We set the number I (mter-DPU

of tasklets to 1, 2, 4, — 1000 {{ZZ] | mmmoPU - 12
8, and 16 =Q=Speedup

- We show the
breakdown of
execution time:

* DPU: Execution
time on the DPU

* |nter-DPU: Time for
inter-DPU 0 | .
communication via
the host CPU VA - o F ® g

* CPU-DPU: Time for #tasklets per DPU

CPU to DPU
transfer of input
data

e DPU-CPU: Time for

DPU to CPU
transfer of final
results

- Speedup over 1
tasklet

N

800 -

600 - 7]
Y

400 A

Speedup

Execution Time (ms

200 ﬁ:ﬁ:’

SAFARI 157

Strong Scaling: 1 DPU (lI)

3DPU-CPU ZZ3DPU-CPU

ESNCPU-DPU [- [10000 - [[E=3CPU-DPU

1200

8
1000 D I nter-DPU | _ - " :ggg - _ I nter-DPU 7 (VA, GEMV, SpMV’ SEL, UNI, TS’ \
S wo < 5 e :o| | MLP, NW, HST-S, RED, SCAN-SSA
= = I~ = °
5 5 5 o 5 oo . (Scan kernel), SCAN-RSS (both
g o I A | : g 0 g o . kernels), and TRNS (Step 2 kernel),
- S =IE i o . the best performing number of
0 0 0 0
#tasklets per DPU IG i UaSklets IS 16)

#tasklets per DPU #tasklets per DPU #tasklets per DPU

8 140000
 omo Tg}fﬁr'opu L7 120000
77 ===V 2 oo) Speedups 1.5-2.0x as we double the
£ 3 1 a0 2 number of tasklets from 1to 8.
2w 2o - .5 Speedups 1.2-1.5x from 8 to 16,
@ 200 L % 20000 2 since the pipeline throughput
UNI o e e g A e saturates at 11 tasklets
#tasklets per DPU #tasklets per DPU k J
12 s 1600 ggﬂj;gg
1400 I | nter-DPU
B * e 2 1o KEY OBSERVATION 10
g o g g 1000
= 800 A I= 800
RUE A number of tasklets
g 400 g g 400 =
S o : 1% 5 20 greater than 11 is a good

- N < 0 ©
—

MLP = & ¥ © g

=
=3

choice for most real-

#tasklets per DPU #taskletsBer DPU
g = e e s] world workloads we
DPU (Add) «lemSpeedup (Scan) (== «lemSpeedup (Step 3)
= 2000 Speedup (Add) 7 e 5p 02 15
£ 2000 | o 1E om0 tested (16 kernels out of 19
IE 1500 > 5 o L g
= £ 1500 Sl E 1500 g
£ % | 5| | kernels from 16
5 S 1000 S8 S 1000 <4
- 3 27413 4 b h k it full
2 e . enchmarks), as it fully
0 0 0 0 o a1) . .
ReD <~ e kawsa v e e g Lo - utilizes the DPU'’s pipeline.
ttasklets per DPU #tasklets per DPU #tasklets per DPU ttasklets per DPU

SAFARI 158

Strong Scaling: 1 DPU (llI)

S do not use intra-DPU
([synchronization primitives

" VA, GEMV, SpMV, BS, TS, MLP, HST- |

J

_synchronization is lightweight

[In SEL, UNI, NW, RED, SCAN-SSA (Scan |
kernel), SCAN-RSS (both kernels),

(BFS, HST-L, TRNS (Step 3) use

when accessing shared data
_Structures

mutexes, which cause contention

J
~

SAFARI

159

Strong Scaling: 1 DPU (IV)

ZF1DPU-CPU
CPU-DPU
[| nter-DPU
I DPU - 5
=Q=Speedup

«—

< o0
i

#tasklets per DPU

" VA, GEMV, SpMV, BS, TS, MLP, HST- |
S do not use intra-DPU

(_synchronization primitives y

[In SEL, UNI, NW, RED, SCAN-SSA (Scan R
kernel), SCAN-RSS (both kernels),
_synchronization is lightweight

J
~\

(BFS, HST-L, TRNS (Step 3) use
mutexes, which cause contention
when accessing shared data
_Structures

KEY OBSERVATION 11

Intensive use of intra-DPU
synchronization across
tasklets (e.g., mutexes,

barriers, handshakes)
may limit scalability,
sometimes causing the best
performing number of

tasklets to be lower than
11.

SAFARI

160

Strong Scaling: 1 DPU (V)

(SCAN-SSA (Add kernel) is not)
compute-intensive. Thus,
performance saturates with

[e — o | |ess that 11 tasklets (recall
4 DPU-CPU ™% CPU-DPU
(I Inter -DPU mmm DPU (Scan) STREAM ADD).
o g peedup (Sean) 7 GS shows similar behavior)
£ 2000 {77 6
2 ‘ s
s e B Bl N KEY OBSERVATION 12
S 1000 g -3 38
= ; |,V Most real-world
9 500 - qra workloads are in the
L
0 4 Lo compute-bound region of

SCAN-SSA = & S o © the DPU (all kernels except
#tasklets per DPU SCAN-SSA (Add kernel) and
BS), i.e., the pipeline
latency dominates the
MRAM access latency.

SAFARI 161

Strong Scaling: 1 DPU (VI)

(The amount of time spent on CPU- A
DPU and DPU-CPU transfers is low
compared to the time spent on DPU
_execution)
==1DPU-CPU E==% CPU-DPU (Step 1) [) \
(I Inter-DPU I DPU (Step 3) TRNS performs step 1 of the matrix
oo gy Seecdw(Biens) | transposition via the CPU-DPU
— 14000 1 10 transfer.
£ 15000 - Using small trapsfers (8 elements)
g 10000 ~_ 8 a Soe(sj nc.)(;ctixplmt full CPU-DPU
= 8000 - y 68 \ [Danaw!)
.S 6000 - . &
S
g 4000 - , KEY OBSERVATION 13
& 2000 - I
0 - L0 Transferring large data
TRNS = © ¥ = 3 chunks from/to the host

#tasklets per DPU

CPU is preferred for input
data and output results due
to higher sustained CPU-

DPU/DPU-CPU bandwidths.

SAFARI 162

Strong Scaling: 1 Rank (I)

* Strong scaling
experiments on 1 rank

- We set the number of
tasklets to the best
performing one

- The number of DPUs
is1, 4,16, 64

- We show the
breakdown of
execution time:

* DPU: Execution time
on the DPU

* Inter-DPU: Time for
inter-DPU
communication via
the host CPU

* (CPU-DPU: Time for
CPU to DPU transfer
of input data

* DPU-CPU: Time for
DPU to CPU transfer
of final results

- Speedup over 1 DPU

2500

“» 2000

1500

1000

500

Execution Time (ms

NW

FEZADPU-CPU
E=1CPU-DPU
[T | nter-DPU
[DPU
a=Q=Speedup

w,
N\

< o}
—

#DPUs

20
18
16

=
N

o
Speedup

o N B O

SAFARI

163

Strong Scaling: 1 Rank (II)

E=NCPU-DPU
(I | nter-DPU

Execution Time (ms)

DP!

E=3CPU-DPU

=LIDPU-CPU LZJDPU-CPU
_ |==acPu-opu [==3IcPu-oPU [y

I inter-DPU | (%) I | nter-DPU

=T " m— 0 60 1200
|-°-Seedu ' | [=©=Speedup L 5o 1000

/"VA, GEMV, SpMV, SEL, UNI, BS, TS,
MLP, HST-S, HSTS-L, RED, SCAN-
SSA (both kernel), SCAN-RSS (both
kernels), and TRNS (both kernels)
scale linearly with the number of

kDPUS

~

J

Scaling is sublinear for BFS and NW

-
BFS suffers load imbalance due to

irregular graph topology
\

.

NW computes a diagonal of a 2D
matrix in each iteration.
More DPUs does not mean more

-9
L8
= m = -
£ 300 E £
o)) 6
250 a
£ 40 € L a £ L s 3
Z 200 ' ' b
S s 5 L4 g
S 150 =] = &
3 L 3 3 M3
50 /1 r 1
o 10 L L O O 0
UNI - ¥ 8 3 BS - ¥ 8 3 s - ¥ &8 3 BFS - Y 5 3
140
= T 2000 16 =
é é 14 E 120 50
[[[()
£ £ 2 offf £ 10 sl € w08
= = 0ol = 80 30 R0 E 250 3
5 § 1000 il 5 | B 30 8
E E 4 | ERS L2008 5 v
o o o o 150 20
2 =)]] 40 o 100
% mmuum X 500 X 10 X "
B 50
= L Lo
Inter-DPU -DPtJr(Scan) I inter-0PU - DPU’lScan) I nter DPU -DPUV(Step 3)
DPU (Add) el Speedup (Scan) E=mDPU (Reduce) === Speedup (Scan) EEmOPU (Step 2) wle=Speedup (Step 3)
Speedup (Add) 70 | @u=Speedup (Red.) 70 e@==Speedup (Step 2 70
z 700 4? 60 2 6.E+02 60 z 7.E+05 3 14 60
= 60 ARECN | o} N |] IRk
£ 500 / 20 S £ 4E402 // 10 2 £ 5.E+05 0 =
= 400 § T l SHIT acv0s N / 3
30 @ 7]
§ 300 218 302 0 SHNS 3 eios / 0g
§ 200 20 § 2.E+02 20 g 26405 20
~ 3 100 10 S 1E+02 10 & 1.6+05 10
@ 0 0 0.E+00 0 0.E+00 0
RED =~ ~ g g CAN-SSA ™ Y 98 CAN-RSS ~ Y 9§ RNS = Y & 3
#DPUs #DPUs #DPUs #DPUs

\parallelization in shorter diagonals.

J

164

Strong Scaling: 1 Rank (l1I)

VA, GEMV, SpMV, BS, TS, TRNS do
not need inter-DPU synchronization

SEL, UNI, HST-S, HST-L, RED, SCAN-
SSA, SCAN-RSS need inter-DPU
synchronization but 64 DPUs still
obtain the best performance

BFS, MLP, NW require heavy inter-
DPU synchronization, involving
DPU-CPU and CPU-DPU transfers

SAFARI 165

Strong Scaling: 1 Rank (1V)

/"VA, GEMV, TS, MLP, HST-S, HST-L,)
RED, SCAN-SSA, SCAN-RSS, TRNS

use parallel transfers.

CPU-DPU and DPU-CPU transfer
times decrease as we increase the
Qumber of DPUs Y,

(BS, NW use parallel transfers but)
do not reduce transfer times:
- BStransfers a complete array

to all DPUs.
- NW does not use all DPUs in all

\ iterations)
~

-
SpMV, SEL, UNI, BFS cannot use
parallel transfers, as the transfer

_size per DPU is not fixed

PROGRAMMING
RECOMMENDATION 5

Parallel CPU-DPU/DPU-CPU
transfers inside a rank of DPUs

are recommended for real-
world workloads when all
transferred buffers are of the same
size.

SAFARI

166

Strong Scaling: 32 Ranks (1)

* Strong scaling
experiments on 32
rank

- We set the number
of tasklets to the
best performing one

- The number of DPUs
is 256, 512, 1024,
2048

- We show the
breakdown of
execution time:

* DPU: Execution
time on the DPU

* |nter-DPU: Time for
inter-DPU
communication via
the host CPU

* We do not show
CPU-DPU/DPU-CPU
transfer times

- Speedup over 256
DPUs

SAFARI

1200

1000

800

600

Execution Time (ms)

[DPU

=Q=Speedup

O
LN
N

1
1024

#DPUs

I
@
||||||""

2048

O L N W b U1 O N ©

Speedup

167

Strong Scaling: 32 Ranks (II)

/"VA, GEMV, SEL, UNI, BS, TS, MLP,)
HST-S, HSTS-L, RED, SCAN-SSA
(both kernel), SCAN-RSS (both
kernels), and TRNS (both kernels)
scale linearly with the number of
_DPUs)
p

~

SpMV, BFS, NW do not scale linearly

due to load imbalance
g)

KEY OBSERVATION 14

Load balancing across
DPUs ensures linear
reduction of the
execution time spent on

the DPUs for a given
problem size, when all
available DPUs are used (as
observed in strong scaling
experiments).

SAFARI 168

Strong Scaling: 32 Ranks (llI)

SEL, UNI, HST-S, HST-L, RED only
need to merge final results

KEY OBSERVATION 15

The overhead of merging

partial results from DPUs in
the host CPU is tolerable across
all PrIM benchmarks that need it.

BFS, MLP, NW, SCAN-SSA, SCAN-RSS
have more complex communication

KEY OBSERVATION 16

Complex synchronization
- - _ across DPUs (i.e., inter-DPU
synchronization involving two-

way communication with the
host CPU) imposes significant
overhead, which limits
scalability to more DPUs.

SAFARI 169

Weak Scaling: 1 Rank

KEY OBSERVATION 17
0 5Py (Equally-sized problems
600 4 = CPU-DPU y/ assigned to different DPUs
é o0 J MInter-DPU / and little/no inter-DPU
w mDPU . .
2 oo . V A s.ynchromzatlon_lead to
= / w linear weak scaling of the
S 300 - - VA § \ execution time spent on the
g 200 - /J{ \ \ DPUs (i.e., constant execution
S 100 N time when we increase the
. number of DPUs and the
VA o < © < dataset size accordingly).
— (Vo)

KEY OBSERVATION 18

Sustained bandwidth of
parallel CPU-DPU/DPU-CPU
transfers inside a rank of
DPUs increases sublinearly
with the number of DPUs.

SAFARI 170

CPU/GPU: Evaluation Methodology

* Comparison of both UPMEM-based PIM systems to
state-of-the-art CPU and GPU

- Intel Xeon E3-1240 CPU
- NVIDIA TitanV GPU

* We use state-of-the-art CPU and GPU counterparts of
PriM benchmarks

- https://github.com/CMU-SAFARI/prim-benchmarks

* We use the largest dataset that we can fit in the GPU
memory

* We show overall execution time, including DPU kernel
time and inter DPU communication

SAFARI 171

https://github.com/CMU-SAFARI/prim-benchmarks

CPU/GPU: Performance Comparison (1)

O CPU 1 GPU 640 DPUs 2556 DPUs
< 1024.000 - - !]
TU i I N 1 _ 1
3 256.000 . \ -) : :
a0 64.000 - \ \ \ o \ : \ ! i
- N 1
L2 16.000 A ‘-l \ ‘R | |
) 4.000 4 | N \ \ \ N y N i \ |
= N \ | \ N \ \ \ \) g :
g S TEN R R W N YR WS N Y Y] N D
o 0063 4R R Yy \ : | \
S 0016 | | YN R R N Y \ \ : \
T 0.004]} ¢ RE R AR \ \ | \
Q 0.001 b : A L N A R
Q
(Vp] < — >) v =) < (%)) %) > > wn wn o =1 | =z
SIE(s|2|2g18(|a(8|2] [3|3|°|5]1212] |2|E|3
T | T z|z|+ o|& 21 Z|s
Q| w (G}
A | & S| 2
0ol o
More PIM-suitable workloads (1) Less PIM-suitable workloads (2)

The 2,556-DPU and the 640-DPU systems outperform the CPU for

all benchmarks except SpMV, BFS, and NW

The 2,556-DPU and the 640-DPU are, respectively, 93.0x and 27.9x

faster than the CPU for 13 of the PrIM benchmarks

SAFARI

172

CPU/GPU: Performance Comparison (Il)

More PIM-suitable workloads (1)

Less PIM-suitable workloads (2)

The 2,556-DPU outperforms the GPU
for 10 PriIM benchmarks with an average of 2.54x

The performance of the 640-DPU is within 65%

[CPU 1 GPU 640 DPUs 2556 DPUs
< 1024.000 - 7 -
Q - - o 1
© 256.000 - AN N A | - |
z 64.000—‘5 A) - I) A -
S 16.000 { | | -l R IR :
> a0 A0 IR E) SR o
(a1 _
& 1.000 - - .
= 0250 /|| N1 N R N IHN IR : \ \ ! N
g ~ 1Y IS A . \ 1IN
Iy I
g ooor TR IR AN AN A ¥R N A :: Y D
v 0.001 L A A \ ! §
o
(%) < - >) v - o) < wn %) > > (%) wn [a¥ =l <| =z
182\8|2)7\8(3(8 8] 313|782/ |2|8|3
T T I e = W a z|z|u
<
2|3 AR

the performance of the GPU for the same 10 PriIM benchmarks

SAFARI

173

CPU/GPU: Performance Comparison (lI)

o CPU 1GPU 640 DPUs 2556 DPUs
1024.000 .
256.000 - ¥
64.000 | []
16.000 -
4.000 -
1.000
0.250 -
0.063 -
0.016 -
0.004 -
0.001

A A)

g i

il i A
G i
A A
il L

A g g g g g g g

il A I A

i i A
g g g g g g i A

A oy

Speedup over CPU (log scale)

KEY OBSERVATION 19

The UPMEM-based PIM system can outperform a state-of-the-art GPU
on workloads with three key characteristics:
1. Streaming memory accesses

GMEAN

2. No or little inter-DPU synchronization

3. No or little use of integer multiplication, integer division, or floating
point operations

These three key characteristics make a workload potentially suitable to

the UPMEM PIM architecture.

SAFARI 174

CPU/GPU: Energy Comparison (I)

256.00

o CPU 1 GPU

640 DPUs

128.00 -
64.00 -
32.00 -
16.00 -
8.00 -
4.00 -
2.00 -

1.00

0.50 -
0.25 -
0.13 -
0.06 -
0.03

]

Energy savings over CPU (log scale)
VA

SEL

UNI
BS
HST-S
HST-L
RED
TRNS
GEMV
SpMV

SCAN-SSA
SCAN-RSS

More PIM-suitable workloads (1)

TS

BFS

MLP

NW

Less PIM-suitable workloads (2)

GMEAN (1)

GMEAN (2)

The 640-DPU system consumes on average 1.64x less energy than

the CPU for all 16 PrIM benchmarks

For 12 benchmarks, the 640-DPU system provides energy savings

GMEAN

of 5.23x over the CPU

SAFARI

175

CPU/GPU: Energy Comparison (II)

mCPU mGPU 640 DPUs

__256.00 | |
@ 128.00 - - L |
T 64.00 | i :
32,00 4 | :
& 16.00 | o : 3 ; —
= 8001 g :) 7

4.00 A : .
= 1.00 : ;
2 050 - | :

0.25 A | :
S 0.13 - | :
S 0.06 : | :
® 0.0
8 KEY OBSERVATION 20 E
]
S The UPMEM-based PIM system provides large energy savings over a Z

state-of-the-art CPU due to higher performance (thus, lower static energy)
and less data movement between memory and processors.
The UPMEM-based PIM system provides energy savings over a state-of-

the-art CPU/GPU on workloads where it outperforms the CPU/GPU.
This is because the source of both performance improvement and energy
savings is the same: the significant reduction in data movement between
the memory and the processor cores, which the UPMEM-based PIM
system can provide for PIM-suitable workloads.

SAFARI 176

Outline

(« Introduction b
- Accelerator Model

. - UPMEM-based PIM System Overview)

(¢ UPMEM PIM Programming)
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth)

(» DRAM Processing Unit h
- Arithmetic Throughput

. - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity)

(+ Evaluation b
- Strong and Weak Scaling

- Comparison to CPU and GPU Y

* Key Takeaways

SAFARI

Key Takeaway 1

64.00

0.03

Arithmetic Throughput (MOPS, log scale)

32.00 A
16.00 -
8.00 -
4.00 -
2.00 +
1.00 ~
0.50 -
0.25 ~
0.13 ~
0.06 -

(a) INT32, ADD (1 DPU)

Memory-bound Compute-bound
region region

™ J o D © *x @
PO TN TN G ¢ > > N
Q" O ¢ N/ >7 Y

Operational Intensity (OP/B)

KEY TAKEAWAY 1

The throughput
saturation point is as low
as ¥a OP/B,

i.e., 1integer addition per
every 32-bit element
fetched

The UPMEM PIM architecture is fundamentally compute bound.
As aresult, the most suitable workloads are memory-bound.

SAFARI

178

Key Takeaway 2

1024.000

o CPU GPU

640 DPUs

2556 DPUs

256.000 -
64.000 -
16.000 -
4.000 -
1.000

0.250 -
0.063 -
0.016 -
0.004 -
0.001

Speedup over CPU (log scale)

VA

SEL

UNI

BS

HST-S
HST-L

RED
SCAN-SSA
SCAN-RSS

TRNS

More PIM-suitable workloads (1)

KEY TAKEAWAY 2
The most well-suited workloads for the UPMEM PIM architecture

use no arithmetic operations or use only simple operations (e.g.,
bitwise operations and integer addition/subtraction).

SAFARI

GEMV
SpMV
TS
BFS
MLP
NW

Less PIM-suitable workloads (2)

GMEAN (1)

GMEAN (2)

GMEAN

179

Key Takeaway 3

_ NV3IND
[A
: (z) NVIWD
o Fg g F gy Frrd
_ (T) NVIWD
........................ —
o
(7,)
FFFFFFF e]
_ MN m
| . FEEEEEFEFEFE m
_ d1N o
S
] Q
_ S4d o
©
L A x
: Sl 3
1
(i A N
_ AWdS a
a
(2] | i
Q
2 AW3ID =
i Y R A UL SN P S S P B
(o}
LN
LN
(V]
| & EE Ly FEFEFFEFErF
¥ _ SNY1
| A i A \1'—'
_ SSY-NVIS =
(7] (7]
w | A A A w
o | VSS-NVIS | 8
o -z
< FFFFFFEFFFrFrFyFryFyrFyr) S
e} _ a3y m
" i h
_ 7-1SH o]
©
=
[A A A A u
= : S-1SH]
O >
D " . A —
_ Sd o
g
[i o
I E INN S
@ FFFFFFFFFgFFFFFFFrFr)
o _ 13S
" i
_ VA
O OO 0O 00O Mm W
OO0 OO0 00O WMNMmMuLVU-HOOoO
©Co0oooonNOOoOoOo
T O <FT O T H OO O OO
N 1N O
(@ Mo\
—

(1e3s 80]) NdD 49n0 dnpaads

KEY TAKEAWAY 3

=
J—y
A
=
=
=
o
=
<)
=
wd
o
=
2
.=
9
S
k
o
=)
=
=
<]
=
=
?
O
=
wd
2]
=
=
<)
=
=

7))
—
A
an]

7]

7]

(@)

S

()

«

e

o
u
b

«

()
u

S

=

=]

(S

o

e

B

(@)

Q
o
)
b
“

Q
=

=]

op

[<B)

9

L

|

-
)

()

Q
b
u
=

1)

)

4+

_—
=
(@)
ﬁ
°)
=
=
=]
£
£
(@)
()
=
(=
2
B
Q
)
=
&

180

SAFARI

Key Takeaway 4

KEY TAKEAWAY 4

e UPMEM-based PIM systems outperform state-of-the-art CPUs in
terms of performance (by 23.2x on 2,556 DPUs for 16 PrIM
benchmarks) and energy efficiency on most of PrIM benchmarks.

e UPMEM-based PIM systems outperform state-of-the-art GPUs on

a majority of PrIM benchmarks (by 2.54x on 2,556 DPUs for 10
PrIM benchmarks), and the outlook is even more positive for future
PIM systems.

e UPMEM-based PIM systems are more energy-efficient than state-
of-the-art CPUs and GPUs on workloads that they provide
performance improvements over the CPUs and the GPUs.

SAFARI

Understanding a Modern PIM Architecture

Benchmarking a New Paradigm:
Experimental Analysis and
Characterization of a Real
Processing-in-Memory System

JUAN GOMEZ-LUNA', I1ZZAT EL HAJJ?, IVAN FERNANDEZ'-3, CHRISTINA GIANNOULA' 4,
GERALDO F. OLIVEIRA', AND ONUR MUTLU

'ETH Ziirich

% American University of Beirut
3Univc.arsity of Malaga

“National Technical University of Athens

Corresponding author: Juan Gémez-Luna (e-mail: juang @ethz.ch).

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

SAFARI 182

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

Short arXiv Version

Benchmarking Memory-Centric Computing Systems:
Analysis of Real Processing-in-Memory Hardware

Juan Gomez-Luna Izzat El Hajj Ivan Fernandez Christina Giannoula Geraldo E. Oliveira Onur Mutlu
ETH Ziirich American University University National Technical ETH Ziirich ETH Ziirich
of Beirut of Malaga University of Athens

https://arxiv.org/pdf/2110.01709.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

SAFARI 183

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

Long arXiv Version

Benchmarking a New Paradigm: An Experimental Analysis

of a Real Processing-in-Memory Architecture

Juan Gémez-Luna! Izzat Fl Hajj? Ivan Fernandez!* Christina Giannoula®*
]]

Geraldo F. Oliveira! Onur Mutlu!
IETH Ziirich 2American University of Beirut *University of Malaga *National Technical University of Athens

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

SAFARI 184

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

PrIM Repository

* All microbenchmarks, benchmarks, and scripts
* https://github.com/CMU-SAFARI/prim-benchmarks

H CMU-SAFARI/ prim-benchmarks & Unwatch ~ 2 {7 star 2 % Fork 1

<>

I_Y

A

Code () Issues 1 Pull requests (*) Actions [Projects [wiki () Security [~ Insights 2 Settings

main v prim-benchmarks / README.md Go to file

Juan Gomez Luna PrIM -- first commit Latest commit 3desb49 9 days ago O History

1 contributor

168 lines (132 sloc) 5.79 KB Raw Blame GJ 2]

PrIM (Processing-In-Memory Benchmarks)

PrIM is the first benchmark suite for a real-world processing-in-memory (PIM) architecture. PrIM is developed to evaluate,
analyze, and characterize the first publicly-available real-world processing-in-memory (PIM) architecture, the UPMEM PIM
architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called
DRAM Processing Units (DPUs), integrated in the same chip.

PrIM provides a common set of workloads to evaluate the UPMEM PIM architecture with and can be useful for programming,
architecture and system researchers all alike to improve multiple aspects of future PIM hardware and software. The workloads
have different characteristics, exhibiting heterogeneity in their memory access patterns, operations and data types, and
communication patterns. This repository also contains baseline CPU and GPU implementations of PrIM benchmarks for
comparison purposes.

Prim also includes a set of microbenchmarks can be used to assess various architecture limits such as compute throughput and
memory bandwidth.

SAFARI

185

https://github.com/CMU-SAFARI/prim-benchmarks

HPCA 2023 Tutorial
Real-world Processing-in-Memory Architectures

Processing-Near-Memory
Real PNM Architectures
Programming General-purpose PIM

Dr. Juan Gomez Luna
Professor Onur Mutlu

m Ziirich SA F A R ’

Sunday, February 26, 2023

